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Ultrafast magnetization dynamics: Microscopic electronic configurations and ultrafast spectroscopy
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We provide an approach for the identification of the electronic and magnetic configurations of ferromagnetic Fe
after an ultrafast decrease or increase of the magnetization. The model is based on the well-grounded assumption
that, after an ultrafast variation of the magnetization, the system achieves a partial thermal equilibrium. With
statistical arguments we show that the magnetic configurations are qualitatively different in the case of reduced or
increased magnetization. The predicted magnetic configurations are then used to compute the dielectric response
at the 3p (M) absorption edge, which is directly related to the changes observed in the experimental T-MOKE
data. The good qualitative agreement between theory and experiment offers a substantial support for the validity
of the model, and to the very existence of an ultrafast increase of the magnetization.
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I. INTRODUCTION

The search for the next generation magnetic recording
media is focusing on the ultrafast magnetization dynamics
[1–5]. Despite experimental progress [6–15], the microscopic
understanding of the ultrafast magnetization dynamics remains
an open question. In the last few years, several theories were
proposed as possible explanations [16–25], and are currently
debated [26–34]. More recently, the ultrafast build-up of
magnetization in gold was measured [35], and ferromagnetic
Fe was found to undergo both an ultrafast decrease or
increase of its magnetization [36]. Although this last study
did not offer any direct measurement of the magnetization, the
reported effect was inferred from the qualitative differences
observed in the experimental T-MOKE spectra at the 3p (M)
absorption edge of Fe [36,37]. For a demagnetized sample,
the 3p asymmetry Fe peak is observed to decrease without
noticeable changes of its shape [36]. For a sample with
increased magnetization, instead, the aforementioned peak
remains approximately unaltered but a shoulder grows at lower
transition energies [36,37] (shown in Fig. 1 for convenience).
While the decrease of a peak, even in the femtosecond time
scale, has been already safely assigned to a net decrease
of the magnetization, the growth of a shoulder is a new
observation, which in Refs. [36,37] was associated to an
increase of the magnetization. However, this conjecture has
not been fully justified yet, and a few questions remain open.
Does the growth of the shoulder come from an increase of
the Fe magnetization or from other effects, such as changes
in the material response driven by a different element in the
sample, or even by processes not involving magnetism? [38]
Answering these precise questions is an important task to
understand and above all confirm the existence of an ultrafast
increase of the magnetization, interpret experimental data, and
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possibly help in designing new experiments and clarifying the
very nature of the ultrafast dynamics.

The aim of the present paper is to provide a model to
describe the excited states of Fe after the first picosecond
of ultrafast magnetization dynamics in order to predict the
magnetic response of the material in the picosecond time
scale. We will demonstrate that in the picosecond time
scale the system has acquired a partial thermal equilibrium
that can be described using microcanonical statistics on a
subspace of the whole Hilbert space. The partially equilibrated
configurations for decreased and increased magnetizations
will be shown to be qualitatively different in microscopic
sense, i.e., in terms of local atomic moments. Our results
illustrate that after ultrafast demagnetization the system has
tilted atomic magnetic moments whose lengths are equal
to the equilibrium value. On the contrary, after an ultrafast
magnetization increase, the magnetic configuration is given
by aligned atomic magnetic moments with increased lengths.
This microscopic description allows us to compute dielectric
tensors for both increased and decreased magnetization. The
calculated spectra show the same features observed in the
experimentally measured asymmetry. These results offer a
strong support to the existence of an ultrafast increase of the
magnetization in Fe, especially if one considers that in our
model, increased and decreased magnetizations are treated on
an equal footing from the outset. It must be emphasized that our
model does not address the mechanisms driving the ultrafast
magnetization dynamics, which are active in the femtosecond
time scale. As a matter of fact, our model shows that the
details of the magnetic response are independent on these
mechanisms. In a sense that will be clarified in the paper,
any theory of the transient process should at the end lead to
the same type of configuration.

The paper is structured as follows. After this Introduction,
in Sec. II, we will illustrate our classifications of the excited
states in terms of magnetic and electronic configurations,
emphasizing the boundaries of the performed approximations.
In Sec. III, we will write explicitly the energy of our system
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FIG. 1. (Color online) Time-dependent magnetic asymmetry.
Time evolution of the area spanned by the 3p asymmetry Fe peak at
53 eV as reported in Ref. [37] for increased Fe magnetization. The
relevant time scales in the ultrafast magnetization dynamics in this
experiment are also shown (a more detailed discussion is done in
Sec. IV). In the inset the T-MOKE spectra at the M absorption edge
are shown before (thin black line) and after (thick red line) the laser
excitation, corresponding roughly to −1.0 and +0.7 ps [37].

with respect to appropriate reference states. Then, in Sec. IV,
we will illustrate the mechanisms leading to the partial
equilibration, in relation to the experimental time scales.
In Sec. V, we will clarify how to evaluate the probability
of finding the system in the excited states (presented in
Sec. II) when probing the system in the picosecond time
scale. The most probable magnetic configurations in the
performed approximations and under the selected constraints
will be described in Sec. VI. The treatment of the electronic
configurations for the most probable magnetic configurations
will be the object of Sec. VII. Finally, in Sec. VIII, we will use
the previous results to calculate the dielectric response, and
compare it to available experimental data. Conclusions and
Acknowledgements will close this manuscript.

II. LABELING OF MICROSTATES

Any treatment of the equilibration problem through sta-
tistical mechanics requires the analysis of the Hilbert space
spanned by all the (excited) states of the system. One should
first classify all possible microstates � of the system, and then
calculate the energy H (�) of every microstate. In principle,
one should use a quantum-mechanical classification in terms of
excited many-body states, but it is obvious that this treatment
is infeasible for the present knowledge and computational
resources. Therefore we proceed by grouping microstates
according to their spin configuration, in the spirit of the
adiabatic approximation suggested in Ref. [39]. Notice that
this approximation is also one of the pillars of atomistic
spin dynamics [40], but in our case does not imply a
total decoupling of spin and electronic system, like, e.g., in
the three-temperature model. We can then classify a given
microstate by its magnetic configuration, i.e., the length and
orientation of the local magnetic moments on the atoms of
the system. We refer to a given atomic moment as mi with
the coefficient i running from 1 to the number of atoms in the

system Nat. We instead will refer to the magnetic configuration
(all the atoms) as {mi}. For simplicity, we assume a material
with only one atom in the unit cell; the generalization to
more atoms per cell is straightforward. To give an example,
the macrostate corresponding to the full equilibrium at zero
temperature contains only one microstate (we suppose the
degeneracy due to the direction of the magnetization lifted
by a tiny magnetic field), i.e., the ground state. In this state,
all the moments are aligned along ẑ; we will write the
magnetic configuration of this state as {mi = MGSẑ}. Here
and in the following, conditions within the curly brackets
are assumed to be valid ∀i. Moreover, MGS is the atomic
moment length at the ground state and ẑ is the unit vector
along the z direction. A generic magnetic configuration can
have moments of different length, which can be oriented in
different directions. Note that, even in an itinerant ferromagnet
like Fe, an atomic magnetic moment can be defined with very
good approximation [39,41–43].

Providing the magnetic configuration {mi} alone does not
univocally define the microstate �, since the electronic degrees
of freedom have not been specified yet. In fact, any magnetic
configuration {mi} identifies a group of microstates, which
we refer to as a mesostate. In the following, we will refer to
one of these mesostates by simply specifying the magnetic
configuration {mi}. To identify a single microstate within a
mesostate, one needs to describe the electronic configuration.
This would require to solve the electronic many-body problem
for a given magnetic configuration, which makes the problem
intractable. Therefore we formulate a description of all the
electronic states within a mesostate with respect to the
microstate with the lowest energy �0({mi}) for that particular
mesostate. The latter can be identified for every mesostate. In
particular, if the magnetic configuration is {mi = MGSẑ}, the
lowest energy microstate within the mesostate is the ground
state �GS of the system. For a generic magnetic configuration,
the lowest energy state is not the ground state of the system,
but can still be obtained by a constrained minimization of
the energy. In this study, we have used constrained DFT, as
discussed below, but other techniques may be used as well.
We call the minimum energy within a mesostate Emin({mi}).
We can now classify the excited states within a mesostate
as superpositions of single electron promotions on the rigid
band structure of the lowest energy states, as illustrated in
Fig. 2. In practical terms, this requires first to evaluate the
density of states ρ0({mi},σ,ε) of the lowest energy microstate
�0({mi}) in a given mesostate {mi}, where σ is the spin and
ε the single electron excitation energy. Then, we can fully
describe all microstates in the mesostate by specifying the
electronic population of the density of states n(σ,ε), with
the constraint of preserving the total number of majority and
minority spin electrons. The state with the lowest energy within
a mesostate is associated to the Fermi-Dirac distribution nF

at zero temperature. Therefore it is convenient to use the
difference �n(σ,ε) ≡ n(σ,ε) − nF (ε,T = 0) to describe the
electronic repopulation of the excited states. The constraint
of preserving the total number of majority and minority spin
electrons now becomes simply

∫ +∞

−∞
ρ0({mi},σ,ε) �n(σ,ε)dε = 0. (1)
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FIG. 2. (Color online) Some examples of rigid band structures
ρ0({mi},σ,ε) associated to given magnetic configurations {mi} as
calculated with constrained DFT for Fe. The arrows represent the
length and direction of the atomic magnetic moments, and are
colored according to their length (red, yellow, and blue corresponding
to moments longer, equal or shorter than MGS, respectively). The
energy dependence of ρ0({mi},σ,ε) is also shown, on the right side.
Majority and minority spins are respectively represented as positive
and negative values of the density of states. The zero of the energy is
the Fermi energy.

This description of the excited states is fairly good in metals,
provided that correlation effects are not too strong and
excitation energies not too high. Correlation effects in Fe
are indeed moderate [44], even when compared to other
3d transition metals [45]. Excitation energies in the typical
experimental setups we want to address are below a few
hundreds of meV per atom.

III. HAMILTONIAN OF THE SYSTEM

The microstates defined in Sec. II identify the effective
Hilbert space (see Fig. 3 for a pictorial view), which we
will use for our statistical analysis. Before that, we must
define the energy of each microstate in terms of the magnetic
configuration {mi} and the electronic configuration n(σ,ε). In
the approximations of Sec. II, the energy of a microstate �

can be written as

H ({mi},n(σ,ε)) ≈
∑

σ

∫ +∞

−∞
ε ρ0({mi},σ,ε) n(σ,ε) dε. (2)

Using the state with the lowest energy within the mesostate as
a reference, i.e., defining

Emin({mi}) ≡
∑

σ

∫ EF

−∞
ε ρ0({mi},σ,ε) dε (3)

one can rewrite Eq. (2) as

H ({mi},n(σ,ε)) ≈ Emin({mi}) + Eel({mi},n(σ,ε)). (4)

FIG. 3. (Color online) Pictorial view of the possible microstates
in the Hilbert space. The surface represents the subspace satisfying
the constraints of fixed energy and fixed magnetization. The colored
regions represent intersections of mesostates with different magnetic
configurations with the constraint of fixed energy and fixed mag-
netization. As examples, in addition to the ground state of point
A, two microstates are shown, belonging to two areas with different
magnetic configurations. Point B is a microstate with atomic magnetic
moments reduced in amplitude and aligned. Point C is a microstate
with magnetic moments with equilibrium length but tilted directions.
The insets show the density of states for both majority (red, top)
and minority (blue, bottom) spins, together with a cartoon of the
orientation and length of the atomic magnetic moments. The arrows
are colored according to their length, as in Fig. 5.

The second term in Eq. (4) is the contribution associated to the
electronic repopulation:

Eel({mi},n(σ,ε))

≡
∑

σ

∫ +∞

−∞
(ε − EF ) ρ0({mi},σ,ε) �n(σ,ε) dε , (5)

where EF is the Fermi energy. The equivalence between
Eqs. (2) and (4) can be promptly verified by means of Eq. (1).
In spite of the fact that the energy above is already derived
from a few approximations, its treatment remains extremely
complex due to the fact that the density of states ρ0({mi},σ,ε)
still depends in a very complex way on the full details of
the magnetic configuration {mi}. In practice, this requires
the numerical calculation of ρ0({mi},σ,ε) for almost every
{mi}. Due to the difficulties in treating directly with Eq. (4),
we approximate this expression even further, by identifying
various types of mesostates.

A. Moments of equal length with a large tilting

We focus first on the magnetic configurations where all
magnetic moments are equally long {|mi | = m}, but may have
different directions. For generic tiltings, the lowest microstate
energy within the mesostate can be rewritten as the sum of
the ferromagnetic reference energy for moments of arbitrary
length, a Heisenberg energy, which depends only on the
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orientation of the moments, and the anisotropy energy [46].
For Fe, which is the main object of this work, the anisotropy is
very small if compared to the exchange [47], and can therefore
be neglected in a first approximation (see also Appendix H).
We can then write

Emin({mi}) ≈ Emin,FM(m)

+ 1

Nat

∑
j,k

Jj,k({mi})
(

1 − mj · mk

|m|2
)

. (6)

Here, Emin,FM(m) is the energy of the ferromagnetic state
�0({mi = mẑ}), i.e., the minimum energy obtained with the
constraint of having all atomic moments aligned and with
length m. Notice that m can have an arbitrary value and
be equal, smaller, or bigger than MGS. The Jj,k are instead
the intersite exchange parameters, which unfortunately for Fe
depend on the full magnetic configuration {mi} [48]. This
dependence is, however, not so drastic to reverse the sign of
the exchange interaction, and therefore generating a spin wave
with large tiltings will always cost a higher energy than a wave
with small tiltings. This consideration is going to be sufficient
for our present investigation, and it will be shown that all these
mesostates contribute marginally to the statistics of the system.

B. Moments of equal length with a small tilting

For the microstates belonging to mesostates with equally
long atomic moments {|mi | = m} and a small tilting between
neighbours, Eq. (6) can be simplified as

Emin({mi}) ≈ Emin,FM(m)

+ 1

Nat

∑
j,k

Jj,k(m)

(
1 − mj · mk

|m|2
)

. (7)

Now the Jj,k depend only on the value m, and not on the
full magnetic configuration {mi}. Moreover, for small tiltings,
the local density of states of any microstate in the mesostate
{mi} coincides at the leading order with the density of states
obtained for all moments aligned, i.e., �0({mi = mẑ }), with
the only difference that the spin axis has to be rotated on every
atom to align to the local moment mi . Therefore the electronic
population of � can be equivalently specified on the density
of states

ρFM(m,σ,ε) ≡ ρ0({mi = mẑ },σ,ε). (8)

This greatly simplifies the second term of the Hamiltonian
in Eq. (4) since the density of states now depends only on
the value m and not on the complex details of the magnetic
configuration {mi}. Note that this approximation is very
good for small tiltings, corresponding to magnons of long
wavelength, but fails for the opposite case. We can now rewrite
Eq. (5) as

Eel({mi},n(σ,ε))

≈
∑

σ

∫ +∞

−∞
(ε − EF ) ρFM(m,σ,ε) �n(σ,ε) dε.

(9)

We emphasize that all terms in Eqs. (7) and (9) can be
evaluated ab initio by means of constrained DFT [49],
where the constraint is given by having ferromagnetically

FIG. 4. (Color online) Schematic view of the various mecha-
nisms active for different time scales after the laser pulse.

arranged atomic moments of a specified length (for details
see Appendix D).

C. Moments of variable length with a small tilting

Finally, we need to address the generic case of magnetic
configurations with moments of variable length on neighboring
atoms. For simplicity, we focus on small tilting between
neighbors. For small variations of the length around an average
length m, we can write

Emin({mi}) ≈ 1

Nat

∑
j,k

Jj,k(m)

(
1 − mi

|mi | · mj

|mj |
)

+ 1

Nat

∑
j,k

Lj,k(m) ||mj | − |mk||

+Emin,FM(|mi |). (10)

Here, the first term on the right-hand side is a Heisenberg
energy due to the tilting (transverse fluctuations), while
the second term gives the energy increase due to magnetic
moments with different lengths on different sites (longitudinal
fluctuations). The last term instead represents the average of
the energies for the formation of local moments of different
length, i.e.,

Emin,FM(|mi |) =
∑

i

Emin,FM(|mi |)/Nat. (11)

In principle, we could develop approximations to simplify the
dependence of ρ0({mi},σ,ε) on the magnetic configurations
but we will show that these mesostates can be neglected.

IV. PARTIAL EQUILIBRATION

We have, so far, approximated the Hamiltonian for selected
microstates but did not say anything about the state of the
system. In this section, we will clarify why we can treat the
system as partially equilibrated and we will define the type of
partial equilibration.

We split the dynamics of the system in two different time
scales. For simplicity, we will name them subpicosecond and
picosecond dynamics (see Fig. 4). We must stress that the
precise estimation of the temporal length of these two types
of dynamics depends on several factors, as for instance the
material under study. For subpicosecond dynamics, we intend
the time during which the magnetization changes rapidly.
During this time scale the system undergoes a strong electronic
excitation after the direct laser absorption. The electrons will
then repopulate the density of states tending towards rebuilding
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a Fermi-Dirac distribution at high temperature [50,51]. Within
the same time scale the microscopic effects which are
responsible for the magnetization dynamics will also affect
the electronic configuration in some way. If the magnetization
dynamics happens before, during or after the electrons have
rebuilt an internal thermal equilibrium is completely irrelevant
for our discussion. What is important is that when the micro-
scopic mechanism responsible for the ultrafast magnetization
dynamics has stopped being active, the electronic system has
already attained an internal thermal equilibrium. This thermal-
ization happens due to the system exploring the phase space
via electron-electron (e-e) scattering. The chaotic behavior of
the electronic motion leads the system to span uniformly a
part of the phase space, as we are addressing the dynamics
of a closed system. For sake of simplicity, we neglect energy
relaxation due to electron-phonon scattering, but its inclusion
would lead to the same conclusions (see Appendices B and C).
It is now important to understand what is the part of the phase
space that is explored via this dynamics. The main effect
of the e-e scattering is the reshuffling of the energy positions of
the electrons without changing the total energy of the system.
The spin-orbit coupling for 3d levels in Fe is small, which
leads to a small probability of transferring spin moment to
orbital moment or lattice. Therefore, in the subpicosecond time
scale, the majority of e-e scattering events preserve both the
total energy E and a magnetization M = ∑

i mi/Nat that has
been set by the microscopic mechanisms driving the ultrafast
dynamics. However, it should not be forgotten that these events
can still lead to the transition from one mesostate {mi} to
another mesostate {m′

i}, as long as the total magnetization is
preserved, i.e.,

∑
i mi/Nat = ∑

i m′
i/Nat. This situation is for

instance represented by the two microstates B and C in Fig. 3.
Notice that these transitions are fast: in itinerant ferromagnets,
magnon lifetimes are usually very short (tens of femtoseconds)
[52].

The above analysis tells us that, at the end of the subpi-
cosecond dynamics, the system attains a partial equilibrium,
where the partial attribute is due to that this system still has
a total magnetization M which can be different (either bigger
or smaller) than the global equilibrium value at that specific
temperature. We can therefore describe the system by doing
ensemble averages over the part of the phase space with fixed
total energy E and total magnetization M.1 It is fundamental

1We have here a minor inconsistency: the assumption that the system
equilibrates only through spin-conserving e-e scatterings leads to the
conclusion that also the total orbital momentum remains unchanged
and would need to be treated as a constraint. However, we know that
also spin-conserving electron-phonon scatterings are important for
the partial equilibration. The latter do not conserve either total energy
or orbital momentum, implying that canonical statistics should be
used and that the orbital momentum should be allowed to relax. Due
to the great gain in simplicity, in this work, we will follow a hybrid
approach: microcanonical statistics (i.e., total energy treated as a
constraint) but relaxed orbital moment. This is justified by the fact that
for macroscopic systems all types of statistics lead to the same results.
Notice that this does not affect the role of the total spin moment,
that has no way to be modified during the partial equilibration and
therefore remains as a constrain.

to realize here that if spin-flip scattering events (for instance
with phonons) were substantial for the thermalization process,
the system would thermalize to the full equilibrium, i.e., the
system would acquire exactly the magnetization expected at
the final temperature. This is not what happens, since it is
incompatible with the very existence of both the appearance
of magnetization in nonmagnetic materials and the increase
of magnetization in Fe. Notice that this, however, does not
exclude transfer of spin moment to the phonon system during
the ultrafast magnetization dynamics, but simply tells that this
transfer cannot be of the same type as the one that leads to
equilibration.

After the ultrafast change of the magnetization is finished,
the thermalization mechanism is still active but processes
in the picosecond time scale become also important. Now
the system undergoes different dynamics: cooling down due
to heat diffusion, recovery of the magnetic moment due to
the slow spin-phonon equilibration, and precession of the
atomic magnetic moments in the magnetic field. The first
two processes (cooling and recovery of magnetization) can
be treated as quasistatic with respect to the e-e scattering. This
implies that the correction to the electronic population coming
from these effects can be described as a small perturbation of an
associated equilibrium state with time-dependent macroscopic
magnetization M(t) and energy E(t). The precession of the
atomic magnetic moments mi(t), instead, leads to magnonic
oscillations. Instead of focusing on M(t), one can repeat
the discussion above directly for all mi(t) and obtain the
Landau-Lifshitz description of magnonic oscillations, with
parameters that can be computed for the partially equilibrated
state rather than for the completely equilibrated one. In this
paper, we are only interested in the state of the system assuming
M and E at a given time t . We will see below that this is
sufficient to describe the spectroscopy of the system at zeroth
order accuracy, without the need of determining the equation
of motion of M(t), E(t) or even mi(t).

V. MOST PROBABLE MESOSTATE

We are now ready to analyze the statistical mechanics of
our system. As anticipated above, we are going to use the
microcanonical statistics as it leads to a simpler approach.
However, we stress once more that a treatment through
canonical statistics is equally possible and leads to and indeed
strengthens the same conclusions, as illustrated in Appendix B.
The fact that we focus on a closed system allows us to use
the constraint of a fixed energy E. Moreover, as discussed in
Sec. IV, we add a further constraint on the total magnetization
M. Notice that the magnetization as well as the energy are
normalized per atom in this manuscript, unless explicitly
stated. A macroscopic quantity associated to a microscopic
quantity ξ can therefore be evaluated as an average under the
constraints of a fixed total energy E and a fixed total magnetic
moment M. In more formal terms, we have that the ensemble
average 〈ξ 〉 is given by

〈ξ 〉 = ∑
ξ ξ P (ξ |E,M), (12)

where the sum runs over all possible values of ξ and P (ξ |E,M)
is the probability of the microscopic quantity having the
value ξ under the fixed constraints E and M. For an ergodic
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system (see Appendix E for more details), the probability
P is proportional to the number of microstates N (ξ |E,M)
where the microscopic quantity, the energy, and the total
magnetization have the specified values:

P (ξ |E,M) = N (ξ |E,M)∑
ξ ′ N (ξ ′|E,M)

. (13)

Finding the quantity ξ maximizing the probability in Eq. (13)
means maximizing the term at the numerator, i.e., N (ξ |E,M).
If we consider a given magnetic configuration {mi} as the
microscopic quantity ξ , we can exploit that M depends on
{mi}, and write

N ({mi}|E,M) = N ({mi}|E)δ∑
i mi /Nat,M, (14)

where δ is the Kronecker delta, being 0 if the two arguments
are different and 1 if they are equal. The equation above states
the obvious fact that if a magnetic configuration consists of
moments that do not sum up to the required total magnetic
moment there are no microstates within the mesostate that can
satisfy the constraints.

Unfortunately, the calculation of N ({mi}|E) in Eq. (14) is
not as simple, since we need to count the number of microstates
with energy H = E within the mesostate {mi}. From Eq. (4),
we see that this is equivalent to counting the number of ways of
distributing the energy E − Emin({mi}) among repopulations
of the density of states ρ0({mi},σ,ε). This calculation can be
simplified by replacing the density of states with a constant
averaged density of states, where the average is taken around
the Fermi energy and over a range equal to a few times
the energy per electron injected by the laser ρ0({mi},σ,ε) ≈
ρ0({mi},σ ). Although this approximation is very reasonable
for the energies involved in a typical experimental setup, the
treatment of a density of states of a more general shape is also
possible, as illustrated in Ref. [53]. In this approximation, and
for Nat → ∞, we obtain (see Appendix A for details) that the
number of microstates within the mesostate is

N ({mi}|E) ∝ eNat

√
ρ0({mi }) (E−Emin({mi })), (15)

where

ρ0({mi}) ≡ ρ0({mi}, ↑) + ρ0({mi}, ↓). (16)

The most probable mesostate can be found from Eq. (15) by
maximizing the product in the radicand. We notice that, as
expected, the most probable mesostate is enormously more
probable than any other state, due to the presence of Nat

(roughly the Avogadro’s number) in the exponent. This is a
great simplification since all the averages can be reduced to
averages only over the microstates within the most probable
mesostate.

For an excitation of arbitrary intensity, particular care
must be taken when maximizing the product ρ0({mi}) (E −
Emin({mi})). The most probable magnetic configuration will in
general have some dependence on the total energy E, injected
by the laser. However, for small excitations, a particularly
useful limit can be obtained, as illustrated in Appendix C.
In this limit, the most probable magnetic configuration is
not dependent on the total energy E but simply requires
minimizing Emin({mi}). This is already an important result,
and we will come back to it in the conclusions.

(a) (b) (c)

(f)(e)(d)

FIG. 5. (Color online) Magnetic configurations. The top panels
show some possible magnetic configurations with a decreased average
magnetic moment. In the bottom, the same type of configurations
are shown for an increased average magnetic moment. From left to
right: a linear decrease or increase, amplitude spin fluctuations, and
transverse spin fluctuations. The arrows are colored according to their
length.

VI. MAGNETIC CONFIGURATIONS

In this section, we first identify all the possible magnetic
configurations {mi} satisfying the constraint on the total
magnetic moment

∑Nat
i=1 mi/Nat = M. Then we will look for

the magnetic configurations with the smallest Emin({mi}). To
cover all possible magnetic configurations, it is convenient to
divide them into three different groups, which are shown in
Fig. 5 for decreased and increased magnetization, respectively,
|M| < MGS and |M| > MGS. For simplicity, we have neglected
here the magnetic anisotropy and used only scalar values
for the magnetization (see also Appendix H). Moreover, we
have shown above that in the limit of large Nat and constant
spin-integrated averaged density of states, the energy E does
not change the state of the system. Therefore the dependence
on E will be ignored in the following discussion.

A. Decrease of magnetization

We first focus on a system that underwent an ultrafast
decrease of magnetization, i.e., |M| < MGS. The first magnetic
configuration to consider is {mi = mẑ}, where all moments
are ferromagnetically aligned and of equal (but reduced)
lengths m < MGS, as depicted in Fig. 5(a). Equation (7) shows
that for no tilting Emin({mi}) = Emin,FM(|M|). This energy
is considerably lower than the energy of the configuration
depicted in Fig. 5(b), where all moments are ferromagnetically
aligned but of different length. This can be verified by the
inspection of Eq. (10), keeping in mind that for Fe the
coefficients Lj,k({mi}) are positive and especially Emin,FM(m)
is a convex function (see, e.g., Fig. 6). The latter is not true if the
argument |m| is close to zero, but this extreme case, which is
anyway interesting for magnetization switching, is beyond the
aim of this article. Next, we consider a magnetic configuration
where the moments have a length equal to the equilibrium
length {|mi | = MGS} but are tilted, as depicted in Fig. 5(c).
The angles between the moments can vary but must be such to
lead to the required total magnetization M. Comparing Eq. (6)
for configurations as in Figs. 5(a) and 5(c) shows that the latter
are the most favourable if the following condition is satisfied:

Emin,FM(|M|) − Emin,FM(MGS)

>
1

Nat

∑
j,k

Jj,k({mi})
(

1 − mj · mk

|m|2
)

.
(17)
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FIG. 6. (Color online) Constrained ground-state energy for fer-
romagnetic configurations as in Figs. 5(a) and 5(d) as a function of
the atomic magnetic moment m. The zero of the energy is defined
by the equilibrium atomic magnetic moment. The energy deposited
by the laser is drawn schematically, and exaggerated for clarity, to
emphasize what energy is left available for electronic excitations.

In principle, in a sample of infinite size, one can always
find a spin wave of arbitrarily long wavelength satisfying the
constraint on the magnetization and leading to an arbitrarily
small term on the right hand side of Eq. (17). If this were
the only relevant mechanism for our problem, the condition
in Eq. (17) would always be satisfied by the spin wave with
the maximum wavelength allowed by the boundary conditions
and compatible with the constraint. However, in practice, one
cannot ignore that the magnetic excitation caused by the laser
pulse is initially rather localized in space, and composed of
high energy magnons of small wavelength. As discussed in
Sec. IV, these magnons will quickly relax to magnons of long
wavelength via magnon-magnon scattering. The relaxation
time is given by the magnon lifetimes, which are smaller than
a few tens of fs for short wavelength [52]. This means that in
the picosecond time scale the state of the system is given by a
superposition of spin waves of long wavelength. This in turn
defines a small interval of allowed lengths |mi | around MGS, if
the second term on the left hand side of Eq. (17) is allowed to
relax its argument. In principle, the precise magnetic configu-
ration at a given time for a given material and a given laser pulse
can be obtained via simulations of thermally demagnetised Fe
through atomistic spin dynamics [21]. However, this analysis
is not relevant for our purposes, as we will show that the
knowledge that the most probable magnetic configurations are
those with |mi | ≈ MGS and small tiltings between neighbors
is sufficient for determining the dielectric response.

We finally highlight that many degenerate configurations of
the shape of Fig. 5(c) can be built by symmetry. As an example,
one can consider a given magnetic configuration and shift it by
a lattice step. The degeneracy of these configurations implies
that they are all equally probable, and must be summed over
when calculating macroscopic quantities.

B. Increase of magnetization

We can now focus on the increase of magnetization, i.e.,
|M| > MGS, and look again for the most favorable type of
configurations. For a configuration having ferromagnetically
aligned moments of equal length, shown in Fig. 5(d), one

obtains from Eq. (7) that Emin({mi}) = Emin,FM(|M|). This
energy is bigger than Emin,FM(MGS) but is still the lowest value
obtainable for configurations compatible with the required
constraint on the magnetization. Let us look at configurations
with moments that are ferromagnetically aligned but of
different length, shown in Fig. 5(e). Due to the convexity
of Emin,FM(m), the extra energy required to increase some
of the moments above |M| is bigger than the energy gained
by decreasing some other moments. In addition, there is
also the energetic cost due to the coefficients Lj,k({mi}), as
discussed above. Similar conclusions can be reached when
focusing on a configuration where the magnetic moments
have equal length but are tilted, shown in Fig. 5(f). Tilted
moments must have lengths larger than |M| to result into
an average magnetization M, and therefore the convexity of
Emin,FM(m) leads to a higher energy. In addition, there is
also an increase of energy due to the coefficients Jj,k({mi})
of Eq. (7), which makes the configuration even more costly.
Therefore, the magnetic configuration minimising Emin({mi})
for an increased magnetization is the one reported in Fig. 5(d),
with aligned magnetic moments of increased length.

VII. FULL CONFIGURATIONS

We have identified two qualitatively different mesostates
minimizing Emin for samples with increased and decreased
magnetizations. These mesostates are so enormously more
probable than the other ones that we can safely refer to them
as the magnetic configurations of the system without involving
the relative probabilities. Most importantly, the physical reason
for the reported qualitative difference is easy to understand in
our model. For reduced magnetization, the minimum energy
compatible with the ferromagnetic configuration in Fig. 5(a)
is given by the cost associated to the reduction of the length of
the atomic moments |mi |, as shown in Fig. 6. This is basically
the intrasite exchange. On the other hand, the magnetic
configuration in Fig. 5(c) has an energy cost depending on
both the intersite exchange and the magnetic anisotropy energy
(here ignored because of its size). The energy price for the
intersite exchange is minimized for fluctuations with a small
wave vector, and is significantly lower than the cost due to
intrasite exchange. A rather different situation is observed for
increased magnetization. The configuration in Fig. 5(d) has a
high Emin because of the energy needed to increase the atomic
magnetic moments. However, the configuration in Fig. 5(f) has
an even higher Emin because the atomic moments, when tilted,
need to be even bigger to achieve the required |M|.

We are now left with an ensemble average over the
intersection of the mesostate defined by the most probable
magnetic configuration and the specific energy of the system
E. In Secs. II and V, the microstates within a mesostate were
identified as all the possible repopulations �n(σ,ε) of the
electronic excitations in the rigid band structure ρ0({mi},σ,ε)
with energy E − Emin({mi}). Evaluating ensemble averages is
analogous to the standard modeling of thermal averages of the
response of a system. We will first identify the average popu-
lation 〈n(σ,ε)〉, then note that it is enormously more probable
than any other population, and finally compute the response
for that population only. By considering an electronic system
that has to distribute an external energy E − Emin({mi}), one
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can obtain that the most probable population is simply the
Fermi-Dirac distribution 〈n(σ,ε)〉 = nF (ε,T ,μσ ) depending
on three parameters, i.e., an effective temperature T and two
chemical potentials μσ , one per each spin channel. These
parameters in turn depend on the energy and the magnetic
configuration through the following conditions:

∑
σ

∫
ε nF (ε,T ,μσ ) ρ0({mi},σ,ε) dε = E, (18)

∑
σ

∫
σ nF (ε,T ,μσ ) ρ0({mi},σ,ε) dε = |M|, (19)

∑
σ

∫
nF (ε,T ,μσ ) ρ0({mi},σ,ε) dε = Z, (20)

where Z is the electronic change per unit cell. These equations
require that the energy, magnetic moment, and charge take the
appropriate value imposed by the constraints.

VIII. DIELECTRIC RESPONSE

We are now able to compute the dielectric tensor ε. The
case of an increased magnetization is straightforward, as the
density of states ρ0({mi},σ,ε) and the dielectric tensor ε can
be obtained directly from constrained DFT calculations. The
effective temperature defined by Eqs. (18)–(20) affects the
calculations only providing a broadening, and can therefore
be ignored. The case of decreased magnetization is a bit more
involved. In principle, one can determine the precise magnetic
configuration via atomistic spin dynamics, and then evaluate
the average dielectric response of the resulting spin waves.
However, a good insight into the problem can be obtained by
simply using the fact that we have identified the most probable
magnetic configurations as a superposition of spin waves of
long wavelength. In this regime, the small tiltings between
neighboring moments have a negligible influence on the local
dielectric tensor. This implies that the dielectric response of
the material can be computed as an average of local responses
(see Appendix H for the effect of the anisotropy), which can in
turn be directly evaluated from ferromagnetic bulk Fe with a
magnetization that is aligned to the local moments. As a result,
we have to take averages not only over many degenerate (i.e.,
equally probable) magnetic configurations but also spatially
over the local responses. We first compute the response of
a single site with a moment tilted by a given angle θ from
the ẑ axis in the zx direction and then rotated by an angle φ

around the same ẑ axis. Calling R(θ ) and R(φ) the two rotation
matrices, we can write the dielectric response ε′ as (for details
refer to Appendix F)

ε′ = R(φ)R(θ )εR−1(θ )R−1(φ). (21)

In the case of Fe, and for a total magnetization directed along
ẑ, εxz = εzx = εyz = εzy = 0 and εxx = εyy ≈ εzz. Since the
total magnetization is directed along the ẑ direction, the al-
lowed magnetic configurations {mi} are those where the
projections of the atomic moments mi in the xy-plane cancel
out. Therefore, in any ensemble average, by symmetry, the
angle φ can be integrated out. We are left with the ensemble
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FIG. 7. (Color online) Dielectric tensor element. Real and imag-
inary parts of the off-diagonal term of the dielectric tensor for
decreased and increased magnetizations. The shaded grey area
identifies those energies where the T-MOKE signals of Fe and Ni
overlap, making any comparison with experimental data [36,37] not
meaningful. For increased magnetization, a shoulder in the Fe peak
is formed, as highlighted within the red box.

integration of the angle θ , which leads to

〈ε′〉 ≈
⎛
⎝ εxx εxy〈cos θ〉 0

−εxy〈cos θ〉 εxx 0
0 0 εxx

⎞
⎠ (22)

where 〈cos θ〉 is the ensemble average of θ . This can directly be
linked to the ratio between the length of the average magnetic
moment |M| and the length of the equilibrium magnetic
moment length MGS, leading simply to

〈ε′
xy〉 = 〈εxy〉 |M|

MGS
, if |M| < MGS. (23)

We are now able to compute dielectric tensors for samples
with increased and decreased magnetization. Here we focus on
the off-diagonal term εxy , which is approximately proportional
to the experimental T-MOKE asymmetry, for a system with
cubic symmetry and magnetization along ẑ. These results are
illustrated in Fig. 7, while more detailed plots for all the
components are reported in Appendix F. In the lower part
of Fig. 7, we see the effect induced by a demagnetization
of the material, i.e., a simple proportional reduction of the
εxy . Instead, the configuration with increased magnetization
consists of increased atomic magnetic moments, which leads
to an increased population of the spin majority band and a
reduction of the population of the spin minority band. This
induces a change in the density of states above the Fermi
energy and an increase of the spin splitting of the core levels.
As a result, the dielectric response changes only below 52 eV,
as highlighted within the red boxes in Fig. 7. This behavior
compares qualitatively well with the experimental T-MOKE
data of Refs. [36,37], and partially reported in Fig. 1, showing
that a shoulder grows just below the main Fe peak. This good
agreement between experimental and theoretical data offers a
strong theoretical support to the very existence of an ultrafast
increase of magnetization.
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IX. CONCLUSIONS

In conclusion, we provided a solid theoretical description of
the microscopic states of a system right after ultrafast magne-
tization dynamics. Our model is based on several assumptions
and approximations, which reflect the high complexity of
the problem under consideration. All these assumptions and
approximations have been drawn on the basis of well known
theoretical or experimental facts and are therefore not to be
considered as a limitation of the model. In this way, we
are able to formulate a theory of picosecond spectroscopy.
This can also be of great importance for the study of the
picosecond dynamics of magnetization, when the system is
in an out-of-equilibrium state but the magnetic dynamics can
be treated as a quasistatic evolution of a partially equilibrated
system.

More in particular, our model allows us to draw four
major conclusions. (1) For small excitation energies, the
most probable magnetic configuration of the system in the
picosecond time scale does not depend on the energy injected
by the laser. (2) For a sample of Fe, which is representative of
the experimental setup in Refs. [36,37], the state of the system
right after the ultrafast demagnetization can be described as an
arrangement of tilted magnetic moments whose moduli cor-
respond to the equilibrium magnetic moment; the state of the
system right after an ultrafast increase can instead be described
as an arrangement of aligned magnetic moments whose moduli
are equal to each other but larger than the equilibrium value. (3)
The dielectric response of Fe in this typical experimental setup
can be calculated for the most probable magnetic configuration
and a Fermi-Dirac electronic distribution over the magnetically
constrained density of states. (4) The qualitative difference
observed in the T-MOKE asymmetry measured experimentally
for samples with decreased and increased magnetization can
be easily explained in terms of the two different states of
the system. The formation of a shoulder in the T-MOKE
spectrum is a feature that is also predicted by theory and can
be rigorously assigned to an increase of magnetization.

Finally, the proposed method can be applied to more general
situations. Simple cases, like magnetized gold [35], can be
treated following exactly the same arguments described in
this work. More complicated cases, as for instance Gd [7,14],
require instead more care. In particular, the assumption that
breaks in Gd is the possibility of exploring fast enough the
full space of magnetic configurations, given that d and f spins
are expected to interact weakly with each other. We therefore
expect that the partial equilibration should be done with two
distinct constraints, over d-averaged and f -fixed magnetic
moments. The most probable magnetic configurations are
likely to be much more complicated than those proposed here
for Fe. A similar approach is expected to work even in the
alloys used for all-optical switching [3,10].
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APPENDIX A: NUMBER OF CONFIGURATIONS

For reader’s convenience, we report here the derivation
of Eq. (15). This equation, and the following derivation, are
limited to the particular case of a fermionic system with a
constant density of states, and are reported only for illustrative
purposes. A more general case is analyzed elsewhere [53],
and we redirect the reader to this work for all the details.
We start computing the grand canonical partition function for
noninteracting electrons over a constant single particle density
of states. To simplify our derivation, we assume this density
of states to be finite only above 0, so that it has effectively the
form of a step function. This assumption has no consequence
on the results but makes it possible to have a much easier
mathematical treatment of the interval of integration.

We focus on a system with one spin channel, while the
generalization to two spin channels is discussed below. We
will first derive the expression for the discrete case of equally
spaced energy levels, and we will then take the continuous
limit as Nat → ∞, where Nat can be interpreted as the number
of atoms. The discrete energy levels for one atom are defined
as Ej = j δE1, with j being a generic quantum number going
from one till infinity, and are characterized by the occupation
numbers nj = 0,1. When going to the many atoms case, the
splitting between the levels must be adjusted to be inversely
proportional to the number of atoms in the system, i.e., δENat =
δE1/Nat. It is easy to see that in the continuous limit the
total density of states DNat = 1/δENat grows to infinity but the
density of states per unit cell remains constant ρ = DNat/Nat.

The grand canonical partition function is therefore

ZN (β) =
∑
{nj}

e−β
∑+∞

j=1 j δENat nj +βμ
∑+∞

j=1 nj

=
∑
{nj}

+∞∏
j=1

e−β j δENat nj +βμnj

=
+∞∏
j=1

∑
n=0,1

e−β j δENat nj +βμnj

=
+∞∏
j=1

(1 + e−β j δENat +βμ). (A1)

The grand potential is given by

G = − 1

βNat

+∞∑
j=1

ln(1 + e−β j δENat +βμ)

= − 1

βNat δENat

+∞∑
j=1

ln(1 + e−β j δENat +βμ)δENat , (A2)
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and in the continuous limit Nat → ∞, one obtains that

G = −ρ

β

∫ +∞

0
ln(1 + e−βE+βμ)dE

= ρ Li2(−eβμ)

β2
, (A3)

where Li2 is the polylogarithm (also known as Jonquière’s
function) of order 2.

From the grand potential, it is possible to calculate the
average number of fermions 〈N〉 and the average energy 〈E〉
at a given inverse temperature β and chemical potential μ. In
the thermodynamical limit, 〈N〉 = N and 〈E〉 = E. Therefore
we can write

N =
∫ +∞

0

ρ

1 + eβE−βμ
dE = ρ ln(1 + eβμ)

β
,

E =
∫ +∞

0

ρ E

1 + eβE−βμ
dE = −ρ Li2(−eβμ)

β2
.

(A4)

We now address the case 1/β � μ, which means that we focus
on the case for which the bottom of the band does not play
a role. As stated above, this lower bound was included only
to ensure a finite value of the integrals, leading to an easier
mathematical treatment. It can be shown that

N ≈
1/β�μ

ρμ,

E ≈
1/β�μ

ρμ2

2
+ π2ρ

6β2
= E0 + π2ρ

6β2
,

G ≈
1/β�μ

−ρμ2

2
− π2ρ

6β2
= −E0 − π2ρ

6β2
,

(A5)

where we have named the minimum energy at zero temperature
E0 ≡ ρμ2/2. We can finally focus on the entropy S =
β(−G + E − μN ), which can be expressed as

S ≈
√

2π2ρ (E − E0)

3
. (A6)

Although we showed this result for a constant density of
states, it holds more generally in the limit where the degenerate
gas approximation holds. This is the case when the excitation
energy is small compared to the bandwidth, but large compared
to the level spacing around the Fermi level. In the case of
a slowly varying density of states, we can approximate the
entropy by

S ≈
√

2π2ρ (E − E0)

3
, (A7)

where ρ is an average of the density of states over an energy
range comparable to E − E0. In the limit of a large number
of atoms, the number of ways N to arrange the electronic
excitations is proportional to (eS)Nat :

N ∝ (eS)Nat ∝ eNat
√

ρ(E−E0). (A8)

In the case of two spin channels, the extra energy E − E0 that
can be used for repopulating the states, can be divided over
the different channels. We therefore have to integrate from
the case where all energy is used by the ↓ channel though the
intermediate case, until all energy is used by the ↑ channel. The

number of ways to arrange the electronic excitations becomes

N ∝
∫ E−E0

0
e
Nat

√
ρ↑ (E′)

e
Nat

√
ρ↓ (E−E0−E′)

dE′, (A9)

which for Nat → ∞ simplifies to

N ∝ eNat

√
(ρ↑+ρ↓)(E−E0). (A10)

In the main paper, we discuss the number of ways N
to arrange the electronic excitations in the limit of a large
number of atoms. In the situation sketched in the main text,
the minimum energy E0 of the system is determined by the
magnetic configuration, and is denoted as Emin({mi}). The total
energy of the system is denoted as E. This leads to the number
of microstates reported in the main paper:

N ∝ eNat
√

ρ({mi }) (E−Emin({mi })), (A11)

where the average density of states ρ({mi}) depends on the
magnetic configuration.

APPENDIX B: ROLE OF ELECTRON-PHONON
SCATTERING

In the main text, we have assumed for simplicity that
electron-phonon energy relaxation is negligible. However, its
inclusion is straightforward, and does not change anything in
our analysis. Again, we assume that the spin-flip scattering
events are not very frequent for the time scale of the
equilibration [28]. Under this assumption, the electron-phonon
interaction will make the electronic system behave according
to the canonical statistics and not to the microcanonical
statistics, which is used in the main paper. The constraint
that the total magnetic moment remains fixed still holds. The
treatment in the article can therefore be applied as it is by
using the canonical statistics. The only consequence is that
the averages must be evaluated on all the microstates with
arbitrary total energy E but weighted by the factor exp(−βE).
It means that the probability of a given magnetic configuration
becomes

P ({mi}|β) ∝
∫ ∞

Emin({mi })
e−βEeNat

√
ρ({mi }) (E−Emin({mi })) dE. (B1)

APPENDIX C: MAXIMIZATION OF THE
MESOSTATE PROBABILITY

To find the most probable magnetic configuration, we have
to maximize N in Eq. (A11). This implies maximizing the
argument of the square root ρ({mi}) (E − Emin({mi})) with
respect to {mi}. This maximization is a complex problem,
since it requires the ab initio evaluation of a high number of
densities of states ρ({mi}) and energies Emin({mi}). Moreover,
the maximum is clearly dependent on the total energy of the
system E.

We show here that, however, for small excitations, an
analysis of the formula can lead to a substantial reduction of
the complexity of the problem. We will show that the magnetic
configuration that minimizes Emin({mi}) is a very good
approximation for the most probable magnetic configuration.
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An estimation of the error we make by taking a generic
{mi} can be written as

err ∝ d[ρ({mi}) (E − Emin({mi}))]
d{mi}

= (E − Emin({mi}))dρ({mi})
d{mi}

− ρ({mi})dEmin({mi})
d{mi} . (C1)

We notice that, as the most probable magnetic configuration
depends in principle on the total energy E, the error as well
depends on the same parameter. It is clear that E has to be
higher than the minimum value attainable by Emin({mi}). As
E becomes smaller and smaller, i.e., closer and closer to the
minimum value attainable by Emin({mi}), the contribution to
the total derivative coming from dEmin({mi})/d{mi} will re-
main unchanged, while the contribution from dρ({mi})/d{mi}
will be more and more suppressed. In this limit, the magnetic
configuration {mi} that minimizes Emin({mi}) is therefore an
excellent approximation for the magnetic configuration that
minimizes the full product ρ({mi}) (E − Emin({mi})). It is
interesting to note that in this limit, the most probable magnetic
configuration does not depend on the total energy E.

Above, we have used the microcanonical statistics. In case
we want to take into account the effect of the energy relaxation
with the phonons, we will have to use the canonical statistics.
As described in Appendix B, the probability is an integral
over all values of E, weighted by a factor e−βE . If β is
high, only the low total energies E contribute to the sum.
Since all of these contributions in the integral in Eq. (B1)
are approximately maximized when Emin({mi}) is minimized,
the same happens for their sum, i.e., the integral. This even
strengthens the validity of the approximation to take only the
magnetic configuration with the lowest energy Emin({mi}) into
account.

APPENDIX D: COMPUTATIONAL DETAILS

For this work, we performed density functional theory
(DFT) calculations, using the full-potential linearized aug-
mented plane wave (FP-LAPW) method ELK [54]. The calcu-
lations were done for body centered cubic (bcc) Fe using the
experimental lattice parameter of 5.43 a.u. We addressed the
ferromagnetic phase with a constrained total spin moment [49],
where the magnetization axis was chosen to be along (100), i.e.,
the easy axis of Fe. The exchange-correlation functional used
in DFT was the generalized-gradient approximation (GGA)
by Perdew-Burke-Ernzerhof [55]. The Brillouin zone was
sampled with an equally spaced grid using 30 k points in each
direction which gave 3504 kpoints in the irreducible wedge.
The muffin tin radius of the Fe spheres was set to 2.0 a.u. The
basis for the valence electrons included 4s, 4p, and 3d derived
states.

In order to evaluate the optical response, 3s and 3p states
were added to the valence states. Spin-orbit coupling, which
induces the splitting between the 3p1/2 and 3p3/2 states,
was also taken into account, again with the magnetization
along the easy axis. Moreover, the number of empty states
was converged (to a value of 40) to correctly describe

the continuum of absorbing states above the Fermi level.
The optical conductivity tensor was computed within linear
response theory and only direct interband transitions were
taken into account [56]. For the configuration with reduced
magnetization, we can assume with good approximation that
the local electronic structure is not modified by the formation
of spin waves with a small |q|. The dielectric response can
therefore be computed as an average of dielectric responses of
bulk systems with a rotating magnetization axis, as described
in Appendix F.

APPENDIX E: ERGODICITY

From a more theoretical point of view, the mechanism
allowing isolated macroscopic quantum systems to equilibrate,
the time scales involved in this process, and the details of
the approach to effective ergodicity, are under intense study
[57–62]. For instance, it has been argued that standard
ergodicity (i.e., the identification between time and ensemble
averages), given the large dimension of the Hilbert space, is
not a viable mechanism to explain equilibration in isolated
macroscopic quantum systems. Following a forgotten intuition
by Von Neumann [58], the relevant mechanism has been
suggested to be the normal typicality, which is based on
the most common instantaneous behavior of the system.
In particular, it has been shown that, for the vast majority
of isolated (negligible interaction with the environment)
quantum dynamics and for the vast majority of time in-
stants, the microscopic state of the system is practically
indistinguishable from, i.e., macroscopically equivalent to,
the equilibrium state [58]. The subspace of partial equili-
bration can now be used to evaluate the expectation value
of any observable as an ensemble average. In particular, we
want to compute the average magnetic configuration, which,
due to the macroscopical equivalence discussed above, is
negligibly different from the most probable one. The most
probable magnetic configuration is the one corresponding to
the largest partition of the Hilbert space [58], i.e., associated
with the highest number of microstates or equivalently the
maximum of the entropy. Although the arguments above have
been proved for pure states [58], they can as well be applied
to mixed states, as the proof is based on a density matrix
formulation. Finally, we note that in the manuscript we often
talk of phase space to make our arguments more intuitive, but
it would be more correct to talk of a Hilbert space, due to that
we are treating a quantum mechanical system.

APPENDIX F: DIELECTRIC TENSOR IN
THE DEMAGNETISED STATE

We first tilt our magnetic moment over an angle θ from the
ẑ axis. Second, we rotate our magnetic moment around the ẑ
axis with an angle φ and average over all angles 0 � φ � 2π .
The rotation matrix over θ is given by

R(θ ) =
⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠, (F1)
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while the rotation over φ is given by

R(φ) =
⎛
⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠. (F2)

The tilting of the dielectric tensor by an angle θ and the following average over φ can now be rewritten as

〈ε〉φ = 1

2π

∫ 2π

0
R(φ)R(θ ) ε R−1(θ )R−1(φ)dφ (F3)

=
⎛
⎝

1
4 (εxx + 2εyy + εzz + (εxx − εzz) cos 2θ ) εxy cos θ − εyz sin θ 0

−εxy cos θ + εyz sin θ 1
4 (εxx + 2εyy + εzz + (εxx − εzz) cos 2θ ) 0

0 0 εxx sin2 θ + εzz cos2 θ

⎞
⎠,

where the symbol 〈〉φ indicates a integration over φ. For the
case of Fe, where εxz = εzx = εyz = εzy = 0 and εxx = εyy ≈
εzz, this simplifies to

〈ε〉 ≈
⎛
⎝ εxx εxy cos θ 0

−εxy cos θ εxx 0
0 0 εxx

⎞
⎠. (F4)

APPENDIX G: COMPLETE SET OF RESULTS

In the main paper, we have presented results only for the off-
diagonal terms of the dielectric tensor and for selected values of
the magnetization. In this appendix, a more complete overview
of our plots is reported. In Fig. 8, we report all the relevant
components of the dielectric tensor for the cases investigated
in this work. In the top panel of Fig. 8, data for increased
magnetization are shown, where |M| > Meq. In the bottom
panel, instead, data for decreased magnetization are shown,

FIG. 8. (Color online) Diagonal and off-diagonal components of the dielectric tensor for samples of bcc Fe with increased magnetization
(top) and decreased magnetization (bottom). Please note the rescaling of the imaginary parts.
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where |M| < Meq. Notice that the diagonal components do
not change in case of decreased magnetization, as one can
clearly see from Eq. (22).

APPENDIX H: MAGNETIC ANISOTROPY

For Fe, which is the main object of this work, the anisotropy
is very small if compared to the exchange [47], and was
therefore neglected in a few equations in the main text. This
was done for sake of simplicity and to avoid a text too heavy to
read. In principle, Eqs. (6), (7), and (10) can be easily corrected
to include the contribution of the magnetic anisotropy energy.
In a first approximation, this can be expressed in terms of local
contributions, i.e.,

Emin,anis({mi}) =
∑

j

Eanis(mj ). (H1)

This energy in Fe is of the order of the μeV, and therefore much
smaller than the leading energy scales. As a result, the term
in Eq. (H1) can safely be ignored in our considerations on the
energy minimization leading to the most probable magnetic
configuration. From a more formal point of view, including
the magnetic anisotropy would add a preferred direction in the
conditions of Sec. VI, relating |M| to MGS. In any case, the
whole discussion can be repeated by using the magnetic easy
axis as a reference. Finally, in the calculations of the dielectric
response, the anisotropy has been neglected when evaluating
ε′ through Eq. (21). Fine details of the spectrum, on the scale of
the μeV may depend on this approximation, but are absolutely
irrelevant for our purposes.

APPENDIX I: COMPARISON WITH FULL
EQUILIBRATION

We here make a direct comparison between the case of
full thermodynamic equilibrium and the partial equilibration
treated in this paper. The full equilibrium is achieved after a
time long enough for the system to reach a full relaxation of
the total magnetization through spin-flip scattering events. The
full equilibrium state is dependent only on the total energy of
the system (or in the case of canonical statistics on the tem-
perature). Once the full equilibrium state has been calculated,
one can evaluate observables such as the equilibrium magne-
tization. Alternatively, one can apply a similar analysis as the
one presented in this manuscript. In microcanonical statistics,

M

E

MGS

FIG. 9. (Color online) Sketch of the constraints space, with rele-
vant regions highlighted.

one can first compute the number of microstates N (M|E)
for a given magnetization, and then find the maximum with
respect to M. In case of partial equilibration, instead, M is
not a parameter to relax, but a further constraint. In Fig. 9, we
show a sketch of the constraint space: at every point (E,M)
we can associate a partial equilibrium state. Note that some of
the points (depicted as a red line in Fig. 9) will also be full
equilibrium ones.

In the article we were interested in finding the most
probable magnetic configuration and therefore we addressed
N ({mi}|E,M). We have not explicitly computed that function
but only solved the more limited task of finding its maximum
with respect to {mi}. If we had computed N ({mi}|E,M) and
therefore its maximum, we could have had access to the
entropy S(E,M). The entropy S(E,M) will in particular have
a minimum at the full equilibrium magnetization (the red line
in Fig. 9).

For completeness, we point out that the shaded area in
the top left corner represents the impossibility of having
states satisfying those constraints: the system needs to have a
certain minimum energy to be able to have a certain enhanced
magnetization. In the left bottom corner, there is another
forbidden region, but its dimension is vanishingly small. This
is because any magnetization below MGS can be obtained
by tiltings of magnetic moments with an arbitrarily long
wavelength (the only restriction is the finite size of the system)
and therefore arbitrarily small energy.
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[19] G. P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, and T. F. George,
Nat. Phys. 5, 499 (2009).

[20] B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf,
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W. Eberhardt, and H. A. Dürr, Phys. Rev. Lett. 103, 267203
(2009).

[45] J. Sánchez-Barriga, J. Braun, J. Minár, I. Di Marco,
A. Varykhalov, O. Rader, V. Boni, V. Bellini, F. Manghi, H.
Ebert, M. I. Katsnelson, A. I. Lichtenstein, O. Eriksson, W.
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