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Schwinger boson mean field perspective on emergent spins in diluted Heisenberg antiferromagnets
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Using an adaptation of Schwinger boson mean field theory (SBMFT) for nonuniform systems, we study the
nature of low-energy spin excitations on the square and Bethe lattices at their percolation threshold. The optimal
SBMFT parameters are interpreted as on-site potentials and pairing amplitudes, which enables an explanation of
why emergent local moments develop in this system on dilution [L. Wang and A. W. Sandvik, Phys. Rev. Lett.
97, 117204 (2006); H. J. Changlani et al., ibid. 111, 157201 (2013)] and why the corresponding single-particle
frequencies are driven to anomalously low values. We discuss how our mean field calculations suggest the
strong link between the presence of sublattice imbalance and long-range antiferromagnetic order and why linear
spin wave theory is inadequate for capturing this relation. Within the SBMFT framework, we also extract an
energy scale for the interaction between emergent moments, which show qualitative agreement with many-body
calculations.
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I. INTRODUCTION

The concept of emergence is central to condensed-matter
systems. This means that an effective low-energy description
of a system can be made in terms of emergent degrees of
freedom and interactions between them, which might have
different properties compared to the original ingredients. For
example, dilution of quantum magnets in the form of vacan-
cies or substitution with nonmagnetic ions creates emergent
local moments [1–5] which influence the spin texture [6],
magnetic susceptibility [1,7], specific heat [1], and excitation
spectra [4,5]. Recent work also shows how random on-site
magnetic fields in spin chains create emergent composite
spins which are exponentially localized in space, resulting
in a nonequilibrated “many-body localized” state [8,9].

The subject of interest here is that of dilution to the
percolation threshold, i.e., when the nonmagnetic impurities
are randomly distributed and their number is macroscopically
large enough to create a finitely ramified fractal cluster.
In this case an anomalous energy scale in the low-energy
spectrum appears, lower than the usual rotor states [10].
The presence of local regions with an excess of one kind of
sublattice sites over another give rise to “dangling spins” [5],
whose mutual interactions create low-energy quasidegenerate
states [4]. The energy splittings are exponentially small in the
average separation between two such emergent spins.

While many facets of this problem are now understood,
a simple explanation for the decoupling of such a localized
moment [11] from the rest of the background [12] has remained
elusive. A mean field explanation at the level of linear spin
wave theory (LSWT) does not yield meaningful results [13];
the usual Néel state is a not a good starting point, owing
to the presence of coexisting locally disordered and ordered
regions created by dilution. Therefore an attractive possibility
for explaining this effect is the Schwinger boson mean field
theory (SBMFT) for quantum antiferromagnets [14,15], which
is capable of capturing a wide variety of phases.

*Deceased.

The purpose of this paper is thus twofold. Our first aim
is to demonstrate the utility of SBMFT in the context of
dilution disorder. Going beyond limited functional forms for
the mean field parameters, often used for clean systems, we
instead numerically optimize all the parameters to minimize
the energy, subject to them satisfying certain constraint
equations. We find excellent qualitative agreement with respect
to accurate many-body ground-state calculations carried out
with density matrix renormalization group (DMRG) [16].

The second and main aim of the paper is to interpret
the meaning of (1) the parameters corresponding to the
lowest-energy solution and (2) the low-lying single-particle
modes obtained from SBMFT. This framework explains the
fundamental reason for the near decoupling of “dangling re-
gions” in a diluted system. Our calculations have been carried
out for Heisenberg antiferromagnets (HAF) on the square and
Bethe lattices site-diluted to their percolation threshold (which
corresponds to 40.72% and 50% dilution respectively). While
the square lattice case has been extensively studied and is
relevant experimentally [17], similar qualitative insights have
been gained by studying the problem by eliminating loops
(Bethe lattice) [4].

The dangling regions weakly interact with each other
over the rest of the sites and form an effective unfrustrated
low-energy system of their own that maintains long-range
order in this system. We provide evidence for these assertions
by studying the single-particle spectrum of SBMFT carefully
and showing the existence of Goldstone modes. These modes
are found to significantly differ from the corresponding LSWT
counterparts; the latter is partially improved by the inclusion
of quartic terms which are treated in a self-consistent Hartree
Fock formalism. Finally, we connect our SBMFT results with
many-body calculations and use the numerical spin-spin cor-
relators from the theory to obtain a bound on the lowest energy
scale within a single-mode approximation (SMA) formalism.

II. SCHWINGER BOSON MEAN FIELD
THEORY (SBMFT) FORMALISM

SBMFT [14,15] has been widely successful in capturing
a variety of ordered and disordered phases of Heisenberg
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Hamiltonians on regular lattices [18–21]. In particular,
SBMFT has had good quantitative agreement with many-
body numerical results for systems with long-range magnetic
order [22] and in cases where true physical excitations of the
HAF can be created at the mean field level using SBMFT
parameters [23]. However, only a few studies exist where
SBMFT or fermionic SU(N ) theories have been applied
to probe spatially nonuniform states [24–27]. Percolation
clusters, with their nonuniform geometry, create a natural
setting for studying spatially inhomogeneous mean field states.

Here we study the nearest-neighbor S = 1/2 HAF,

H =
∑
〈ij〉

Jij Si · Sj (1)

with uniform couplings Jij = J on the square and
coordination-3 Bethe lattices diluted to the percolation thresh-
old. For this Hamiltonian, theSU(2) spin operators are mapped
to two flavors of Schwinger bosons, using the relations

S+
i = b

†
i1bi2, S−

i = (S+
i )†, 2Sz

i = (b†i1bi1 − b
†
i2bi2), (2)

where b
†
im (bim) is the creation (annihilation) operator for a

boson of flavor m (m = 1,2) at site i. Once this substitution is
performed, the resulting Hamiltonian is quartic in the bosonic
operators and is decoupled by extending the number of flavors
from two to N in either the SU(N ) [14] or Sp(2N ) [15]
approach.

We outline the former approach [28], which is valid
for bipartite lattices. Within this formalism, the mean field
Hamiltonians for each boson flavor m are identical and given
by

Hm
MF = β†

(
� Q
Q† �

)
β + 1

J

∑
i<j

|Qij |2 −
(

S + 1

2

) ∑
i

λi,

(3)

where S is the spin length and β is a vector given by βT =
(b1m, . . . ,bNsm,b

†
i1, . . . ,b

†
Nsm

), with Ns being the number of
sites on the lattice.

The matrix � is diagonal in the site basis with entries given
by Lagrange multipliers λiδij /2 which enforce the “number
constraint” on the bosons,∑

m

〈b†imbim〉 = NS, (4)

which is only satisfied on average. This constraint maps the
Hilbert space of the bosons to that of spins. The expectation
〈· · · 〉 for evaluating the boson number expectation is taken in
the Schwinger boson mean field state.

The matrix Q has entries that are all off-diagonal and are in
general complex valued. On loop-less lattices like the diluted
Bethe lattice, the bond variables Qij can be chosen to be
real as there are no nontrivial loop fluxes [20,26] arising from
the phases of the bond variables. Physically, these parameters
denote the strength of the pairing amplitude of bosons; in the
spin language they denote the strength to form a spin singlet
between sites i and j . The optimal Qij values in the mean field
state satisfy Qij = 〈Qij 〉 = (J/N)

∑
〈i,j〉,m〈bimbjm〉, where

the expectation is again taken in the Schwinger boson mean

field state and summed over the two flavors m = 1,2 (for
number of flavors N = 2).

In general, the theory allows for extended-neighbor mean
field parameters (i.e., any pair i,j ), but in this paper we retain
nonzero {Qij } corresponding only to nearest neighbors. In
practice, this restriction is generally found to give solutions
that qualitatively match results from many-body calculations.

The set of mean field parameters {λi,Qij }, collectively
called an ansatz, completely specifies the solutions of SBMFT.
They are determined variationally by minimizing the mean
field energy 〈Hm

MF 〉 = em
MF , subject to constraints. em

MF is
obtained by first solving the eigenvalue problem [29],(

� Q
−Q† −�

)(
un

vn

)
= ωn

(
un

vn

)
, (5)

which gives the single-particle Bogoliubov modes labeled n

with frequencies {ωn}. This diagonalization gives 2Ns frequen-
cies which occur as Ns ± |ωn| pairs. It is only the positive set
of frequencies that is relevant for the quasiparticle spectrum.
The wave functions corresponding to these frequencies are
denoted as {uin,vin}. A linear combination of the modes uin,vin

is taken to define a length Ns mode on the lattice,

ψ±
in = uin ± vin, (6)

where ψ±
in are eigenvectors of an Ns × Ns matrix with

eigenfrequencies {ω2
n}; more details of this matrix have been

discussed elsewhere [30]. For the lowest frequency SBMFT
modes, we found uin (vin) to be zero (nonzero) on one sublattice
and nonzero (zero) on the other. For such modes, we fix the
choice of gauge in the definition of {Qij } by defining all
values to be positive or negative, so that the wave function
has a staggered sign pattern. The resultant mode, which we
refer to as ψin, is then used to compute all further operator
expectations. This choice of gauge is completely equivalent
to a choice of a uniform sign pattern and does not change the
expectations of any physical observables.

The zero-point quantum energies {�ωn/2} are summed to
get em

MF (the mean field energy per flavor),

eMF =
n=Ns∑
n=1

1

2
ωn + eclassical, (7)

where equivalence between flavors allows for the drop-
ping of the flavor index m and eclassical = (1/J )

∑
〈ij〉 Q

2
ij −

(S + 1
2 )

∑i=Ns

i=1 λi . Connection with the physical Heisenberg
spins is made for N = 2, and the energy for this special case
is given by EHeis = 2eMF + ∑

ij Jij S
2.

The optimal ansatz {λ̃i ,Q̃ij } satisfies the “number con-
straint” and the “bond constraint”: Q̃ij = 〈Q̃ij 〉, which are
implemented by introducing cost functions,

Cλ ≡
∑

i

(〈b†i bi〉 − S)2, CQ ≡
∑
〈ij〉

(Qij − 〈Qij 〉)2, (8)

which are made as small as possible. The constrained optimiza-
tion of the mean field variables {λi,Qij } is thus transformed
to a minimization problem through the cost functions CQ,Cλ,
which we perform efficiently using the Levenberg-Marquardt
algorithm [26,31]. Typically, we found that these costs for the
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solutions reported are in the range of 10−19–10−16 (note the
square root is above machine precision).

The geometry of the diluted Bethe lattice allows for a
simplification in the initial choice of the bond amplitudes
{Qij }, thereby improving the speed and scalability (to larger
system sizes) of the optimization algorithm. Specifically, the
lack of loops on the diluted Bethe lattice implies the absence
of fluxes, and this allows us to choose all initial {Qij }
to be real. The computational complexity of the algorithm
on the Bethe lattice scales as ∼τQτλN

3
s , where τλ (τQ)

is the number of optimization steps to minimize CQ (Cλ)
and N3

s is the complexity of diagonalizing the mean field
Hamiltonian (3) once. However, for the diluted square lattice
the bond amplitudes Qij , in general, can be complex valued.
This leads to U(1) fluxes � through even-length loops on the
lattice, defined in the following gauge invariant manner:

� = Qij (−Q∗
jk)Qk	 · · · (−Q∗

pi), (9)

where Q∗
jk refers to the complex conjugate of Qjk . The

smallest nontrivial even-length loop on the square lattice is
a square plaquette.

The optimization algorithm is started by allowing all initial
Qij to be complex, and both the real and imaginary parts of
the bond amplitudes are updated at every step of the self-
consistent cycle to minimize CQ (8). Since the number of
effective constraints entering CQ double (real and imaginary
parts for each bond), the computational cost of optimization
is roughly twice that of the diluted Bethe lattices [32]. The
optimal mean field ansatz {λ̃i ,Q̃ij } on diluted square lattices
always expels fluxes such that the optimal state has zero flux
through all even length loops on the lattice. This was verified
by starting the optimizer with several initial distributions of
bond amplitudes which threaded nonzero fluxes through loops
on the lattice. As the optimization proceeded, the flux pattern
of the state was tracked, and in all cases we found the ground
state to be a zero-flux state.

Finally, we remark that we studied specific instances of both
kinds of clusters for generating insights and confirming our
assertions. However, all analyses involving disorder averaging
were studied only for the Bethe lattice case.

III. SBMFT PARAMETERS AND SINGLE-PARTICLE
MODES

The interplay between the various contributions to eMF

in Eq. (7) can be understood heuristically. For a uniform
one-dimensional chain of length L [33] the frequency {ωn}
for {λi = λ,Qij = Q}, momentum kn, and coordination z

are given by ωn =
√

λ2 − [zQ cos(kn)]2 [14]. For zQ/λ <

1 we have ωn ∼ λ − cQ2/λ (c absorbs the momentum
dependence), implying that ωn is minimized when Q2 is
maximized and λ is minimized. On the other hand, the
second and third terms, i.e., “classical terms” in (3), favor the
opposite, i.e., low Q2 and high λ. This competition between
contributions to the energy can be complicated, especially in
the case of a disordered system, and thus demands a numerical
optimization.

Our results for the optimal ansatz for representative Bethe
and square lattices at percolation are shown in Figs. 1(a)
and 1(c), respectively. In both figures, the thickness of the
bonds is proportional to |Q̃ij | − min{|Q̃ij |}, and the radius of
the disk on every site is proportional to λ∗

i at that site.
The distribution of optimal {|Q̃ij |} in Figs. 1(a) and 1(c)

is a prescription for identifying pairs of spins with the
strongest spin-spin correlations. Since the nearest-neighbor
spin correlations are proportional to the pairing amplitudes
〈Si · Sj 〉 = 3Q̃2

ij /2, the mean field ground state exhibits strong
dimerization (pairing of nearest-neighbor spins into singlets)
as was predicted in DMRG calculations [4]. Dimerizing
nearest-neighbor spins for the strongest |Q̃ij | bonds pairs up
all but two spins on each of the clusters in Figs. 1(a) and 1(c).

The distribution of {λ̃i} is proportional to the local coordi-
nation of the site; singly coordinated sites have small λ̃i ∼ 0.5,
and triply coordinated sites have large λ̃i ∼ 2.5. The {λ̃i} field
acts like an on-site disordered potential for the bosons. This can
be observed in the low-frequency wave functions ψin given by
Eq. (6), which avoid sites with high values of the potential, as
shown in Figs. 1(b) and 1(d). The radii of the disks in Figs. 1(b)
and 1(d) are proportional to wave function amplitudes, and the
sign is encoded in the red (positive) and blue (negative) colors.
Bosons have the highest amplitude of being on sites with the
lowest potentials.

(a) (b) (c) (d) 

FIG. 1. (Color online) (a) and (c) The optimized SBMFT parameters λi , proportional to radius of circles on sites, and |Q̃ij | − min{|Q̃ij |}
for nearest-neighbor bonds, proportional to the thickness of the bonds, on a diluted Bethe and square lattices, respectively. (b) and (d) The
lowest single-particle eigenmode ψ+

i0, whose amplitude is proportional to the radius of the circles and sign is denoted by the color. For more
details about the interpretation of the parameters and eigenmodes refer to the text.
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FIG. 2. (Color online) (a) Mode amplitudes ψin for the two
lowest-frequency single-particle modes n = 0,1 for the Bethe lattice
percolation cluster shown in Figs. 1(a) and 1(b). Each mode (blue or
red points) is plotted as a function of separation from the dangling spin
at the fork tips. The fitted exponential decay is shown by solid black
lines. (b) Single-particle frequencies for the same cluster obtained
within SBMFT and LSWT. The two anomalously low Goldstone
frequencies are indicated by an arrow and labeled as ω	ow; their
numerical values and mode numbers n are indicated in the inset. The
lowest nonuniform spin wave frequency is indicated by 
LSWT .

The two lowest-frequency modes are each localized on
“fork” regions of three sites [encircled in Figs. 1(a) and
1(c)] and decay exponentially into the cluster [Fig. 2(a)].
An exponential fit to the mode on the Bethe lattice gives a
decay constant ξ	oc of about 3 lattice spacings. These localized
wave functions are the SBMFT characterization of emergent
dangling spins on the cluster and are completely analogous to
similar mode profiles obtained in many-body calculations [4].

The association of dangling spins with exponentially
localized modes is a generic feature of both Bethe and
square lattice percolation clusters. We check this by using a
geometrical algorithm [4] by isolating 50-site Bethe lattice
clusters with two dangling forks and fitting exponentially
decaying functions of the distance away from the fork tip to
the two lowest-energy modes. The fits give disorder-averaged
〈ξ	oc〉dis. ∼ 3 lattice spacings in good agreement with the decay
length of effective interactions [4]. This agreement is also
indicative of the fact that the strength of effective interactions
is proportional to the spatial overlap of the two modes.

IV. NONUNIFORM GOLDSTONE MODES IN SBMFT

A. Number of modes and effects of intermode interactions

The correspondence between dangling spins and localized
bosonic modes in Fig. 1 strongly suggests that each dangling
spin leaves its own characteristic signature in the SBMFT
single-particle spectrum: a low frequency and an associated
localized mode. This implies that the count of low-energy

frequencies in the single-particle spectrum must match the
number of dangling spins on the cluster.

We carry out a systematic check of this assertion by
taking an ensemble of clusters and deploying techniques
developed previously [4] to filter out the low-energy single-
particle spectrum {ω	ow} for each cluster in the ensemble.
The count of frequencies in {ω	ow} is then tallied against the
number of dangling spins on a cluster, determined using a
geometrical algorithm [4]. The situation is complicated by the
fact that these emergent spins are not totally decoupled; their
interactions push certain single-particle frequencies to higher
energies and some to much lower energies. Thus the counts
are found to agree in ∼92% of cases. Part of this discrepancy
also arises from spatially extended dangling regions, which
effectively leads to enhanced interactions with other localized
dangling spins.

Among this set of low frequencies {ω	ow}, we found that
two of them were driven to anomalously low values. These
two anomalously low frequencies are shown for the Bethe
percolation cluster from Fig. 1 in Fig. 2(b). The SU(2)
invariance of the SBMFT formalism, along with the fact
that these calculations are done on a finite cluster, prevents
these two frequencies from becoming exactly zero. However,
in the thermodynamic limit or in the presence of a small
magnetic field, these anomalously low frequencies will be
the first to become zero, causing bosons to condense into this
mode. This signals long-range order within SBMFT and allows
identification of the two anomalously low frequencies as the
finite size manifestation of Goldstone modes on the cluster.

B. Failure of linear spin wave theory

The Goldstone modes, as seen in Figs. 1(b) and 1(d),
have nonuniform amplitudes, significantly different from the
zero-energy uniform Goldstone modes seen in LSWT [30].
These results suggest that SBMFT, in a single unified frame-
work, characterizes emergent dangling degrees of freedom
by associating localized modes with each of them, along
with correctly predicting a background of long-range Néel
order [12]. The maximal amplitude of Goldstone modes on
the dangling sites provides direct evidence for the crucial role
of dangling spins in stabilizing long-range order on the cluster.
Based on these insights, we develop a better understanding for
why LSWT fails to qualitatively capture the nonuniformities
associated with the Goldstone modes.

The crucial difference between the LSWT and SBMFT
approaches is that the former breaks spin rotational symmetry,
leading to the inability to capture the anomalous lowering
of frequencies associated with emergent SU(2) invariant
dangling spin excitations. A comparison between LSWT and
SBMFT single-particle frequencies in Fig. 2(b) for the Bethe
percolation cluster in Figs. 1(a) and 1(b) shows that the lowest
LSWT frequency is much higher than the corresponding fre-
quency within SBMFT (LSWT has two exactly zero frequency
uniform amplitude modes by construction). We generalize this
observation by taking an ensemble of 50-site Bethe perco-
lation clusters and plotting the disorder-averaged density of
states (DOS) 〈ρ(log[ω/J ])〉dis., 〈ρ(log[ωLSWT /J ])〉dis. within
SBMFT and LSWT, respectively. The DOS on a logarithmic
scale, calculated within LSWT and SBMFT, is shown in
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FIG. 3. (Color online) Disorder-averaged single-particle density
of states within (a) SBMFT and (b) LSWT frameworks. An ensemble
of 400 Bethe lattice percolation clusters, each consisting of 50
sites, was considered. The histograms were generated by grouping
frequencies in bins of size 0.01J . The SBMFT calculations show a
set of low-lying frequencies missing in the LSWT spectrum, which
have been labeled as ω	ow.

Figs. 3(a) and 3(b), respectively. The presence of an additional
low-energy scale is seen in the SBMFT DOS and is indicated
by a probability distribution with a long tail labeled ω	ow.

This discussion motivates us to look closely at the connec-
tion between the two approaches. We note that the LSWT
Hamiltonian maps exactly to a SBMFT Hamiltonian with
fixed λi and Qij . In LSWT, λi equals the coordination of
the site, but in SBMFT this variable is a degree of freedom
that is optimized. Since the optimal SBMFT solution is
found to deviate significantly from the corresponding LSWT
prediction, we conclude that it is this variational freedom
that allows the lowest-energy modes to have nonuniform
amplitudes, with largest weights in dangling regions.

Evidence for the tendency to form localized modes can
be seen by including higher-order terms in the spin wave
expansion; for the purpose of this paper we have retained
the order 1/S terms. A Hartree-Fock (HF) decoupling of the
quartic terms is applied, and the resultant mean field equations
are solved self-consistently. Every iteration of our calculation
cycle lowered the energy and showed gradual localization of
the lowest modes, but we were unable to converge our solu-
tions. This is not a problem with our implementation; instead
it is evidence of growing spin fluctuations which eventually
violate the assumptions of the Holstein-Primakoff expansion.
The general inadequacy of LSWT and partial improvement
with HF compared to SBMFT are confirmed with our results
for certain spin-spin correlators shown in Fig. 4, where the
three methods are compared to the corresponding near-exact
DMRG values. (For a detailed exposition of the calculation of
transverse correlations in spin wave theory, we refer the reader
to Ref. [34].)

V. SBMFT CORRELATORS AND EFFECTIVE
INTERACTIONS BETWEEN EMERGENT SPINS

A. Comparison of SBMFT and exact calculations

Through our computations for percolation clusters, we have
shown that SBMFT can capture the correct qualitative physics
of disordered systems. The next step is to assess the accuracy
of the method with respect to many-body calculations, as a
means of establishing the legitimacy of our conclusions. A
useful product of such comparisons is a better evaluation of

FIG. 4. (Color online) Nearest-neighbor in-plane spin-spin cor-
relations, defined to be 〈Sx

i Sx
j + S

y

i S
y

j 〉, for bonds taken along the path
shown in Fig. 5(a), from various methods: linear spin wave theory
(LSWT), Hartree-Fock (HF), Schwinger boson mean field theory
(SBMFT), and the density matrix renormalization group (DMRG).
The HF results are used from the iteration before the convergence
of the self-consistency cycle failed. LSWT does not capture the
variations in the values of the correlation functions, while going to
order 1/S (S is the spin length) using HF shows tendency to capture
the behavior of SBMFT and DMRG.

SBMFT as a computational tool in situations where performing
accurate many-body calculations may be difficult.

In Figs. 5(a) and 5(b), for diluted Bethe and square lattices,
respectively, we compare the DMRG and SBMFT spin-spin
correlators for a reference site at the tip of the cluster and the
other sites along a particular path. While we observe great
qualitative agreement, quantitatively, our SBMFT calculation
predicts slightly exaggerated oscillations at long distances.

A metric for a quantitative comparison of SBMFT versus
DMRG is the ground-state energy per site obtained within
SBMFT by summing over nearest-neighbor spin-spin correla-
tions, defined as

eSBMFT
gs = J

Ns

∑
〈i,j〉

〈Si · Sj 〉, (10)

where the expectation 〈· · · 〉 is taken in the SBMFT ground
state. The accuracy of the nearest-neighbor spin-spin corre-
lations found within SBMFT as seen in Figs. 5(a) and 5(b)
ensures that the maximum error in eSBMFT

gs compared to the
true ground-state energy from DMRG, for an ensemble of 400
clusters of 50-site clusters, is about 1%. A comparison of these
estimates for our ensemble of clusters is shown in Fig. 5(c). We
also note that eSBMFT

gs serves as a better approximation of the
ground-state energy of this model compared to the mean field
energy eMF . However, it is important to clarify that eSBMFT

gs ,
just like eMF , is nonvariational. The mean field state, which
is used to compute both these energies, satisfies the boson
number constraint (4) only on average.

B. Energy scale of effective interactions

SBMFT is primarily a tool to study singlet ground states,
with no direct way to extract excited-state information. Here
we use the ground-state SBMFT correlators to estimate the
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FIG. 5. (Color online) (a) Spin-spin correlations comparison between SBMFT and exact DMRG results for the Bethe cluster of Figs. 1(a)
and 1(b), also shown in the inset. The correlations are between the tip spin labeled “tip” and all spins along the path shown in orange on
the cluster. (b) Comparison of correlations similar to that in (a) for the square lattice cluster in Figs. 1(c) and 1(d). (c) Comparison between
ground-state energies (sorted by value) from SBMFT (red) eSBMFT

gs (10) and DMRG (blue) for an ensemble of 400 size 50 clusters. The SBMFT
energy is obtained by summing over nearest-neighbor spin correlations.

singlet-triplet gap and hence the couplings between two
weakly interacting emergent spins. This estimation is done
within the single-mode approximation (SMA) formalism [35],
which we briefly explain below. An alternate, but related,
analysis maximizing the overlap of the SMA wave function
with the true one (from DMRG) was also used previously by
us [27].

In the SMA, the triplet excited state |�SMA〉 is created
by taking a weighted superposition of single spin excitations
of the ground-state SBMFT wave function, a singlet state
(S tot = 0,S tot

z = 0),

|�SMA〉 =
Ns∑
i=1

wiS
+
i |�MF 〉, (11)

where {wi} are variational weights determined by minimizing
the SMA gap

�SMA = J
〈�SMA| ∑〈ij〉 Si · Sj |�SMA〉

〈�SMA|�SMA〉 − E0, (12)

with E0 being the ground-state energy.
For the Heisenberg model with uniform bond strengths,

assuming a singlet ground state, an expression of the gap was
derived previously [27],


SMA = −J
∑

〈k,l〉(wk − wl)2Gkl

2
∑

i,j wi wj Gij

, (13)

where 〈k,l〉 are connected links, here the nearest neighbors, and
Gij = 〈�MF |Si · Sj |�MF 〉. The notation in this expression
implicitly assumes that these links are counted twice, i.e.,
once for k,l and the other for l,k, hence the factor of 2 in
the denominator.

To obtain the optimal wi , we define a quadratic cost function
CSMA,

CSMA ≡ −∑
〈k,l〉(wk − wl)2Gkl

2
− �

⎛
⎝ Ns∑

i,j=1

wiwjGij − 1

⎞
⎠,

(14)

where � is a Lagrange multiplier and is exactly equal to the
SMA gap 
SMA. On differentiating CSMA with respect to {wi}

and setting the derivatives to zero, one gets a set of linear
equations, which is compactly written as

Mw = 2�Gw, (15)

where w is a compact notation for the vector {wi} and G
denotes the matrix of spin-spin correlations with entries Gij .
M is a matrix with entries given by

Mii = +2
∑
〈j〉

Gij , (16a)

Mij =−2Gij for i,j connected, (16b)

Mij = 0 otherwise. (16c)

where 〈j 〉 refers to the set of sites j connected to site i. The
generalized eigenproblem (15) is solved, and the minimum
eigenvalue yields the SMA gap.

The optimized SMA gap provides an upper bound for
the effective interactions between two dangling spins on
opposite sublattices. Since we desire the distance dependence
of effective couplings for extended objects, we define an
“effective distance,” analogous to that in Ref. [4], d̃ij =∑nd

n=1

∑
i,j ψinψjndij , where ψin is the amplitude of the

single-particle SBMFT mode n at site i and dij is the distance
between sites (i,j ). The sum over (i,j ) runs over all pairs of
sites that the two spins can delocalize over.

FIG. 6. (Color online) The decay of effective interactions J eff
ij vs

an effective distance d̃ij (see text). All data are for Ns = 50 sized
clusters.
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We select percolation clusters from a randomly generated
ensemble that have only two dangling spins on opposite
sublattices. As shown in Fig. 6, we find their effective
interactions to decay exponentially; a fit to J eff

ij = J ∗
0 e−d̃ij /ξ

∗

gives (J ∗
0 ,ξ ∗) = (0.15(2),10.1(1)). The decay length ξ ∗ is an

upper bound on the decay constant ξ ∼ 5 obtained from our
previous DMRG study [4]. This slow decay of the interactions
with distance is due to the inability of the SMA to describe
very small gaps, a situation that occurs when the number of
dangling spins is large. However, the qualitative prediction
of exponentially decaying interactions is consistent with the
occurrence of localized SBMFT modes associated with each
dangling spin (region) as shown in Fig. 1.

VI. CONCLUSION

In summary, we have carried out Schwinger boson mean
field theory (SBMFT) calculations for the case of nonuniform
geometries, with specific emphasis on percolation clusters on
the square and Bethe lattices. We show how the theory predicts
the formation of emergent spin degrees of freedom arising due
to local sublattice imbalance [4,5].

Our approach involved an interpretation of the mean field
parameters, λi and Qij , which were the on-site potential and
bond-pairing amplitude, respectively. We also showed that
the low-lying single-particle wave functions have their largest
amplitudes in regions associated with sublattice imbalance
(i.e., the “dangling spins”). Thus, these modes provide a way of
detecting emergent degrees of freedom on percolation clusters.

This interpretation is made firm based on the observation
that the number of low-lying single-particle frequencies
corresponds to the number of dangling spins on the cluster.
The violations occur because the localized modes are not
completely decoupled; interactions between them further split
the single-particle energies. We generically found an additional
lowering of the two lowest frequencies from this set; these were
identified as the equivalent of (nonuniform) Goldstone modes.
The fact that regions of sublattice imbalance are involved
in these modes provides evidence for the link between the
occurrence of emergent degrees of freedom and long-range
order on the cluster, previously established numerically [12].

We explored how anharmonic effects in spin wave theory
may explain the lowest modes seen in SBMFT; after all, the
LSWT Hamiltonian maps exactly to a SBMFT Hamiltonian
for large spin. In LSWT, the parameters λi are fixed by the

coordination of the respective site i; on the other hand, in
SBMFT they are variational parameters, which allows the
lowest-energy modes to have nonuniform amplitudes with
large weights in dangling regions. Evidence for the tendency
to form localized modes for spin-1/2 is seen by going beyond
LSWT, i.e., to order 1/S using self-consistent Hartree-Fock
methods.

These observations also motivated a preliminary explo-
ration of the role of spin length for the Heisenberg model
on percolation clusters. Unlike the spin-1/2 case, we found
our spin wave Hartree-Fock results to converge for the spin-1
case, which we take as evidence of the reduced role of
spin fluctuations. Exact diagonalization calculations on small
clusters also suggest that the picture of “emergent localized
spins” may no longer apply for spin-1 as the distinction
between the quasidegenerate states and the rest of the spectrum
is not as clear as in the spin-1/2 case. This hints at the increased
role of the bulk spins in the low-energy spectrum, expected for
a spatially extended collective excitation.

Finally, we comment that SBMFT for disordered systems
provides reasonable qualitative insights, complementing other
highly accurate many-body calculations such as DMRG.
We expect our implementation of SBMFT for nonuniform
situations to perform equally well and scale favorably even
in other dimensions. Based on results presented here and
ongoing work, we believe the theory will be a useful tool in
the treatment of frustrated lattices with disorder. In addition, in
interesting cases like that of the Z2 spin liquid on the kagome
lattice, one can implement modifications to the theory that
create excitations (visons), leading to numerical realizations
of topological excitations [36].
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