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Structural phase transitions of phosphorene induced by applied strains
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The effects of normal compressive strain and in-plane strain on the structures of phosphorene have been
investigated by using first-principles calculations. It is quite intriguing to find that a structural transformation
from pristine Z-phosphorene to a new A-phosphorene occurs under the normal compressive strain of ε =
48% or the anisotropic biaxial in-plane strain of εx = −16% and εy = 54%. In the extreme case where the
pucker structure is flattened into a plane, the phosphorene structure is quite unstable at finite temperatures,
transforming into another new H-phosphorene phase. The anisotropic structure of A-phosphorene gives rise to
its direction-dependent mechanical properties whereas H-phosphorene exhibits isotropic mechanical properties.
Both A-phosphorene and H-phosphorene are semiconductors with indirect band gaps of about 0.42 and 1.94 eV
that use the Perdew-Burke-Ernzerhof exchange-correlation functional, respectively. The electronic properties of
the two new phases are found to be sensitive to the magnitude and direction of the applied strains, which offer an
effective method to modulate them in future device engineering.
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I. INTRODUCTION

Two-dimensional (2D) materials, such as graphene [1,2],
silicene [3], and hexagonal-layered boron nitride [4] have
been one of the most interesting subjects in condensed-matter
physics for their distinctive electronic structures and promis-
ing applications in nanoelectronics and spintronics. Most
recently, another 2D nanomaterial, i.e., the few-layer black
phosphorus (phosphorene), has been successfully fabricated
through mechanically cleaving bulk black phosphorus and
immediately attracted considerable attention [5–8] in which
the individual atomic layers are stacked together by van der
Waals interactions.

Unlike the zero-gap semimetal graphene, the phosphorene
exhibits a direct band gap, which can be modified from 1.51 eV
of a monolayer to 0.59 eV of a five-layer sample [9]. Moreover,
it is reported that the phosphorene has a high carrier mobility
up to 1000 cm2 V−1 s−1 [5] and the phosphorene transistors
achieved an appreciably high on/off ratio up to 104 at room
temperature [6], making this material of great interest for
future nanoelectronic applications. Furthermore, phosphorene
has a characteristic puckered structure, leading to a substantial
anisotropy of its mechanical behavior, electric conductance,
and optical responses [6,10–12], which distinguishes it from
many other isotropic 2D crystals.

The controlled introduction of strain into semiconductors is
known to be an effective method to tune their microstructures
and electronic properties. Recent work has demonstrated that
the monolayer phosphorene exhibits a superior mechanical
flexibility, which can hold a critical strain up to 30% [13].
It has been shown theoretically that phosphorene’s electronic
properties could be changed by an applied in-plane strain,
inducing a direct-indirect band-gap transition as well as a
semiconductor-metal transition [14,15]. The electronic band
structure of phosphorene also undergoes a semiconductor-
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semimetal-metal transition under the normal compressive
strain [16]. Moreover, a unique anisotropic conductance is
observed in phosphorene, which can be controlled and even ro-
tated by 90◦ under an appropriate uniaxial or biaxial strain [12].

In this paper, we have investigated the effect of a normal
compressive strain and an in-plane strain on the geometric
structures and electronic properties of phosphorene by using
first-principles calculations. It is quite intriguing to find that by
controlled introduction of mechanical deformation, structural
phase transitions have been induced in phosphorene, producing
two new phases with different mechanical and electronic
properties from the pristine phosphorene, which are sensitive
to the magnitude and direction of the applied strains.

The remainder of this paper is organized as follows. In
Sec. II, the geometric structures and computational details are
described. In Sec. III, the main numerical results and some
discussions are given. Finally, in Sec. IV, a conclusion is
presented.

II. MODEL AND METHOD

Unlike the plane structure of graphene, phosphorene has
a characteristic puckered honeycomb lattice, buckling alter-
nately by the zigzag lines. Each phosphorus atom is covalently
bonded with three neighboring atoms within a rectangular unit
cell, and there are four P atoms in one basic unit cell. The
x and y axes are taken to be along the armchair and zigzag
directions of phosphorene, respectively.

All calculations in this paper were performed by density
functional theory in the generalized gradient approximation,
implemented by the VASP code [17,18] in which the Perdew-
Burke-Ernzerhof [19] exchange-correlation functional and the
projector augmented-wave formalism [20] are employed. The
layered structures are placed on the xy plane, and a large
vacuum region is added in the z direction, making the closest
distance between two adjacent nanosheets be 15 Å.

The geometric structure optimization was performed
using the conjugated-gradient minimization scheme until
the maximum residual force on each atom was less than
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FIG. 1. (Color online) The optimized geometric structures of (a) pristine phosphorene, (b) A-phosphorene, and (c) H-phosphorene. The
a1 × a2 unit cell of pristine phosphorene is outlined by black dashed lines. Here, the P atoms in the upper (lower) half-layer are denoted by
blue (purple) in order to clearly identify them in two different half-layers of the phosphorene. (d) The energy difference between strained and
pristine phosphorene (�E) varying with normal compression. The black dots denote the compression process whereas the red dots represent
the process of releasing the strain. (e) The relative enthalpy �H referring to the H0 of pristine phosphorene as a function of strain in the
compression process.

10−4 eV/Å. A plane-wave cutoff of 350 eV for phosphorene
was used in our numerical calculations, and the energies
were converged to 10−5 eV/atom. The reciprocal space of
the supercell is sampled with a 30 × 30 × 1 Monkhorst-Pack
grid.

The optimized geometric structure of pristine phosphorene
is presented in Fig. 1(a), which has a puckered honeycomblike
lattice structure with its pucker height d of about 2.104 Å. The
relaxed lattice constants of the monolayer phosphorene are
a1 = 4.619 and a2 = 3.298 Å.

III. RESULTS AND DISCUSSIONS

A. Phase transitions of phosphorene under mechanical
deformation

Starting from the relaxed phosphorene structure, a normal
compressive strain was applied by varying the pucker height
d. At each fixed height d, a constrained relaxation scheme
was performed for optimizing the geometric structures in
which the unit cell and atomic positions in the two half-
layers of phosphorene were relaxed under a constraint of

fixing the z coordinates of all atoms at each fixed height
d. The applied strain was defined as ε = d0−d

d0
, where d0

and d are the equilibrium and instantaneous pucker height,
respectively.

It is found that the lattice parameter along the armchair
direction increases significantly whereas that along the zigzag
direction decreases slightly under the compression strains in
the range from 1% to 47%. The electron localization function
(ELF) analysis gives the ELF values larger than 0.5 between
two P atoms, indicating that the geometric structure retains its
original bonding configuration. However, as the compressive
normal strain increased up to 48%, the continuous expansion of
a1 would break the P-P bonds, leading to a structural transfor-
mation of phosphorene with shrinkage of its lattice parameter
along the armchair direction and expansion of that along
the zigzag direction. Meanwhile, the P-P bond in the same
half-layer turns to align along the y direction, and the P-P bond
connecting the top and bottom half-layers deviates from the x

direction, inducing a new geometrical phase of phosphorene.
The ground state of this new phase is then obtained by fully

relaxing both the unit cell and the atomic positions without
constraint, whose optimized geometric structure is shown in
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Fig. 1(b). Unlike the puckered structure alternated by the
zigzag lines in the pristine phosphorene, the new geometrical
phase of phosphorene has a puckered structure alternated by
the armchair lines, which thus can be called A-phosphorene,
in contrast to the original phosphorus, called Z-phosphorene.
The relaxed lattice constants of A-phosphorene are a1 = 3.268
and a2 = 5.419 Å, whereas its pucker distance is only d =
1.493 Å, being about 70% of that of Z-phosphorene.

The detailed analysis of the energy difference (�E)
between the strained A-phosphorene and the pristine Z one,
varying with normal compression, is presented in Fig. 1(d),
from which it can be found that the energy difference �E

increases monotonously with the strain in the range from
0% to 47%. However, when the normal strain increases over
47%, the �E experiences a sharp decrease by about 0.75 eV,
indicating that the system transforms into a more stable phase.
Further increase in the compressive strain makes the �E

again increase monotonously.
To further confirm the phase transition at ε = 48%, we

used the A-phosphorene structure under ε = 48% as an initial
configuration and then gradually release the strain. It is found
that the system still remains in the A-phosphorene phase with
the corresponding energy-strain relations, given by the red dots
in Fig. 1(d). The energy first lowers down as the strain releases
from 48% to about 30% at which the �E value reaches a
minimum. And then it increases with a further increase in the
pucker height. When the strain reduces to ε = 20%, the energy
of A-phosphorene becomes larger than that of Z-phosphorene.

We have also calculated the enthalpy of the system, which
is defined as H = E + pV = E + ∂E

∂d
d, where E and d

are the energy and pucker height of strained phosphorene.
The relative enthalpy �H referring to the H0 of pristine
phosphorene as a function of compressive strain is plotted
in Fig. 1(e) from which we can find a minimum of enthalpy at
ε = 48%. Phosphorene with a strain over 47% also holds very
low enthalpy, indicating that the A-phosphorene is a stable
structure under high pressure.

It is also interesting to find that the pucker structure of Z-
phosphorene could be compressed into a flat hexagonal plane
structure (i.e., ε = 100%) under a very high pressure but is
quite unstable at finite temperatures. The first-principles finite
temperature molecular dynamics (MD) simulations found that
even at a very low temperature of 2 K, the wrinkle in the
z-axis direction would appear in the flat plane structure, leading
to a structural reconstruction, which finally induces a new
puckered phosphorene phase (H-phosphorene), as seen in the
Supplemental Material [21].

The optimized geometric structure of the new H-
phosphorene is shown in Fig. 1(c), which has a hexagonal
Wigner-Seitz cell, containing only two atoms. The lattice
constant of H-phosphorene is a1 = a2 = 3.277 Å, and the
pucker distance is d = 1.238 Å. It can be found that the
H-phosphorene phase structure is different from both A-
phosphorene and Z-phosphorene with an anisotropic ridge
structure but transforms into an isotropic puckered one, which
is the same as the puckered silicene, where the A and B

sublattices sit on two vertically separated planes.
In order to investigate the stabilities of different phases,

we have calculated their binding energies Eb = E − NEP ,
where E and EP are the energies of phosphorene and the

TABLE I. The calculated geometric parameters and binding
energies of different phosphorene phases are summarized.

a1 (Å) a2 (Å) d (Å) Eb (eV/atom)

Z-phosphorene 4.619 3.298 2.104 −3.477
A-phosphorene 3.268 5.419 1.493 −3.385
H-phosphorene 3.277 3.277 1.238 −3.476

isolated phosphorus atom, respectively, and N is the number
of phosphorus atoms in phosphorene. Our results for the
binding energies as well as the optimum geometric parameters
of different phases are summarized in Table I. It is found
that the binding energy of H-phosphorene is only about
1 meV/atom higher than that of Z-phosphorene, suggesting H-
phosphorene is almost equivalently stable to Z-phosphorene.
A-phosphorene has higher binding energy than that of the most
stable Z-phosphorene by 92 meV/atom.

In addition, the first-principles finite temperature MD
simulations are further performed to confirm the stabilities
of A-phosphorene and H-phosphorene, finding that both of
them are stable at room temperatures and even 500 K in our
simulation time of 10 ps.

The phonon spectra of different phases have also been
calculated, and no imaginary phonon modes are found in
H-phosphorene, further confirming the dynamic stability of
the new phase. However, A-phosphorene with higher energy
is found to show imaginary phonon modes along �-X in its
phonon spectrum, calculated in different supercell sizes of it.
That most probably means there might exist some possible
reconstructions along the x direction in its supercells, which
is worth investigating in future work.

It is also noticed that the normal-compression-induced
A- and H-phosphorenes had been postulated as γ -P and
β-P, respectively, by previous theoretical work as possible
phosphorus allotropes [22].

It is found that the large structural deformations in mono-
layer phosphorene can also be induced by tensile strains in
addition to the high normal pressure. In practice, the monolayer
nanomaterial can be put on a flexible substrate, realizing the
independent control of its lattice parameters of a1 and a2. We
have also investigated the geometric structures of phosphorene
under in-plane strain. It is interesting to find that the in-
plain strain could also induce the structural transformation
in phosphorene. For example, when Z-phosphorene is subject
to a biaxial in-plain strain, composed of a compressive εx

along the armchair direction but a tensile εy along the zigzag
direction, increasing gradually to εx = −16% and εy = 54%,
the structure would also turn into the A-phosphorene phase.
Besides, when the anisotropic strain εx = 12% and εy = 35%,
or the isotropic strain of 29% is applied, the pristine Z-
phosphorene will evolve into the flat hexagonal structure,
which is quite unstable at finite temperatures and will quickly
transform into H-phosphorene at a very low temperature.

B. Mechanical properties of different phosphorene phases

The controlled strain is an effective method in device
engineering. And the fundamental studies on the mechanical
properties of these new phosphorene phases are crucial to
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FIG. 2. (Color online) The stress-strain relation for (a) Z-phosphorene, (b) A-phosphorene, and (c) H-phosphorene.

know how they can possibly be used in the high performance
electromechanical devices. It has already been reported by
previous studies that Z-phosphorene possesses supermechan-
ical flexibility and can withstand a tensile strain up to 30%.
Young’s modulus was also found to depend sensitively on
the direction due to its extraordinary anisotropic puckered
structure [13]. Starting from the fully relaxed structures of
A- and H-phosphorenes, an in-plane uniaxial tensile strain is
applied along either the armchair or the zigzag direction to
explore their mechanical properties.

The material strength is the ultimate stress required to
break a perfect crystal. To estimate the strengths of A- and
H-phosphorenes, we have calculated the stress as a function of
applied strain using the method described in the Refs. [23,24].
By analogy with the study in Z-phosphorene [14], the stress in
the 2D monolayers is modified to be the force per unit length.

The calculated stress-strain relations of A- and H-
phosphorenes are depicted in Figs. 2(b) and 2(c), respectively,
whereas the result of Z-phosphorene is also given in Fig. 2(a)
as a comparison. It shows that the ideal strengths of Z-
phosphorene are 4.41 and 9.76 N/m, corresponding to the
critical strains of 32% and 26% in the armchair and zigzag
directions, respectively, which are in good agreement with
previous studies [13,14]. The elastic regime of three phases
can be inferred from the stress-strain curve, which are all
approximately linear in the strain ranges of 3% to 4% in which
we say that phosphorenes are in the elastic regime.

Similar to Z-phosphorene, the anisotropic structure of
A-phosphorene also gives rise to its direction-dependent me-
chanical properties. From the stress-strain relation in Fig. 2(b),
it can be found that A-phosphorene can sustain a stress up
4.58 N/m in the armchair direction at the corresponding
critical strain of 17%. Whereas for the tensile strain loaded
in the zigzag direction, a yielding point appears at 5% tensile
strain. After that, a further increase in the strain would not
break the geometric structure of A-phosphorene but only
stretch its pucker structure along the zigzag direction. A-
phosphorene retains its bonding configuration even under a
tensile strain up to 40% applied in the zigzag direction.

For H-phosphorene, the mechanical behaviors are isotropic
in the elastic regime as shown in Fig. 2(c). The ideal
strengths are 6.67 and 6.46 N/m in the armchair and zigzag
directions, corresponding to the critical strains of 15% and
20%, respectively.

In addition to the ideal tensile strength and critical strain, we
further calculated in-plane elastic stiffness constants, effective

Young’s/shear moduli, as well as Poisson’s ratios to assess the
mechanical response of different phosphorene phases.

For the two-dimensional structures, the in-plane stress-
strain relation can be written as [25]⎡
⎣σx

σy

τxy

⎤
⎦ = 1

1 − νxyνyx

⎡
⎣ Ex νyxEx 0

νxyEy Ey 0
0 0 Gxy(1 − νxyνyx)

⎤
⎦

×
⎡
⎣ εx

εy

γxy

⎤
⎦

=
⎡
⎣C11 C12 0

C21 C22 0
0 0 C66

⎤
⎦

⎡
⎣ εx

εy

γxy

⎤
⎦,

where νij = − dεj

dεi
is the Poisson ratio with tensile strain

applied in the direction i and the response strain in the direction
j , Ei is Young’s modulus along the ith axis, Gxy is the shear
modulus on the xy plane, and γxy is the shear strain on the xy

plane. Since the thickness for monolayer phosphorene is not
considered, the unit for the stress as well as the elastic moduli
is force per unit length (N/m) rather than force per unit area
(N/m2 or Pa).

In order to figure out the above constants, we have scanned
the energy surface of the three phases in their elastic regimes:
−3% < εx < 3%, −3% < εy < 3%, and −2% < γxy < 2%
in a step of 0.5%. The strain-energy relation is then obtained
ES = a1ε

2
x + a2ε

2
y + a3εxεy + a4γ

2
xy by parabolic fitting of

the strain-energy surface, where the coefficients ai are fitted
parameters. We then calculated the in-plane elastic stiffness

constant Cij , which is defined as Cij = 1
A0

∂E2
S

∂εi∂εj
, where A0

is the equilibrium area of different phosphorene phases.
Consequently, Young’s/shear moduli and Poisson’s ratio can
be derived as follows:

Ex = 1

A0

(
2a1 − a2

3

2a2

)
, Ey = 1

A0

(
2a2 − a2

3

2a1

)
,

Gxy = 2a4

A0
, νxy = a3

2a2
, νyx = a3

2a1
.

The calculated Young’s/shear moduli and Poisson’s ratios
for different phases are listed in Table II. The values of
Z-phosphorene are consistent with previous studies [13,26].
Due to the anisotropic property of A-phosphorene, Young’s
modulus and Poisson’s ratios also have different values in the
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TABLE II. The calculated Young’s/shear moduli and Poisson’s ratios for different phases of phosphorene.

Young’s modulus (N/m) Poisson’s ratio

Structure Armchair Zigzag Shear modulus (N/m) Armchair Zigzag

Z-phosphorene 22.15 92.01 22.31 0.71 0.17
A-phosphorene 68.28 85.65 19.84 −0.029 −0.023
H-phosphorene 77.64 77.64 35.23 0.11 0.11

armchair and zigzag directions. Young’s modulus in the zigzag
direction is about 1.25 times larger than its counterparts in the
armchair direction, exhibiting much less anisotropy compared
with Z-phosphorene. Whereas for H-phosphorene, the values
of Young’s modulus or Poisson’s ratios in different directions
are equal, indicating the isotropic character of Z-phosphorene.

It is worth pointing out that A-phosphorene exhibits a
negative Poisson’s ratio under uniaxial strains along both
armchair and zigzag directions in the elastic regime. With
a further increase in the tensile strain over 3%, the Poisson
ratios turn into positive values.

C. Variation in electronic properties with applied strain
in different phosphorene phases

The electronic properties of undeformed A- and H-
phosphorenes have been calculated, and their band structures
are presented in Figs. 3(a) and 3(c), respectively, denoted

by black lines. A-phosphorene is a semiconductor with an
indirect band gap of about 0.42 eV. Its conduction-band
minimum (CBM) and valence-band maximum (VBM) are
located on the points between �-X. H-phosphorene is also
an indirect-band-gap semiconductor with its CBM at a point
between �-X and its VBM at a point between �-Y. The band
gap of H-phosphorene is about 1.94 eV.

To assess the effect of strain modulation on electronic
properties, the band structures of A- and H-phosphorenes
under both isotropic and uniaxial strains along the armchair
or zigzag directions have been studied. Figure 3(a) compares
the electronic band structures of undeformed and deformed
A-phosphorene. The tensile strain along the armchair (y)
direction raises the CBM between �-X whereas the energy
of the VBM decreases with the increasing strain, leading
to an increase in the band gap. On the other hand, when
A-phosphorene is subjected to compressive strain along the
armchair direction, whose band structure is not shown here,

FIG. 3. (Color online) The band structures of (a) A-phosphorene and (c) H-phosphorene under different kinds of strains. The corresponding
band-gap variations in A- and H-phosphorenes under different kinds of strains are shown in (b) and (c), respectively.
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both the CBM and the VBM move close to the Fermi level,
thereby reducing its band gap quickly.

When the uniaxial tensile strain is taken along the zigzag
(x) direction, the state on the conduction band located at the �

point moves down and becomes a new CBM at a strain of about
2%. At the same time, the dispersion relation of the highest
valence band will gradually change, which makes the pristine
VBM point, lying between the �-X, move to another point at �,
inducing so an indirect-direct band-gap transition at εx = 2%.
The isotropic strain effect on the electronic structures of A-
phosphorene is also studied, which exhibit a similar transition
from an indirect band gap to a direct band gap under a tensile
strain of about 3%.

The energy gap variation in A-phosphorene with different
uniaxial strains is shown in Fig. 3(b) where the negative value
of the strain denotes the compressive strain. It can be seen that
the band gap increases monotonously with the strain applied
along the armchair direction, and a semiconductor-metal
transition happens at a compressive strain of about −6%.
When the strain is applied along the zigzag direction, the
band gap decreases rapidly with the tensile strain, making
the system turn into a metal at εx = 4%. However, under the
compressive strain, the band gap slightly increases from 0.42
to 0.45 eV as the strain increases to εx = −3%. And a further
increase in the compressive strain up to about εx = −6% will
slightly decrease the gap to about 0.43 eV and then quickly
reduce the band gap to zero at εx = −9%. When the biaxial
isotropic strain is applied, the compressive strain gives rise to
a monotonous reduction of the band gap to zero at εxy = −7%,
whereas the tensile strain can initially increase the band gap
to its maximum value of 0.45 eV at εxy = 2% and then reduce
it to zero at εxy = 6%.

Similarly, the electronic structures of H-phosphorene under
different strains are presented in Fig. 3(c), and the correspond-
ing band-gap variations are depicted in Fig. 3(d). It can be
found that both the compressive and the tensile uniaxial strains
will reduce its band gap, except for the biaxial compressive
strain at εxy = −1%, which increases the band gap by 0.03 eV.
Increasing further the compressive strain leads to the band-gap

reduction until the gap closure, which occurs at εx = −10%,
εy = −12%, and εxy = −9%. While under the external tensile
strain, no semiconductor-metal transition has been observed
in our strain range to 15%.

IV. CONCLUSIONS

The effects of normal compressive strain and in-plane
strains on the structures of phosphorene have been investigated
by using first-principles calculations. It is quite intriguing to
find that by controlled introduction of mechanical deformation,
a structural transformation from pristine Z-phosphorene to
a new A-phosphorene can occur under either a normal
compressive strain of ε = 48% or an anisotropic biaxial strain
of εx = −16% and εy = 54%. On the other hand, the flat
plane phosphorene structure obtained under a high normal
pressure is found to be unstable at finite temperatures, which
is easily transformed into a new H-phosphorene phase. The
mechanical and electronic properties of the two new phospho-
rene phases are also studied by first-principles calculations.
The anisotropic structure of A-phosphorene gives rise to
its direction-dependent mechanical properties with Young’s
modulus in the zigzag direction about 1.25 times larger than
their counterparts in the armchair direction. H-phosphorene
exhibits isotropic mechanical properties with its effective
Young’s modulus to be 77.64 N/m. Both A-phosphorene
and H-phosphorene are semiconductors with indirect band
gaps of about 0.42 and 1.94 eV, respectively. The electronic
properties of the two new phases are found to be sensitive to
the magnitude and direction of the applied strains, which offers
an effective method to modulate them in device engineering.
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