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Anharmonic properties in Mg2 X (X = C, Si, Ge, Sn, Pb) from first-principles calculations
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Thermal conductivity reduction is one of the potential routes to improve the performance of thermoelectric
materials. However, detailed understanding of the thermal transport of many promising materials is still missing. In
this paper, we employ electronic-structure calculations at the level of density functional theory to elucidate thermal
transport properties of the Mg2X (X = C, Si, Ge, Sn, and Pb) family of compounds, which includes Mg2Si, a
material already identified as a potential thermoelectric. All these materials crystallize into the same antifluorite
structure. Systematic trends in the anharmonic properties of these materials are presented and examined. Our
calculations indicate that the reduction in the group velocity is the main driver of the thermal conductivity trend
in these materials, as the phonon lifetimes in these compounds are very similar. We also examine the limits of
the applicability of perturbation theory to study the effect of point defects on thermal transport and find that it is
in good agreement with experiment in a wide range of scattering parameter values. The thermal conductivity of
the recently synthesized Mg2C is computed and predicted to be 34 W/mK at 300 °C.
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I. INTRODUCTION

The Mg2X materials, where X = C, Si, Ge, Sn, and Pb,
are a family of II-IV compounds that are isostructural to each
other in their most stable antifluorite phase. While the last four
materials in the series have being known for a long time and
have been extensively studied [1–6], Mg2C has only recently
been synthesized, under high pressure conditions [7]. Mg2Si
has recently attracted renewed interest due to remarkable
thermoelectric properties for high temperature applications,
especially in solid solution with Mg2Sn. In particular, the
figure of merit of Mg2SixSn1−x reaches ZT = 1.1 at 800 K
[8]. This material has other potential applications, such as
near-infrared optoelectronics [9]. Mg2Ge and Mg2Sn can form
a solid solution with each other and with Mg2Si, thus allowing
systematic modification of their properties. For example,
the impressive thermoelectric performance of Mg2SixSn1−x

is associated with a decrease in the thermal conductivity
associated with alloying. It is thus not surprising that a number
of first-principles investigations of structural, thermodynamic,
and electronic properties have been performed [5,6,10–13]
recently, with results being in good agreement with available
experimental data.

Thermal conductivity is an important factor in determining
thermoelectric performance, yet the thermal transport prop-
erties from first principles are only available for Mg2Si and
Mg2Sn [13,14]. While a recent investigation of Mg2Si and
Mg2Ge determined phonon properties using a state-of-the-art
approach (the quasiharmonic approximation using fully first-
principles descriptions of the interatomic interactions), it used
a traditional and approximate approach (the Slack formula)
to obtain the thermal conductivity itself [11]. While such an
approach results in reasonable agreement with experiment,
it does not yield significant mechanistic insight into the
thermal transport properties, such as the relative importance
of the contributions of different phonon modes. Moreover,
this method explicitly ignores contributions to the thermal
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transport from optical phonon modes; it is not a priori clear that
they can be ignored. Indeed, the importance of optical modes
was recently demonstrated experimentally and theoretically
for fluorite-structured UO2 [15] and theoretically for ionic
compounds, such as MgO and SrTiO3 [16]. At the same
time, the complete series of Mg2X compounds represents
an interesting case for a comparative study of the thermal
transport properties, due to the fact that the mass of one of the
constituents varies, while the interatomic interactions remain
similar because the X elements are isoelectronic to each other.

In this paper, we present calculations of the thermal
conductivity of the Mg2X series based on density functional
theory (DFT) and the solution of the Boltzmann transport
equation (BTE) for phonons. This approach has been used
extensively over the last few years to produce quantitatively
accurate results for the thermal conductivity of a number of
materials [13–15,17–21]. We investigate the details of the
thermal transport and demonstrate that optical modes are also
important in this series of compounds. Further, we investigate
the importance of isotopic disorder in these materials. Based
on our calculations, strategies for the reduction of the thermal
conductivity are suggested, which might further improve the
thermoelectric properties of these compounds. The remainder
of the paper is organized as follows: Section II introduces
the computational methodology. Section III presents the main
results of our paper and discussion; our conclusions are in
Sec. IV.

II. COMPUTATIONAL METHODOLOGY

We compute thermal conductivity from first principles via
the BTE approach encoded in the PhonTS software package
developed by the authors [22] and described in detail elsewhere
[23]. In short, the thermal conductivity is determined by
computing the heat current using the nonequilibrium phonon
density distribution function, which in turn is found as a
solution of the linearized BTE for phonons. The BTE, in terms
of the deviation ��k,n from the equilibrium distribution f 0

�k,n
for

phonons in state with wave vector �k and branch n, takes the
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form
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∇T = 1

kBT
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⎩

∑
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�k,n

]
+ ...

⎫⎬
⎭, (1)

where �v�k,n is the group velocity of the phonon; T is the temperature; kB is the Boltzmann constant; � is the equilibrium transition
rate for possible phonon-phonon interaction process. The left-hand side of Eq. (1) describes the drift of phonon into and out of a
given volume element, while the right-hand side is responsible for the phonon-phonon interactions. The two key approximations
employed in Eq. (1) are (i) the system is subject only to small deviations from equilibrium, which allow linearization in terms
of the deviation ��k,n of the phonon distribution from the equilibrium distribution; and (ii) all small regions of the system are at
local equilibrium, allowing the distribution function on the left-hand side to be treated as a function of temperature only, with the
spatial dependence controlled via the temperature field and the treatment of the phonon-phonon interactions as a perturbation to
the harmonic solution. In this approximation, only cubic anharmonicity is considered; that is 3-phonon processes are described,
but processes involving four or more phonons are not included. This assumption is generally accurate at moderate temperatures
studied here [24]. Perturbation theory provides expressions for the equilibrium transitions rates
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where � is Plank’s constant, I, J , and K are indexes that count
atoms of corresponding masses m in the primitive cell, V is
the volume of the cell, while �eI ;�k;n is the eigenvector of the
phonon with frequency ω�k,n. Here, B̄IJK;�k�k′ �k′′ is a component
of the Fourier transform of the cubic anharmonic energy
term, while the δ functions enforce conservation of energy
in the 3-phonon process. The required input for the BTE,
therefore, are the second and third spatial derivatives of the
total energy with respect to atomic positions, which we obtain
from the DFT calculations described below. The solution of
the BTE itself is found by the iterative technique, using the
conventional cubic fluorite unit cell with a 9 × 9 × 9 k-point
mesh, except for Mg2C, where convergent results require a
denser 13 × 13 × 13 mesh. Since the thermal conductivity of
Mg2X materials is fairly small (on the order of 10 W/mK)
around room temperature, the results from iterative solution
are only marginally different from those obtained with the
relaxation time approximation [23].

Other anharmonic properties presented in this paper are
computed using the following approaches. Thermal expansion
is obtained via the quasiharmonic approximation [25,26],
which produces the dependence of the volume on temperature.
The linear thermal expansion coefficient is then calculated
using the standard formula

α = 1

L

∂L

∂T
. (3)

Grüneisen parameters γ�k;n of the individual phonon modes
by definition as

γ�k;n = −∂ ln ω�k;n

∂ ln V
. (4)

These derivatives are computed numerically by varying the
volume of the simulation cell. Averaged Grüneisen parameters
reported here are simple averages over the Brillouin zone.

The second and third derivatives of the total energy that
are required for the calculations above are obtained via
numerical differentiation of the DFT forces due to finite
displacements of the atomic positions. All DFT calculations
are performed using the Vienna Ab initio Simulation Package
(VASP) computational package [27–30]. In particular, we
use the local-density approximation (LDA) and the general-
ized gradient approximation, Perdew-Burke-Ernzerhof (GGA-
PBE) approximations for the exchange-correlation functional,
together with the projector-augmented wave (PAW) [31,32]
treatment of the core electrons. All calculations are performed
using a 2 × 2 × 2 supercell of 96 atoms and a 2 × 2 × 2
k-mesh for the representation of the electronic Bloch wave
function, which is expanded in a plane-wave basis with energy
cutoff of 500 eV. We verified that denser k-point mesh (4 × 4 ×
4) and larger real space cutoff (3 × 3 × 3 supercell) result in
negligible differences for phonon frequencies. For Mg2C, the
mean square differences in phonon frequencies are 0.0012 and
0.075 THz, correspondingly. For Mg2C, Mg2Si, and Mg2Ge,
where DFT calculations predict a nonzero electronic gap,
Born effective charges are computed via a separate calculation
which employs density functional perturbation theory in a
primitive cell with a 7 × 7 × 7 k-point mesh. These Born
effective charges are needed to properly account for the
long-range electrostatic contribution to the phonon structure.

III. RESULTS AND DISCUSSION

The basic structural and elastic properties of the Mg2X

materials were outlined in recent publications [5,6,10]; thus,
we do not present these results, other than noting that our
calculations of the lattice constants are in close agreement
with the reported values. The data presented in Table I lists
lattice constant at 300 K obtained via the quasiharmonic
approximation; thus, these lattice constants take into account
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TABLE I. Basic properties of Mg2X relevant for thermal transport properties.

Mg2C Mg2Si Mg2Ge Mg2Sn Mg2Pb

a (Å) at 300 K
LDA 5.3953 6.2974 6.3349 6.7177 6.8218
PBE 5.4462 6.3954 6.4596 6.8562 6.9688
Experiment 6.2678 [35], 6.338–6.391 [36] 6.378 [37], 6.378–6.380 [36] 6.750–6.780 [36] 6.760–6.836 [36]

Thermal expansion (×105 K−1, at 300 K)
LDA 1.52 1.47 1.61 1.69 2.2
Experiment 1.09 [38], 1.0 [3], 1.23 [39] 1.46 [40], 1.4 [3], 1.5 [41], 1.46 [39] 1.0 [3]

Speeds of sound (m s−1)
Transverse, LDA 4622 4450 3450 2960 2290
Transverse, Exp. 4830–4970 ∼3000 [42]
Longitudinal, LDA 10 617 7680 6040 5140 4000
Longitudinal, Exp. 7650–7680 ∼5000

Debye temperature (K)
�D (K), LDA 660 534 412 334 254
�D (K), Exp. [34] 578 492 340 275

Grüneisen parameter of the Raman active F2g mode
LDA 1.14 1.36 1.33 1.35 1.48
Experiment 1.13–1.36 [3] 1.10–1.45 [3] 0.9–1.34 [3]

Average Grüneisen parameter
LDA 1.57 1.40 1.41 1.34 1.60
Experiment 1.32 [43] 1.38 [43] 1.27 [43]

thermal expansion and are slightly greater than the zero-
temperature value presented by Pandit and Sanyal [5]. These
results show the expected trends from using LDA and PBE
density functionals: LDA predicts lattice constants about 1–2%
smaller than PBE. Comparison with the experimental data,
which also has some scatter, shows that that PBE consistently
overestimates the lattice constant, while LDA underestimates,
with LDA overall providing somewhat smaller error. The issue
of having an accurate lattice constant is important due to the
sensitivity of the thermal conductivity to the simulation volume
[20] as we discuss in detail below. Therefore, we use the LDA
density functional in the remainder of this paper.

Other phonon-related and anharmonic properties presented
are the speed of sound, Debye temperature, coefficient of
thermal expansion, and average Grüneisen parameters. All of
these parameters agree rather well with the experimental data
where available. The Debye temperature � presented here is
computed on the basis of the longitudinal (vL) and transverse
(vT ) speeds of sound via the following standard formula [33]:

� = h

kB

(
3N

4πV

)1/3( 1

3v3
L

+ 2

3v3
T

)1/3

, (5)

where N is the number of atoms in the cell and V is the
volume. This is compared with the experimental estimates
that are based on the elastic constants measurements [34] of
the Debye temperature near 0 K. The speed of sound and Debye
temperature show the same trend of decreasing with increasing
mass of the X component. The coefficient of thermal expansion
as determined from the quasiharmonic approximation shows
the opposite trend: increasing with the increased mass of X.
Since the thermal expansion is a basic anharmonic effect this
trend might indicate increased anharmonicity with increasing

X. Comparison with experimental data, where available,
shows that the DFT-LDA tends to overestimate thermal
expansion in this series of compounds. Finally, the Grüneisen
parameter of the Raman active F2g phonon mode, which is
experimentally accessible, agrees with the upper range of
the available experimental data [3] and steadily increases
across the series, although it is very similar for the Si, Ge,
and Sn compounds. The average Grüneisen parameter, on
the other hand, does not show a definite trend, being very
similar for Mg2Si and Mg2Ge, slightly smaller for Mg2Sn and
significantly larger for Mg2Pb. Experimental values available
in the literature show the same trend, but of slightly greater
magnitude. Somewhat surprisingly, the Grüneisen parameter
of Mg2C is similar to that of Mg2Pb.

From the fundamental perspective, the phonon structure
of a material is controlled by two factors: the masses of
the compounds and details of the interatomic interactions.
In Mg2X, the mass of one of the elements increases going
down the series, while the interactions between atoms, though
similar due to the same valence electron shell structure,
nevertheless show some differences. The traditional picture in-
vokes mixed ionic-metallic bonding, with metallicity steadily
increasing down the periodic table [44]. Many experimental
investigations of Mg2Si [45,46] and the limited experiments
on Mg2Si, Mg2Ge, and Mg2Sn [47] assumed bonding as
covalent-ionic and estimated effective charges and the degree
of ionicity. Recent DFT calculations, however, clearly identify
the metallic-ionic character of the bond, since the Born
effective charge tensors are essentially diagonal [48], and
there is no appreciable bond charge densities present in the
electronic density distributions in these compounds [4,7,48].
From the electronic properties perspective, Mg2C, Mg2Si,
Mg2Ge, and Mg2Sn are all indirect gap semiconductors with
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FIG. 1. Comparison between phonon dispersions in 001 direction of the Brillouin zone (BZ) by LDA calculations. Circles are experimental
data from inelastic neutron scattering available for Mg2Si [47], Mg2Sn [48], and Mg2Pb [49].

decreasing gaps for the latter three compounds of 0.77, 0.74,
and 0.34 eV [49]. Our DFT calculations predict smaller gaps
of 0.13, 0.17, and 0.0 eV, respectively, slightly smaller than the
DFT-GGA data of 0.23, 0.17, and 0.0 eV reported previously
[12]. Our result for Mg2C is 0.75 eV, slightly greater than the
DFT-PBE result of 0.67 eV reported in the literature [7]. An
underestimate of the band gap is a well-known deficiency of
the LDA, even to the extent of vanishing gap in Mg2Sn. While
these smaller predicted gaps than the experimental values are
unlikely to affect thermal conductivity calculations presented
here, the vanishing gap in Mg2Sn can be expected to lead to a
slight error. This is due to the fact that Born effective charges
cannot be defined for a zero-gap material, and thus electrostatic
long-range contribution to the phonon band structure will
be absent in the calculations for Mg2Sn. In our previous
investigation of thermal conductivity in ionic compounds [16],
such an omission resulted in the error of about 10% in the
fluoride-structured material. Finally, Mg2Pb is a semimetal
experimentally, as well as from the DFT calculations.

In Fig. 1, we present the phonon dispersion curves in
Mg2X along the �-X direction in the Brillouin zone. Where
available, results of our calculations are compared with the
inelastic neutron scattering data [50–52]. First, we note
the very good agreement between measured and calculated
phonon frequencies. Second, we observe longitudinal optical-
transverse optical (LO-TO) splitting in Mg2C, Mg2Si, and
Mg2Ge, a result of nonzero effective charges predicted by LDA
in these compounds. This splitting is directly proportional to
the Born effective charges and is thus a measure of the accuracy
of their determination. In Mg2C, the LO-TO splitting is
4.6 THz, in excellent agreement with the previously calculated
value of 4.8 THz [53]. The LO-TO splittings in Mg2Si and
Mg2Ge are calculated to be 1.9 and 1.4 THz as compared with
the corresponding experimental values of 1.8 and 0.9 THz
[1,47]. This overestimation for Mg2Ge was already noted in
previous work [10]. In our LDA calculations, due to their

zero energy gap and thus zero Born effective charges, neither
Mg2Sn nor Mg2Pb displays a LO-TO splitting. Further, we
note that the acoustic branches show the clear influence of
the mass of X. In particular, the energy of the longitudinal
acoustic (LA) mode at the X point decreases with increasing
mass of X. This effect is not nearly as pronounced for the
transverse mode, which covers a very similar range of energies
in Mg2C, Mg2Si, and Mg2Ge, but has lower energy at the
X point for the two heaviest compounds in the series. The
speeds of sound reported in Table I naturally reflect the same
trend. Finally, the optical modes are not nearly as sensitive
to the changes in the X compound as the acoustic modes,
with the exception of the lightest compound in the series
Mg2C. The biggest difference is a somewhat lower maximum
energy and the already mentioned lack of an LO-TO splitting
in Mg2Sn and Mg2Pb, as compared to Mg2Si and Mg2Ge.
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FIG. 2. (Color online) Comparison of phonon densities of states
in Mg2X (X = C, Si, Ge, Sn, and Pb) from DFT/LDA.

064303-4



ANHARMONIC PROPERTIES IN Mg2X (X = C, Si, . . . PHYSICAL REVIEW B 92, 064303 (2015)

Figure 2 presents the phonon density of states (PDOS)
as computed by DFT-LDA and smoothed with a Gaussian
function with a width of 0.3 THz. The PDOS aggregates
information about all phonons in the system, not only those
from the specific high-symmetry directions in Fig. 1. The
peaks of the PDOS curve correspond to the phonon energies
at the Brillouin zone edges, since these occupy the largest
volume in the reciprocal space. For example, the PDOS of
Mg2Pb features five peaks: at 1.7, 2.4, 5.0, 6.5, and 7.2 THz.
These correspond to the TA, LA, TO1, LO1, and LO2 mode
energies at the boundary of the Brillouin zone, as can be seen
by comparison with Fig. 1. Additionally, the absence of states
between 3 and 4 THz indicates the presence of a phonon gap
in Mg2Pb, as well as a very small gap in Mg2Sn around 4 THz.
The PDOS has been recently measured by the inelastic neutron
scattering (INS) for Mg2Si [39,54], Mg2Ge [39], and Mg2Sn
[54]. Our simulations agree well with these experimental data.
In particular, in Mg2Ge, the PDOS is characterized by four
peaks with frequencies from our simulations of 3.6, 4.9, 7.7,
and 8.9 THz, in excellent agreement with the experimental
values of 3.6, 4.7, 7.7, and 8.8 from Bessas et al. [39].
This comparison is important since the data of Bessas and
coworkers to our knowledge is the only available data on
phonon properties from the inelastic neutron scattering, as
opposed to Mg2Si, Mg2Sn and Mg2Pb, where measurements
of the full dispersions are available, as discussed earlier.

We now turn our discussion to the anharmonic properties
of the Mg2X series of compounds. In Fig. 3, we present
the thermal expansion coefficient as computed in the quasi-
harmonic approximation as a function of temperature in the
range of 0–800 K. Experimental data for the entire series
is rather scarce, with the most complete data available for
Mg2Ge [3,40,41] and a single source for Mg2Si and Mg2Sn [3].
Our results slightly overpredict the thermal expansion for the
Mg2Ge, the compound with the most reliable and consistent
experimental data, as was already noted in the discussion of
Table I. While our results for Mg2Si and Mg2Sn overestimate
experiment by about 50%, they are in the excellent agreement
with the results of the previous DFT/GGA calculations [11].
The thermal expansion curves in Fig. 3 show standard
behavior, with nearly constant expansion in the classical, high
temperature regime and a decay to zero in the quantum regime
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FIG. 3. (Color online) Thermal expansion of Mg2X from
DFT/LDA calculations in the quasiharmonic approximation.

at lower temperature. The first four compounds in the series
all have comparable thermal expansions, with differences of
no more than 10% among them below 500 K. Above this
temperature, the thermal expansion of Mg2Sn increases faster
than those of the other compounds, with the increase in
Mg2Si being the slowest. The quasiharmonic approximation
is intrinsically a low temperature analysis; thus, results at high
temperature should be treated with caution. Mg2Pb stands out
among the entire series with thermal expansion predicted to
be greater than that of other compounds by about 40% in
the entire temperature range. Unfortunately, no experimental
data is available to verify this prediction. In viewing thermal
expansion as an anharmonicity measure, no systematic trends
can be extracted from this data.

In Fig. 4(a), we present the results of the lattice thermal
conductivity calculations for Mg2X compounds in the tem-
perature range of 100–800 K. For all compounds, the lattice
thermal conductivity as a function of temperature is almost
linear in this log-log plot, and thus is well described as a
power law k ∼ T −α . Using this power law and fitting to the
data points above the Debye temperatures only in order to
avoid quantum effects produces exponents very close to unity,
as predicted by the Klemens theory [24]. In Fig. 4(b), we plot
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FIG. 4. (Color online) (a) Lattice thermal conductivities of Mg2X, X = C, Si, Ge, Sn, Pb as computed by DFT/LDA with BTE shown in a
log-log plot to demonstrate the power law dependence on temperature. (b) The same plotted versus available experimental data [2]; points on
the diagonal signify good agreement with experiment.
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the calculated thermal conductivities versus experimentally
available ones; in this plot, the closer a given point is to the
diagonal line, the better is the agreement with experiment.
First, we note the excellent agreement with the experimental
data available for Mg2Si, Mg2Ge, and Mg2Sn. Our results
for Mg2Si and Mg2Sn are also in excellent agreement with
previous calculations by similar methods [13,14]. The greater
values of experimentally measured thermal conductivity in
Mg2Sn for κ < 7 W/mK (those correspond to temperatures
above ∼300 K) are due to the electronic contribution; thus,
this is not captured by our phonon calculations. The last
compound in the series Mg2Pb is a semimetal, and in this
compound, the electronic contribution is pronounced at all
temperatures; thus, the experimental values are larger in the
entire temperature range. We discuss the thermal transport in
this material separately below.

As we have mentioned in the beginning of this section, DFT
within LDA produces slightly smaller errors for the basic struc-
tural properties than DFT within GGA-PBE. We nevertheless
assess the differences between these two approaches for the
thermal conductivity calculations. Comparison for Mg2Si and
Mg2Ge is shown in Fig. 5, together with the experimental data.
It is clear that LDA shows excellent agreement, while PBE
is inconsistent. It results in very close agreement for Mg2Si,
while producing values substantially lower than both LDA and
experiment for Mg2Ge. In the previous work by the authors on
thermal transport in solid argon, such an underestimation was
attributed to the volume effect [20], as PBE tends to produce
larger equilibrium volume than LDA, which in turn results in
softer phonon modes and lower thermal conductivity. While
this is the case for Mg2Ge, in Mg2Si, only the two highest
optical modes appear to be softer within PBE as compared
with LDA calculations. As a result, thermal conductivity is
almost the same within these two approaches for Mg2Si.
We conclude that LDA seems to be preferable for thermal
conductivity calculations, since PBE in general is expected to
slightly overestimate equilibrium volume and thus to be prone
to underestimation of thermal conductivity.

Mg2Pb is the only semimetal material in the Mg2X family,
and thus has contributions from both phonons and electrons
at all temperatures. The thermal conductivity of Mg2Pb was
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carefully examined by Martin and Shanks [2] who measured
overall thermal conductivity and electrical resistivity in order
to differentiate different components. By estimating the elec-
tronic contribution on the basis of the Wiedemann-Franz law,
they deduced that the lattice thermal conductivity of Mg2Pb is
larger than that of Mg2Sn. In light of the significantly heavier
mass of Pb in exactly the same structure, this situation was
considered unlikely. A direct estimate of the phonon-mediated
lattice component from the Leibfried and Schlomann equation
[55] and data for Mg2Sn concluded that the lattice thermal
conductivity of Mg2Pb is smaller than that of Mg2Sn, as was
indeed expected. To resolve this discrepancy, it was suggested
that there is a significant bipolar contribution to the electronic
thermal transport [56], similar to that in semiconductors at high
temperature. Our calculations have direct access to Mg2Pb
lattice thermal conductivity and indeed show lower values than
that of Mg2Sn. This is consistent with the conclusion reached
by Martin and Shanks that some other than pure electronic
mechanism, such as bipolar contribution, can be significant in
semimetals reaching ∼50% of the electronic thermal transport
in Mg2Pb in the 50–200 K temperature range.

To gain a deeper insight into the thermal transport properties
of the Mg2X series, we present spectral thermal conductivity
data in Fig. 6 and individual phonon lifetimes in Fig. 7, both
at 300 K. Spectral thermal conductivity is defined similarly to
the PDOS

Dκ (ω) = ∂κ(ω)

∂ω
=

∑
�k;n

κ�k;nδ(ω − ω�k;n), (6)

where κ�k;n is a contribution to the thermal conductivity from
the mode with frequency ω�k;n. We note that spectral thermal
conductivity in Fig. 6 plotted with larger Gaussian widening
(0.8 THz) of the individual states than the PDOS figures
plotted in Fig. 2 due to the much coarser grids feasible
for thermal conductivity calculations; they thus show fewer
features. The common trait of all the curves is a double peak
in the contributions to thermal conductivity, both of which
gradually shift to lower frequencies. In Mg2C, the first peak is
produced by all the TA, LA, and LO modes, while the second
peak is produced by the LA mode, since this is the only mode in

064303-6



ANHARMONIC PROPERTIES IN Mg2X (X = C, Si, . . . PHYSICAL REVIEW B 92, 064303 (2015)

 0.1

 1

 10

 100

 1000

 1  10

In
ve

rs
e 

lif
et

im
e 

(p
s-1

)

Frequency (THz)

Mg2C
Mg2Si

Mg2Ge
Mg2Sn
Mg2Pb

FIG. 7. (Color online) Phonon lifetimes as a function of fre-
quency in Mg2X.

this energy range with appreciable group velocity. In Mg2Si,
the LO mode can only contribute to the second peak, since
the first peak is outside of its energy range; however, in this
compound, the peaks overlap considerably. In the remaining
compounds, the LO mode has very little or no overlap with
the acoustic modes; thus, in Mg2Ge, Mg2Sn, and Mg2Pb, the
second peak arises exclusively from the optical modes, and
their contribution progressively diminishes. According to our
calculations, their contributions to total thermal conductivity
are 35, 21, and 18%, respectively. The first peak, due to the
acoustic modes, becomes progressively taller and narrower:
this reflects the same trend in the PDOS shown in Fig. 2.

The individual phonon lifetimes, Fig. 7, show the general
features that have being discussed in other materials [19,20].
Namely, the low frequency part of the spectrum can be fitted
reasonably well with a second degree polynomial; however, at
higher frequencies, the dependence is in fact nonmonotonic.
A surprising feature, however, is the comparison between
different materials: for the entire series of Mg2X compounds,
the phonon lifetime bands overlap with each other and do not
show significant differences. This indicates that the decreasing
trend in the thermal conductivity with increased mass of X

in the Mg2X series is dominated by reduction of the group
velocity of the phonons, or speed of sound (see Table I). This
conclusion generalizes a similar observation made from the
limited study of Mg2Si and Mg2Sn materials [13].

Finally, we considered the degradation of the thermal
conductivity by addition of the point defects in the Mg2Si,
the most promising of these materials for thermoelectric
applications. The presence of the point defects introduces
two distinct effects: mass disorder scattering and alteration
of the local interatomic constants around the defect. For a
low concentration of the defects, perturbation theory can be
expected to apply: it adds an additional term in the BTE
[17,57] linearly proportional to the scattering parameters �,
which are a simple sum of contributions from mass and elastic
disorder. The mass disorder term permits rigorous calculation
[24], including the contribution from different sublattices [57];
however, the effect of altered interatomic interactions is much
less well understood. Thus, we consider only the mass disorder
term, which provides a lower bound of the reduction in the

thermal conductivity (i.e., an upper bound to the thermal
conductivity itself). The mass disorder term is a combination
of the concentration of the defects and the mass difference
between defect atoms and atoms of the host material and,
when expressed in the form of the relaxation time associated
with the defect scattering, is given by [57]

τ−1
�k;n

= π

2N
ω2

�k;n

∑
�k′;n′

δ(ω�k;n − ω�k′;n′ )
∑

I

gI |�e∗
I ;�k′,n′ · �e∗

I ;�k,n
|2,

(7)
Here, gI is the scattering parameter associated with atom I

in the primitive cell, while all the other notations are the same
as in Sec. II. Equation (7) is applicable at any concentration
for defects of almost the same mass as the host, such as the
case of isotopic substitutions, and only at small concentrations
if the masses are substantially different. Scattering parameters
are computed using the following expression [57]

gI =
∑

i

f I
i

(
1 − MI

i

M̄I

)2

, (8)

where i counts possible isotopes/substitutions for atom I , f I
i

and MI
i give concentration and mass of the ith impurity, while

M̄I is the average mass. In case of the Mg2Si, most of the
alloying elements of interest substitute into the Si sublattice;
thus, it is interesting to illuminate the effect of varying scat-
tering parameter for this sublattice. Correspondingly, the Mg
sublattice experiences isotopic disorder only, and its scattering
parameter is held constant. Results of the calculations of the
variation of thermal conductivity with scattering parameter
for Si sublattice are shown in Fig. 8, where the vertical lines
denote the values for the scattering parameters for impurities
of different masses and concentrations.

We observe that the limits of applicability of the perturba-
tive treatment of the point defects have not being thoroughly
explored in the literature. Isotopic defects are characterized by
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very small values of the scattering parameters, driven by the
small change in the defects mass. In Mg2Si, these values are
found to be 0.00074 for Mg and 0.0002 for Si, as indicated in
Fig. 8; in this regime, perturbation treatment can be expected
to be reliable, as was explicitly demonstrated in the case
of pure Si and Ge [17]. Reduction of thermal conductivity
due to isotopic contribution in Mg2Si at room temperature is
about 10%, in excellent agreement with the work of Li et al.
[13]. However, upon substitution with atoms of very different
mass even at the modest concentrations of ∼1%, the value
of the scattering parameter increases rapidly, as can be seen
in Fig. 8 for the cases of C, Ge, and Sn substitutions at 1%
into the Si sublattice. For instance, for a 1% substitution of
Sn, the scattering parameter reaches the value of 0.095. In
order to assess the applicability of the perturbation treatment
in this regime, we compare our results with experimental data
for Bi-doped Mg2Si [58] and Mg2Si0.5Ge0.5 [59] and virtual
crystal approximation calculations for Mg2Si0.97Sn0.03 alloys
[13]. The values of the scattering parameter in these cases
are 0.12, 0.19, and 0.25, correspondingly. As one can see in
Fig. 8, perturbation theory in this regime shows overall good
agreement with results of the previous investigations; however,
it is clear that mass scattering alone slightly underestimates the
reduction of thermal conductivity, as expected. It should also
be noted that agreement for the largest scattering parameter
is not very meaningful: the phonon mean free path in this
regime is comparable with the interatomic distance; thus, the
phonon-mediated thermal transport picture is breaking down.
This is also evidenced in the fact that thermal conductivity is
very weakly temperature dependent for scattering parameters
greater than 0.5.

IV. CONCLUSIONS

In this paper, we have performed first-principles calcula-
tions of the thermal transport and anharmonic properties of

the series of II-IV semiconductors, Mg2X, X = C, Si, Ge, Sn,
and Pb. The thermal conductivity of Mg2C was calculated and
predicted to be 34 W/mK at room temperature, a somewhat
low value, considering the very low masses of its constituents.
The thermal conductivities of the other compounds in the series
agree well with the available experimental data and show a
decreasing trend with increased mass. As a result of detailed
analysis, this decrease was mainly attributed to the decrease of
the phonon group velocity in the series, rather than any trend in
the strength of anharmonicity. The contribution of the optical
modes was also found to be significant, as previously seen
in other fluorite compounds. We also found LDA to be more
appropriate for the thermal transport calculations than GGA
due to the slightly more accurate lattice constants, especially
when thermal expansion is taken into account. Finally, our
results for point defects scattering indicate that perturbation
theory is reliable up to quite large values of the scattering
parameter; however, inclusion of the force constant disorder
might be necessary for accurate estimations of the effect.
Our results also indicate that doping by heavy elements,
such as Bi, in the amount of up to 1% will exhaust all the
potential in reducing thermal conductivity by the point defect
scattering.
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