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Density of states of two-dimensional systems with long-range logarithmic interactions
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2University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany

3A. V. Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentjev Avenue, Novosibirsk 630090, Russia
4Department of Physics, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia

5Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60637, USA
(Received 22 April 2015; published 3 August 2015)

We investigate a single-particle density of states (DOS) in strongly disordered two-dimensional high dielectric
permittivity systems with logarithmic Coulomb interaction between particles. We derive self-consistent DOS
at zero temperature and show that it is appreciably suppressed as compared to the DOS expected from the
Efros-Shklovskii approach. We carry out zero- and finite-temperature Monte Carlo numerical studies of the DOS
and find the perfect agreement between the numerical and analytical results at zero temperature, observing,
in particular, a hardening of the Coulomb gap with the increasing electrostatic screening length. At finite
temperatures, we reveal a striking scaling of the DOS as a function of energy normalized to the temperature of
the system.
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I. INTRODUCTION

Logarithmic interaction (LI) between superconducting vor-
tices in bulk and two-dimensional (2D) superconductors [1]
and Josephson junction arrays [2,3] governs their electro-
magnetic properties, resulting, most notably, in Berezinskii-
Kosterlitz-Thouless (BKT) transition in films and Josephson
junction arrays [4–8]. The vortex-vortex LI, which is referred
to as 2D Coulomb interaction, holds on distances r < λ, where
λ = λL is the London penetration depth in bulk superconduc-
tors, and the Pearl screening length, λ = λP = λ2

L/a, in thin
films with a being the film thickness. Since λL is ordinarily of a
macroscopic spatial scale (about microns), and λP is even larger
in thin films, the LI between vortices is a routine experimental
situation, so that its fascinating consequences in vortex physics
are explored in detail and understood fairly well. The effect
of LI on the Coulomb gap and the variable range hopping
conductivity was discussed in the context of vortex dynamics
in Ref. [9].

With the 2D Coulomb interaction of charges the situation
is different. The LI of charges in dielectric films endowed
with the permeability higher than that of the surrounding was
derived and discussed quite a while ago [10–12]. The possible
effect of LI on hopping conductivity of electric charges was
touched upon in Ref. [13]. Extensive numerical simulations
of statistical properties of 2D arrays of single-electron islands
with random background charges were carried out in Ref. [14],
where it was demonstrated that LI noticeably affect the DOS
and hopping conductivity, with both being system size depen-
dent. However, the widespread orthodoxy is that in the realm of
the experimental condensed matter the unscreened Coulomb
interaction in dielectrics is always of the 3D nature, and so 2D
charge Coulomb systems do not exist. At the same time, it was
shown as early as in 1976 [15,16], see also Ref. [17], that near
the 2D percolation metal-to-insulator transition the dielectric
permeability diverges on approaching the transition from the
insulating side. This effect was experimentally observed in
many different systems, see, for example, Refs. [18–22]. This
implies that in the critical vicinity of the metal-to-insulator and

superconductor-to-insulator (SIT) transitions the long-range
LI extends over macroscales, hence bringing in the charge BKT
transitions at the respective insulating sides. As a fascinating
denouement of a long-range LI effect, the critical vicinity of
the SIT harbors two dual low-temperature BKT states, the
superconducting one below the vortex BKT transition and,
mirroring it, the superinsulating state below the charge BKT
transition [3,23,24]. One of the most striking manifestations
of the 2D Coulomb interaction is that the characteristic energy
controlling the activation conductivity of the Cooper pair
insulator scales as Ea ∝ ln L [3,23,24], provided the size of
the system, L, remains less than the electrostatic screening
length �.

In parallel, a new class of 2D insulators with high
dielectric permeability (often referred to as high-κ sheets) has
become one of the focuses of an extensive research, for they
appeared of prime technological importance for the fabrication
of nanoscale capacitor components in high-κ devices, see
Ref. [25], and references therein. One expects that since in
high-κ nanosheets � � κa is of a macroscale size, the logarith-
mic charge interaction should essentially affect their electronic
conductivity and DOS, which are key to the engineering high
performance devices and the progress in their miniaturization.
On the fundamental side, the interest is motivated by the
challenge of understanding the behavior of a 2D Coulomb
glass, a highly frustrated strongly correlated system whose
properties are governed by the intertwined effects of disorder
and the long-range LI [26]. An important step has been done
in our previous publication [27] where hopping conductivity
of a 2D Coulomb glass was investigated via a first-principles
numerical study. We demonstrated that hopping transport is
controlled by the characteristic energy that scales as Ea ∝ ln L̃

with L̃ = min{L,�}. One of the remaining mysteries of
strongly disordered 2D insulators is their electronic DOS. A
while ago, inspecting the effect of competition between the
random potential localizing the electrons and the long-range
electron-electron Coulomb interaction, Pollak [28] showed
that the latter causes a deep depletion in the one-particle
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SOMOZA, ORTUÑO, BATURINA, AND VINOKUR PHYSICAL REVIEW B 92, 064201 (2015)

DOS around the Fermi level. Efros and Shklovskii (ES) [29]
offered an elegant single-particle treatment, having coined this
depletion Coulomb gap. They found that for V (r) ∝ 1/r , the
DOS, g(E), vanishes at the Fermi level as

g(E) ∝ |E|d−1 , (1)

where d ≥ 2 is the dimensionality of the system. This g(E)
behavior is referred to as a soft gap. A self-consistent extension
of the original calculation [30,31] allowed us to find the
proportionality constants in different dimensions, d/π , [32]
and yielded the same functional dependence of g(E) in both
d = 2 and 3 cases. The behavior of the DOS at finite T was
studied both analytically [33] and numerically [34,35] for a
1/r Coulomb interaction.

On the experimental side, there have been tantalizing
reports revealing the intriguing behavior of the tunneling
conductance and resistance in Be [36] and TiN [37] films
in the close proximity to the SIT. The DOS was found to be
temperature dependent evolving upon cooling from ES-like
Coulomb gap to the hard gap at lowest temperatures in Be
films. In TiN films in the critical vicinity of the SIT, the resis-
tance exhibited an evolution from the ES law through
activation to hyperactivation behavior [37] with decreasing
temperature. This indicates that upon cooling down the
ES-like gap transforms into a hard gap, ensuring activated
conduction, and then the charge BKT occurs below which the
resistance grows faster than exponentially with temperature.
Furthermore, the hard gap was shown to broaden with the
increase of the applied magnetic field. Although observed for
quite some time, these fascinating behaviors of the Coulomb
gap are still not understood. Here we step into the breach and
relate them to the long-range LI of the unscreened charges
in the 2D systems. We investigate the electronic DOS of 2D
systems and, employing the self-consistent approach, find that
the long-range 2D Coulomb interaction gives rise to the hard
gaplike behavior in compliance with the experimental results
by Refs. [36,37]. We carried out numerical studies of the DOS
that yield the zero-temperature g(E) perfectly agreeing with
our analytical result. We also undertake a detailed Monte
Carlo (MC) finite-temperature numerical study and find the
temperature scaling of the DOS.

II. THE MODEL

We consider a standard tight-binding Hamiltonian with
long-range LI between carriers:

H =
∑

i

Qieφi +
∑
i>j

∑
j

QiQjV (ri,j ) . (2)

Here, the charge Qi of the ith site is measured in units of the
electron charge e, φi is the external potential at site i, and

V (ri,j ) =
{
E0 ln �

ri,j
if ri,j < �

0 if ri,j � �
, (3)

where E0 = e2/(2πε0κa) is the characteristic energy for the
LI, κ is the dielectric constant, a is the thickness of the
film, and � = min{L/2,κa}. We choose φi at random from
the interval [−B/2,B/2] and let the charge on each site Qi

assume values ±1/2. This restriction lifts the on-site charging

effects, but does not affect the generality of the results. The
Hamiltonian exhibits the particle-hole symmetry and so the
chemical potential is μ = 0.

The electrostatic site energies are given by

εi = eφi +
∑
j �=i

QjV (ri,j ) , (4)

and DOS is defined as g(E) = 〈δ(εi − E)〉i , where averaging
is taken over all sites i. The excitation energy corresponding
to a single electron i → j hop is

	i,j = εj − εi − V (ri,j ) . (5)

In the ground state, the stability criterion 	i,j ≥ 0 results in
a gap in the DOS. Extending the standard arguments of Efros
and Shklovskii for the Coulomb gap [29] onto the LI in 2D,
one gets the exponential gap in the DOS as

g(E) = 4

π�2E0
exp

(
2|E|
E0

)
, (6)

where the prefactor was obtained, in the context of the vortex
DOS, by Taüber and Nelson [38] (hereafter we will be referring
to this formula as to TN). Note that the screening length enters
Eq. (6) through the prefactor only.

III. SELF-CONSISTENT CALCULATION

At variance with the Coulomb gap generated by the 1/r

interaction, the self-consistency in the case of the LI in
2D results in a new functional form of the DOS energy
dependence. The self-consistent DOS is defined by the integral
equation [30,31]

g(E) = g0 exp

[
−2π

∫ 0

−∞
dE′g(E′)

∫ V −1(E−E′)

0
r dr

]
, (7)

where g0 = 1/B is the DOS in the system without interactions
and measures the degree of disorder. The exponential factor
in Eq. (7) is the probability that in the neighborhood of a
given site there are no other sites breaking the particle-hole
stability criterion. The upper integration limit refers to the
inverse function of the interaction potential and is equal to
V −1(E) = � exp{−E/E0}. Integrating over r the exponent in
Eq. (7) gives rise to

g(E) = g0 exp

[
−π�2

∫ 0

−∞
dE′g(E′)e−2(E−E′)/E0

]
. (8)

The factor exp(−2E/E0) can be taken out of the integral over
E′, and reduces to a constant, b, independent of E and given
by the self-consistent equation

b = g0
E0

2π�2b

(
1 − e−π�2b

)
. (9)

Neglecting the small second term in the brackets, one arrives
at the self-consistent expression for the DOS:

g(E) = g0 exp

(
−�

√
πg0E0

2
e−2|E|/E0

)
. (10)

Equation (10) is the central result of our paper.
One immediately discerns that the gap is no longer universal

since it depends strongly on the unperturbed DOS, g0, and on
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the screening length, �. In the limit E � E0, one can expand
exp(−2|E|/E0) in Eq. (10) to recover the exponential gap

g(E) ≈ g0 exp

(
−�

√
πg0E0

2

)
exp

(
�|E|

√
2πg0

E0

)
, (11)

which differs noticeably from the non-self-consistent result of
Eq. (6). In Eq. (11), both, the pre-exponential factor and the
exponent, depend on g0 and �.

IV. NUMERICAL RESULTS AT ZERO TEMPERATURE

To compute the DOS, we run a numerical algorithm that
relaxes the system into a state stable against all single-particle
transitions (but metastable with respect to simultaneous
many-particle transitions) [39]. We take an arbitrary random
configuration of occupied and empty sites and change the site
occupations until all occupied sites acquire negative energy
and all empty sites acquire positive energy. Then we exercise
the particle-hole transitions that decrease the energy of the
system (and return to the first part of the algorithm that relaxes
by changing individual sites occupation) until the system
becomes stable against all particle-hole transitions. Then we
make a histogram of the site energies and average the result
over at least 104 realizations of disorder.

In Figs. 1(a) and 1(b), we show the g(E) in logarithmic
and linear scales for four different system sizes and disorder
amplitude B = 10 and � = 10. Hereafter, E and all the
quantities of dimensionality of the energy are measured in
the units of E0. The data indicate a practical absence of
dependence of g(E) on the system size, provided L 
 �. The
solid line depicts the DOS calculated from our self-consistent
Eq. (10) without any adjustable parameters and fits pretty well
the numerical results. The minuscule discrepancy between the
numerical results and analytical expression stemming from
neglecting the exponential correction in Eq. (9) is mended by
the small change of the parameters g0 and �. The TN dotted
line stands for the DOS obtained in TN approximation, see
Eq. (6). The TNS line is calculated from Eq. (6), where instead
of the numerical factor 2 in the exponent, we took the factor 4
according to Ref. [40]. One sees that these curves, obtained
in the framework of the ES theory, deviate noticeably from
the simulation data. Figure 1(c) shows the DOS for different
screening lengths, while keeping the ratio L/� constant.
Remarkably, the increase in � results in essential broadening
of the g(E) curves. This resembles the experimental results
evidencing the broadening of the hard gap upon increasing
the applied magnetic field in Be films [36]. Note that this
trend is exactly what is expected to occur in disordered
superconducting films as they fall into the critical vicinity
of the SIT where their dielectric constant drastically increases.
For high-dielectric sheets, beyond the screening length, there
is an unscreened Coulomb 1/r interaction. Strictly speaking,
this unscreened tail contributes to the low-energy part of the
DOS and close enough to Fermi level the DOS acquires a linear
shape. However, at realistic parameters the energy interval of
linear behavior of the DOS is narrow and barely detectable in
the experiment.

(a)

(b) (c)

FIG. 1. (Color online) Density of states vs energy at maximal
strength of disorder B = 10. (a) and (b) present the same numerical
data for different sample sizes and � = 10 in the logarithmic and
linear scales, respectively. The legend given in the panel (a) is
common for both (a) and (b). The numerical data are shown by
symbols. The dotted line marked as TN is the DOS according
to Eq. (6) and the dotted line marked as TNS is the line that
accounts for the exponent found in Ref. [40] [keeping the prefactor of
Eq. (6)]. The solid line is our self-consistent result of Eq. (10), with
g0 ≡ 1/B = 0.1 and � = 10. The dashed line is the fit by Eq. (10),
with g0 = 0.108 and � = 9.4. (c) The DOS, g(E), for three different
values of �, at fixed ratio L/� = 10. Numerical data are shown by
symbols, the solid lines present the fit by Eq. (10) with the respective
�-s and g0 = 0.1.

V. FINITE-TEMPERATURE RESULTS

To study the temperature evolution of the DOS, we carry
out extensive Monte Carlo simulations. Starting our procedure
from an arbitrary random configuration of charges, we equi-
librate it at some relatively high temperature T1 utilizing the
standard MC procedure. Then we set the lower temperature
T2 < T1 and exercise the equilibration procedure with the
larger number of the MC steps. Repeating this operation
successively we reach the temperature T = 0.05 at which
the equilibration of the system becomes extremely slow, so
that it would have taken weeks to make one more step down
in temperature. Figure 2(a) and 2(b) present the color plots
of the results of the simulations in the temperature range
T < E0. One observes the drastic dependence of the DOS
on temperature, with the filling of the gap up to energies ∼T .
This is to be expected, since temperature smooths down the
small barriers between the energy minima. Hence one can
expect that at E,T � E0 the temperature sets the scale of
the energy and therefore g(E = 0,T ) = g(cT ,0), with c being
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(a)

(b)

(c)

(d)

FIG. 2. (Color online) Temperature dependence of the DOS cal-
culated at L = 50, � = 20, and B = 10. Three-dimensional (a)
and two-dimensional (b) color plots of numerical data for g(E,T ).
(c) Numerical data for the DOS normalized by the g(E = 0) as a
function of the energy-to-temperature ratio, E/T . Plot comprises
16 curves calculated in the temperature interval from T = 0.05
to T = 0.20 with the temperature step of 0.01. (d) g(E = 0) vs
temperature (symbols). The solid line presents the fit by Eq. (10),
where E = 4.4T , � = 20, and g0 = 0.1.

the constant. Figure 2(b) clearly shows the elliptical shape of
the iso-g lines centered at E = 0, T = 0. One further sees
that the ratio between the large and small semiaxis of ellipses
is about 4. The states with large energies E � E0 are not
smoothed down by temperature, the transition between these
domains of different temperature behaviors is marked by the
dashed lines. Close inspection of the data reveals the striking
scaling behavior of the DOS. Plotting g(E,T )/g(0,T ) as a
function of E/T demonstrates an excellent collapse of all the
curves onto a single scaling dependence, which for this case is
roughly parabolic, see Fig. 2(c). The plot g(E = 0,T ) shown
in Fig. 2(d) by symbols is well fitted by Eq. (10) at T < 0.1,

where E is substituted by cT , with c = 4.4. The exact form
of scaling function for g(E,T ) that applies over all energy
and temperature range is at present not available and will be a
subject of a forthcoming study.

To summarize, 2D systems endowed with the long-range
LI exhibit a vast richness of fascinating properties. The
zero temperature self-consistent DOS displays a hard gaplike
behavior in an excellent agreement with our numerical results
and differs significantly from the orthodox ES g(E). Our
finite-temperature numerical study has demonstrated a striking
scaling of g(E,T ) as a function of E/T in a finite energy
interval from −E0/T to E0/T [35,41]. This scaling possibly
reflects a thermal reconstruction of the energy spectrum of the
low-temperature phase of the Coulomb glass, where tempera-
ture plays the role of the characteristic energy scale. The next
immediate task is including the self-consistent consideration
into the scheme of the description of the variable range
hopping transport. We expect that LI is relevant over a wide
temperature range [42], where a hopping distance controlling
the variable range hopping logarithmically depends on the
temperature [26]. The long-range character of the LI is likely
to enhance the importance of the simultaneous many-electron
jumps [43], which may be relevant for the understanding of
glassy relaxation in electronic systems [44,45]. The important
subclass of 2D systems with high dielectric permittivity are
superconducting films in the critical vicinity of the SIT. The
logarithmically size-dependent activation energy has been
indeed found experimentally in InO and TiN films [3,23].
Finding the finite-temperature self-consistent g(E,T ) in 2D
systems with the long-range LI and exploring its role in
the mechanism of the superconductor- and metal-insulator
transitions poses the next upcoming challenge.
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[38] U. C. Täuber and D. R. Nelson, Phys. Rev. B 52, 16106 (1995).
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