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Sharp interface model of creep deformation in crystalline solids
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We present a rigorous irreversible thermodynamics treatment of creep deformation of solid materials with
interfaces described as geometric surfaces capable of vacancy generation and absorption and moving under
the influence of local thermodynamic forces. The free energy dissipation rate derived in this work permits
clear identification of thermodynamic driving forces for all stages of the creep process and formulation of kinetic
equations of creep deformation and microstructure evolution. The theory incorporates capillary effects and reveals
the different roles played by the interface free energy and interface stress. To describe the interaction of grain
boundaries with stresses, we classify grain boundaries into coherent, incoherent and semicoherent, depending on
their mechanical response to the stress. To prepare for future applications, we specialize the general equations
to a particular case of a linear-elastic solid with a small concentration of vacancies. The proposed theory creates
a thermodynamic framework for addressing more complex cases, such as creep in multicomponent alloys and
cross-effects among vacancy generation/absorption and grain boundary motion and sliding.
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I. INTRODUCTION

At high temperatures and under sustained mechanical loads
below the yield strength, many crystalline materials undergo a
slow, time-dependent plastic deformation called creep. A typi-
cal mode of creep deformation involves diffusion of vacancies
between sources and sinks located at grain boundaries or free
surfaces [1–6]. The rate at which the vacancies are created
and/or annihilated at these interfaces depends on the nature
of the interfaces and the local state of stress. During creep
deformation, free surfaces can migrate producing macroscopic
shape changes of the material. Grain boundaries can also
migrate, altering the material’s microstructure and affecting
its physical and mechanical properties [7].

In a recent paper [8], a theory of creep deformation of
polycrystalline materials was proposed based on gradient
thermodynamics with phase field variables describing grain
boundaries and other interfaces. A continuous distribution of
vacancy sinks and sources was assumed, but they could be
localized in interface regions by appropriate coupling between
the kinetic coefficient of vacancy generation/annihilation and
gradients of phase fields. The advantage of this approach is
that it incorporates the lattice site generation and annihilation,
plastic deformation, and grain boundary motion within a
unified thermodynamic framework. However, implementation
of this approach requires highly complicated numerical sim-
ulations and relies on a large database of material parameters
representing bulk and interface thermodynamics as well as
various kinetic coefficients. To complement that approach, it
is desirable to develop a less detailed but more efficient model
of creep deformation in which the interfaces are represented by
geometric surfaces capable of vacancy generation and annihi-
lation and moving under the influence of local thermodynamic
forces. This task requires the development of a nonequilibrium
thermodynamic framework capable of predicting the rates
of vacancy generation by interfaces, lattice deformation, and
interface motion in a self-consistent manner. It is the goal of

this paper to create this thermodynamic framework focusing on
a single-component solid with vacancies as a model material.
The proposed theory will be referred to as the sharp-interface
model of creep.

After introducing a thermodynamic model of a deformable
lattice with vacancies in Sec. II, we analyze the time evolution
of an isolated crystalline grain subject to a given set of
mechanical stresses applied at its surface (Sec. III). The
analysis includes capillary forces with a clear distinction
drawn between the surface free energy and surface stress.
Kinetic equations are derived from the free energy dissipation
rate and describe vacancy diffusion inside the grain coupled
with vacancy generation and annihilation at the surface and
concomitant surface migration. Next, we address a more
complicated case of two grains separated by a curved grain
boundary (Sec. IV). Here, we introduce three types of grain
boundary: coherent, incoherent, and semicoherent, depending
on the ability of the boundary to support static shear stresses.
For coherent boundaries, our model incorporates the shear
coupling effect [9]. It is shown that shear-coupling affects the
grain boundary motion and ultimately the creep deformation
rate. Semicoherent boundaries constitute an intermediate case
when coupled motion coexists with grain boundary sliding.
Again, a full set of kinetic equations is derived from an
expression for the free energy dissipation rate. Along with
applied and internal stresses, we include capillary forces
associated with the excess grain boundary free energy and
its surface stress. In Sec. V we specialize the theory to a
particular case of a linear-elastic anisotropic solid with a small
concentration of vacancies. Finally, in Sec. VI we summarize
the results and discuss future work.

II. THERMODYNAMICS OF DEFORMABLE LATTICE

Consider an elastically deformed single-component single-
crystalline solid. As customary in continuum mechanics,
deformation of the solid is described by a time-dependent
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mapping x = x(x′,t) of reference points x′ to deformed points
x, where t is time [10]. To simplify the analysis, the reference
state is taken to be spatially uniform with respect to all physical
properties. The solid may contain vacancies but there are no
vacancy sinks or sources inside the lattice, except possibly at
its boundary.

The following fundamental equation is postulated to de-
scribe thermodynamic properties of the solid:

fs = fs(T ,F,c). (1)

Here fs is the Helmholtz free energy per site,1

F ≡
(

∂x
∂x′

)
t

≡ x
←−∇′, (2)

is the deformation gradient tensor [10], T is temperature, and
c is the fraction of lattice sites that are filled by atoms. The
crystalline structure is assumed to have a Bravais lattice, i.e., a
primitive lattice with a single-site basis (non-Bravais structures
would require dealing with sites that are not equivalent and
additional variables to describe internal strains of the unit cell).
Thus, (1 − c) is the fraction of vacant sites.

In all processes considered below, the material is assumed
to remain in thermal equilibrium. Thus temperature T is
considered constant and uniform throughout the system.
Accordingly, the equations appearing below do not contain
temperature gradients or time derivatives of T , and in most
equations T is not displayed as a variable.

Variations of fs are described by the standard relation [11]:

δfs = Mδc + �′P · ·δF, (3)

where

M ≡
(

∂fs

∂c

)
T ,F

(4)

is the diffusion potential [12–14] of atoms relative to vacancies,
�′ is the reference volume per lattice site, and P is the first
Piola-Kirchhoff stress tensor. The latter is related to the true
(Cauchy) stress tensor σ by [10]

P = GF−1 · σ , (5)

where G = det F is the Jacobian of the deformation gradient.
The Cauchy stress σ tensor is symmetric according to angular-
momentum balance in the absence of body couples [10].

III. EVOLUTION OF AN ISOLATED GRAIN

We first consider time evolution of a single-crystalline
region (grain) subject to mechanical stresses and under a
given initial distribution of vacancies. Before formulating the

1We follow the convention [10] that the dot between vectors or
tensors (e.g., a · b) denotes their inner product (contraction) while
juxtaposition (e.g, ab) their outer (dyadic) product. Two dots denote
the double contractions a · ·b = Tr(a · b) and a : b = a · ·bT, where a
and b are second-rank tensors and superscript T denotes transposition.
The differentiation operator ∇ is treated as a vector. We use the

notation a
←−∇ to show that ∇ operates on the vector or tensor a

appearing on its left.

general evolution equations of the grain, we will consider two
particular cases, referred to as Case 1 and Case 2.

A. Case 1: No site creation

Consider a lattice region R obtained by deformation of a
given reference region R′ and thus containing a fixed number
of lattice sites. We assume that there is no exchange of atoms
between the grain and the environment, so that the total number
of atoms in the grain is fixed. The grain can be thought of as
embedded in a chemically inert medium whose only role is
to exert mechanical stresses σ ext along its boundary ∂R. In
turn, this medium is enclosed in a rigid box equilibrated with a
thermostat and incapable of performing any work at the walls.

The total free energy of the system is

�1 =
∫
R′

fs

�′ dv′ +
∫

∂R
γ dA + �m. (6)

The first term is the free energy stored inside the grain, which
is computed by integration over the volume of the reference
region R′, where dv′ is the increment of the reference volume.
The second integral is taken over the deformed surface of the
grain and represents the total surface free energy, dA being
an increment of the surface area and γ the reversible work
needed to create a unit area of the surface. The latter is called
the surface free energy. Finally, �m represents the free energy
of the surrounding medium.

We will adopt a treatment of surface thermodynamics in
which the fundamental equation of the surface has the form,

γ = γ (T ,ϕ). (7)

In this equation,

ϕ = dA

dA′ , (8)

where dA′ is the area of a surface element in the reference
state and dA is the area of the same surface element in the
elastically deformed state. Thus ϕ is a measure of elastic
surface deformation at a given location at the surface. The use
of Eq. (7) implies that the surface free energy is independent of
the surface orientation, and thus isotropic. Namely, it depends
only on the elastic change in the surface area regardless of the
directions in which the area was stretched or compressed to
produce the given area change.

Consider a time-dependent process accompanied by
changes in the elastic deformation of the grain and variations in
its local composition c. These changes create a lattice velocity
field,

vL(x′,t) =
(

∂x
∂t

)
x′
, (9)

which can be expressed as a function of deformed coordinates,
vL(x,t). The rate of free energy change per site seen by an
observer moving with the lattice is

dLfs

dt
= M

dLc

dt
+ �′P · ·d

LF
dt

= −MG�′∇ · JL + �′P · ·vL

←−∇′, (10)
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where the lattice material time derivative dL/dt is defined by

dL

dt
≡

(
∂

∂t

)
x′

=
(

∂

∂t

)
x
+ vL·∇, (11)

and JL is the diffusion flux of atoms relative to the moving
lattice. In the second line of Eq. (10) we used the relations,

dLF
dt

= vL

←−∇′, (12)

and

dLc

dt
= −G�′∇·JL. (13)

Equation (12) is an identity readily obtainable by combining
the definitions (2) and (9).2 To prove Eq. (13), we use the
atomic balance relation,

dL

dt

( c

�

)
= − c

�
∇ · vL − ∇·JL, (14)

combined with the Jacobi identity [10],

dL

dt

(
1

�

)
= − 1

�
∇ · vL, (15)

where � = G�′ is the deformed volume per site and thus c/�

is the number density of atoms per unit volume in the deformed
state.

Applying the identity,

∇′·(P·vL) = (∇′·P)·vL + P · ·(vL

←−∇′), (16)

Eq. (10) can be rewritten as

dLfs

dt
= −MG�′∇ · JL + �′∇′·(P·vL) − �′(∇′·P)·vL.

(17)

The rate of free energy change of the entire system (i.e., the
grain, its surface, and the surrounding medium) is obtained as
the time derivative of Eq. (6):

�̇1 =
∫
R′

dLfs

dt

dv′

�′ +
∫

∂R
γ dȦ +

∫
∂R

γ̇ dA

−
∫

∂R
n·σ ext·vLdA, (18)

where n is a unit normal to the surface pointing outside the
grain, dȦ is the rate of area change of the surface element dA,
and γ̇ is the rate of change of the surface free energy γ . The
first integral is the rate of free energy change inside the grain.
The next two integrals represent the rate of work expended on
elastic deformation of the surface. The last integral is the rate
of mechanical work performed by the surrounding medium
on the grain, the negative of which gives the rate �̇m of free
energy change of the medium.

Equation (18) will now be transformed to a form that is
more suitable for the analysis of creep deformation. We start

2Indeed, dLF
dt

= ( ∂F
∂t

)
x′ = ( ∂

∂t
( ∂x

∂x′ )t )x′ = ( ∂

∂x′ (
∂x
∂t

)
x′ )t = ( ∂

∂x′ vL)
t
=

vL

←−∇′ .

with the first integral by inserting dLfs/dt from Eq. (17). The
integral of the first term in Eq. (17) is

−
∫
R′

MG∇ · JLdv′ = −
∫
R

M∇ · JLdv

= −
∫
R

∇ · (MJL)dv +
∫
R

JL · ∇Mdv

= −
∫

∂R
Mn·JLdA +

∫
R

JL · ∇Mdv,

(19)

where Gdv′ = dv (increment of deformed volume). At the last
step we applied the divergence theorem. For the integral of the
second term in Eq. (17) we again use the divergence theorem
to convert it to a surface integral in the reference state and then
in the deformed state,∫

R′
∇′·(P·vL)dv′ =

∫
∂R′

n′·(P·vL)dA′ =
∫

∂R
n·σ ·vLdA,

(20)
where n′ is the normal to the boundary ∂R′ of the reference
region. At the last step we applied Nanson’s formula [10]
n′dA′ = G−1n·FdA and Eq. (5) for P. Finally, the integral of
the third term in Eq. (17) is

−
∫
R′

(∇′·P)·vLdv′ = −
∫
R

G−1(∇′·P)·vLdv. (21)

Combining the three terms,∫
R′

dLfs

dt

dv′

�′ =
∫
R

(JL · ∇M − G−1(∇′·P)·vL)dv

−
∫

∂R
Mn·JLdA +

∫
∂R

n·σ ·vLdA. (22)

We now turn to the surface integrals in Eq. (18). Recall that
dȦ is the rate of area change of a surface element obtained by
elastic deformation of a given reference surface element dA′.
The volume swept by this surface element per unit time during
the elastic deformation is dv̇ = n·vLdA. Introducing the total
surface curvature k ≡ dȦ/dv̇, we have dȦ = kn·vLdA. Thus
the two surface integrals can be combined together to give∫

∂R
γ dȦ +

∫
∂R

γ̇ dA =
∫

∂R

(
γ + γ̇

dA

dȦ

)
dȦ

≡
∫

∂R
kτn·vLdA, (23)

where τ is defined by

τ ≡ γ + γ̇
dA

dȦ
. (24)

Applying Eqs. (7) and (8) and the obvious relations ϕ̇ =
dȦ/dA′ and γ̇ = (∂γ /∂ϕ)ϕ̇, we have

τ ≡ γ + ϕ
∂γ

∂ϕ
= γ + A

∂γ

∂A
, (25)

showing that τ has the meaning of isotropic surface stress. The
obtained expression for τ is consistent with the Shuttleworth
equation for the surface stress tensor [15].
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Combining the above equations we finally obtain the rate
of total free energy dissipation for Case 1:

�̇1 =
∫
R

(JL · ∇M − G−1(∇′·P)·vL)dv

−
∫

∂R
Mn·JLdA +

∫
∂R

n·(kτ I + σ − σ ext)·vLdA,

(26)

where I is the rank two identity tensor. Note that the appearance
in this equation of the lattice diffusion flux n·JL normal to the
surface does not contradict the conservation of atoms in the
system. As will be discussed later, this flux need not be zero
in the presence of surface diffusion.

B. Case 2: Pure site creation

Now suppose that the grain R expands by generation of
new lattice sites at its surface without changing the physical
state of the material. This process is similar to surface growth
and can be described as expansion of the reference region R′
by the motion of its boundary ∂R′ with velocities v′

s at a fixed
composition field c(x′) and fixed deformation mapping x(x′).
In this process, the deformed region expands by the motion of
its surface with the velocities,

vs = F·v′
s , (27)

incorporating new sites with the same composition and state
of deformation as the old.

Under certain surface growth mechanisms it can be possible
to uniquely identify the local growth velocities vs . In such
cases, the reference velocities v′

s can be back-calculated from
Eq. (27) to match the actual growth velocities dictated by
the adopted growth mechanism. In the absence of a surface
growth model, the choice of the reference velocity field v′

s is
not unique: Different choices can produce physically the same
evolution of the growing surface. A natural choice, which will
be assumed here as default, is to align the reference velocities
v′

s parallel to the reference normal n′. Note that in this case, the
actual growth velocities vs need not be parallel to the physical
normal n.

The rate of change of the total free energy of the system
(the grain, its surface, and the medium) is

�̇2 =
∫

∂R
fsn·vs

dA

�
+

∫
∂R

kγ n·vsdA −
∫

∂R
n·σ ext·vsdA.

(28)

The first term is the rate of free energy change due to the
incorporation of the new lattice regions. The second term is
the rate of work expended on creation of new surface area with
the rate dȦs = kn·vsdA. Note that an integral with γ̇ similar
to one of the terms in Eq. (18) does not appear in Eq. (28).
Indeed, according to Eq. (7) γ is a function of temperature
and the elastic surface deformation ϕ, both of which remain
constant in the process described here. Finally, the last term
in Eq. (28) is the rate of work done on the region by the
surrounding medium.

C. General variation of state with site generation

We are now ready to address the general case in which the
surface of the grain moves by both site generation as in Case 2
and due to variations in the composition and strain fields as in
Case 1. The total velocity vb of the surface is obtained as the
time derivative of the deformation map x = x(x′,t),

vb = dx
dt

=
(

∂x
∂t

)
x′

+
(

∂x
∂x′

)
t

dx′

dt
= vL + F·v′

s = vL + vs .

(29)
The total free energy change of the system is �̇ = �̇1 + �̇2

and is obtained by adding Eqs. (26) and (28),

�̇ =
∫
R

(JL · ∇M − G−1(∇′·P)·vL)dv

−
∫

∂R
Mn·JLdA +

∫
∂R

n·(kτ I + σ − σ ext)·vLdA

+
∫

∂R
n·

((
fs

�
+ kγ

)
I − σ ext

)
·(vb − vL)dA. (30)

It should be noted that Eq. (30) does not take into account
the conservation of atoms in the system. To formulate this
conservation, we introduce the quantity,

ν ≡ c

�
n·(vb − vL) − n·JL, (31)

which generally represents the flux of atoms measured relative
to the moving surface and considered positive if atoms are
added to the grain. For a surface in contact with an inert
medium, such atoms can only be supplied by surface diffusion.
Thus, the conservation of atoms can be expressed by the
relation,

ν = −∇b·Jb, (32)

where Jb is a two-dimensional diffusion flux at the surface
(number of atoms crossing a unit length at the surface per unit
time) taken with respect to the surface layer of atoms. The
surface divergence −∇b·Jb is the rate of supply of atoms by
diffusion along the surface.

We will now incorporate the atom conservation condition
(32) by eliminating the surface integral of Mn·JL from the
free energy dissipation rate (30), which becomes

�̇ =
∫
R

(JL · ∇M − G−1(∇′·P)·vL)dv

+
∫

∂R
n·(kτ I + σ − σ ext)·vLdA −

∫
∂R

M∇b·JbdA

+
∫

∂R
n·

((
fs − Mc

�
+ kγ

)
I − σ ext

)
·(vb − vL)dA.

(33)

The integral with ∇b·Jb can be further transformed by using
the identity,

M∇b·Jb = ∇b·(MJb) − Jb·∇bM, (34)
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to give

�̇ =
∫
R

(JL · ∇M − G−1(∇′·P)·vL)dv

+
∫

∂R
n·(kτ I + σ − σ ext)·vLdA +

∫
∂R

Jb·∇bMdA

+
∫

∂R
n·

((
fs − Mc

�
+ kγ

)
I − σ ext

)
·(vb − vL)dA

+
∫

∂R
∇b·(MJb)dA. (35)

The integral in the last line is computed by applying the surface
divergence theorem,

∫
∂R

∇b·(MJb)dA =
∫
L

e·(MbJb)dl = 0, (36)

where e is a unit vector tangential to the boundary and normal
to the contour L bounding the surface. This integral obviously
vanishes for an isolated grain. The final expression for the rate
of free energy dissipation becomes

�̇ =
∫
R

(JL · ∇M − G−1(∇′·P)·vL)dv

+
∫

∂R
n·(kτ I + σ − σ ext)·vLdA +

∫
∂R

Jb·∇bMdA

+
∫

∂R
n·

((
fs − Mc

�
+ kγ

)
I − σ ext

)
·(vb − vL)dA.

(37)

As a test of Eq. (37), we will apply it to determine the
conditions of equilibrium in the system. To this end, the quan-
tities vL, (vb − vL), JL, and Jb are treated as virtual variations
occurring per unit time. Accordingly, the coefficients before
these variations inside the grain R and at its surface ∂R must
be zero. This leads to the following equilibrium conditions:

∇′·P = 0 Mechanical equilibrium inside R, (38)

M = const Chemical equilibrium inside R, (39)

n·σ ext − n·σ = kτn Mechanical equilibrium at the surface ∂R, (40)

M = const Chemical equilibrium at the surface ∂R, (41)

(fs − Mc + �kγ )n = �n·σ ext Site generation equilibrium at the surface ∂R. (42)

The latter relation shows that the surface traction vector n·σ ext

must be normal to the boundary and equal in magnitude to
fs − Mc + �kγ . This condition can be rewritten in the form,

fs − Mc + �kγ = �n·σ ext·n, (43)

or

fs − Mc + �k(γ − τ ) = �n·σ ·n. (44)

Combining Eqs. (40) and (42) we conclude that the traction
vector n·σ is also normal to the surface.

Next, we apply Eq. (37) to relatively slow processes in
which mechanical equilibrium is maintained both inside the
grain and at the surface. Accordingly, Eqs. (38) and (40) are
assumed to be satisfied at all times. Then Eq. (37) simplifies
to

�̇ =
∫
R

JL · ∇Mdv +
∫

∂R
Jb·∇bMdA

+
∫

∂R
n·

((
fs − Mc

�
+ kγ

)
I − σ ext

)
·(vb − vL)dA.

(45)

Note that this equation is invariant under Galilean transforma-
tions because the fluxes JL and Jb are defined relative to the
lattice and the surface layer, respectively, and (vb − vL) is the
surface velocity relative to the lattice.

Using Eq. (45) and neglecting kinetic cross-effects, we can
formulate the following phenomenological kinetic relations.
The equation,

JL = −L∇M, (46)

describes diffusion inside the lattice, L > 0 being the kinetic
coefficient of lattice diffusion. This equation assumes that the
diffusivity of the lattice is isotropic. Likewise, diffusion along
the surface follows the equation,

Jb = −Lb∇bM, (47)

where the kinetic coefficient Lb > 0 characterizes surface dif-
fusion and is generally different from L (even in dimensions).
Surface diffusion is also considered isotropic. Finally, the rate
ṡ of site generation at the surface (number of sites per unit
area per unit time) can be described by the phenomenological
equation,

ṡ = 1

�
n·(vb − vL) = −Ks(fs − Mc + �kγ − �n·σ ext·n),

(48)
Ks > 0 being the kinetic coefficient related to the site
generation process.

The right-hand side of Eq. (48) identifies the thermody-
namic driving force for site generation by the surface. For a
stress-free plane surface, the driving force is simply the grand
potential per lattice site (fs − Mc). The surface curvature and
applied stress σ ext contribute to the driving force, affecting
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the site generation process and thus the shape change of the
material.

IV. EVOLUTION OF A BICRYSTAL

A. Calculation of the free energy dissipation

Moving to the next level of complexity, we now consider a
bicrystal composed of two grains, labeled α and β, enclosed in
a rigid box. The grains fill the entire volume of the box without
voids. The boundary S between the grains can either terminate
at the walls of the box or form a closed surface bounding grain
α. In either case, one or both of the grains are in contact
with the walls of the box. We assume that the contact planes
between the grains and the walls satisfy a no-slip condition
eliminating any mechanical work done on such planes. There
is no transfer of atoms through or generation of sites at the
walls of the box. These assumptions are made in order to
focus the attention on processes occurring inside the grains
and at the grain boundary S. The role of the wall conditions
is only to ensure that the box and the grains form a closed
thermodynamic system equilibrated with a thermostat, with
all mechanical work performed only inside the grains and at
the grain boundary.

Evolution of this system can be described by treating the
grains as growing or shrinking lattice regions, Rα and Rβ ,
as in Sec. III. The total rate of free energy change includes
a volume part, �̇α + �̇β , and a grain boundary contribution
�̇b. For the volume parts, �̇α and �̇β , we use the previously
derived Eq. (30) in which we omit the terms involving the
external stress σ ext as well as the interface free energy and
interface stress:

�̇α =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv

−
∫
S

Mαnα·Jα
LdA +

∫
S

nα·σ α·vα
LdA

+
∫
S

f α
s

�α

nα·(vα
b − vα

L

)
dA, (49)

�̇β =
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv

−
∫
S

Mβnβ ·Jβ

LdA +
∫
S

nβ ·σ β ·vβ

LdA

+
∫
S

f
β
s

�β

nβ ·(vβ

b − vβ

L

)
dA. (50)

All quantities appearing in these equations have the same
meaning as in Sec. III, with the labels α and β referring to the
grains. We did not yet impose any contact conditions between
the grains, which at this point can be thought of as separated
by a gap. Thus nα is a unit normal to the surface of grain α

pointing outside of this grain, and nβ is a unit normal to the
surface of grain β pointing outside of that grain. Similarly, vα

b

is the surface velocity of grain α and vβ

b the surface velocity
of grain β.

We now impose the condition that the two grains stay in
contact. The contact condition is expressed by the equations,

nα·vα
b = nα·vβ

b , (51)

and

nβ = −nα. (52)

As will be discussed later, these conditions do not preclude
grain boundary sliding.

The boundary part of the free energy rate has the form
similar to Eq. (23):

�̇b =
∫
S

γ dȦ +
∫
S

γ̇ dA, (53)

where γ is the grain boundary free energy. The rate of change
of the boundary area can be computed from the kinematic
description of grain α,

dȦ = kαnα·vα
bdA, (54)

or from the kinematic description of grain β,

dȦ = kβnβ ·vβ

b dA. (55)

These two equations give the same result for dȦ due to the
contact conditions (51) and (52) and the relation kβ = −kα

between the two descriptions of the same boundary curvature.
Further calculations require a postulated fundamental equa-

tion of interface thermodynamics. We will adopt the following
fundamental equation:

γ = γ (T ,ϕα,ϕβ), (56)

where ϕα = (dA/dA′)α and ϕβ = (dA/dA′)β describe elastic
deformations of the two lattices in contact with the boundary.
Note that γ is postulated to depend only on the areal
deformations and not be affected by other components of
the elastic deformation. Furthermore, γ is not affected by
possible relative sliding of the two grains. While kinematic
descriptions based on more complex fundamental equations
have been proposed [16], we focus the attention of this simple
case to make the model more tractable.

Using the fundamental equation (56) in conjunction with
the easily derivable relations ϕ̇α = (dȦ/dA′)α = ϕαkαnα·vα

L

and ϕ̇β = (dȦ/dA′)β = ϕβkβnβ ·vβ

L, we obtain

γ̇ = kαnα·
(

ϕα

∂γ

∂ϕα

vα
L + ϕβ

∂γ

∂ϕβ

vβ

L

)
, (57)

where we took into account that kαnα = kβnβ . Putting
Eqs. (53) to (57) together, the rate of free energy change
associated with the grain boundary becomes

�̇b =
∫
S

kαnα·
(

γ vα
b + ϕα

∂γ

∂ϕα

vα
L + ϕβ

∂γ

∂ϕβ

vβ

L

)
dA. (58)

We next impose the condition of conservation of atoms in
the system. The number of atoms added to grain α at the grain
boundary (per unit area per unit time) is

να = cα

�α

nα·(vα
b − vα

L

) − nα·Jα
L, (59)

with a similar number for grain β:

νβ = cβ

�β

nβ ·(vβ

b − vβ

L

) − nβ ·Jβ

L. (60)

If there were no grain boundary diffusion, the conservation
of atoms would dictate να + νβ = 0. In the presence of
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grain boundary diffusion, the conservation of atoms can be
expressed by

να + νβ = −∇b·Jb, (61)

where Jb is a two-dimensional diffusion flux (number of atoms
crossing a unit boundary length per unit time) relative to the
boundary layer, and ∇b·Jb is the surface divergence of this
flux. The conservation relation (61) must hold at every point
of the boundary.

To incorporate the conservation of atoms in the free
dissipation, we use Eqs. (59) and (60) to eliminate the surface
integrals of Mαnα·Jα

L and Mβnβ ·Jβ

L from Eqs. (49) and (50),
respectively. This gives

�̇α =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv

+
∫
S

ναMαdA +
∫
S

nα·σ α·vα
LdA

+
∫
S

(
f α

s − Mαcα

�α

)
nα·(vα

b − vα
L

)
dA, (62)

�̇β =
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv

+
∫
S

νβMβdA +
∫
S

nβ ·σ β ·vβ

LdA

+
∫
S

(
f

β
s − Mβcβ

�β

)
nβ ·(vβ

b − vβ

L

)
dA. (63)

Finally, adding together the free energy dissipations in the
grains and at the grain boundary we obtain the following
expression for the total free energy dissipation rate:

�̇ =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv

+
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv

+
∫
S

(ναMα + νβMβ)dA +
∫
S

nα · (
σ α·vα

L − σ β ·vβ

L

)
dA

+
∫
S

nα·(ωα
(
vα

b − vα
L

) − ωβ
(
vα

b − vβ

L

))
dA

+
∫
S

kαnα·
(

γ vα
b + ϕα

∂γ

∂ϕα

vα
L + ϕβ

∂γ

∂ϕβ

vβ

L

)
dA, (64)

where

ωα ≡ f α
s − Mαcα

�α

(65)

and

ωβ ≡ f
β
s − Mβcβ

�β

(66)

are grand potentials per unit volume inside the grains. Note
that we replaced nα·vβ

b by nα·vα
b using Eq. (51).

The subsequent calculations can be simplified by adopting
the following notations [16]. For a vector or tensor field A(x),
let Aα and Aβ denote the limits of this field when approaching

the grain boundary from each grain at the same location. Then

[A] ≡ Aα − Aβ (67)

is the jump of A across the boundary while

〈A〉 ≡ Aα + Aβ

2
(68)

is the average boundary value of A. It can be expected that
driving forces acting on the grain boundary arise from jumps
of thermodynamic properties across the boundary or gradients
of average values of thermodynamic properties along the
boundary.

Furthermore, we decompose the lattice velocity jump [vL]
into a normal and parallel components,

[vL] = [vL]⊥ + [vL]||, (69)

and similarly decompose the average lattice velocity,

〈vL〉 = 〈vL〉⊥ + 〈vL〉||, (70)

the average traction vector s ≡ nα·σ at the boundary,

nα·〈σ 〉 = 〈s〉⊥ + 〈s〉||, (71)

and the jump of the traction vector,

nα·[σ ] = [s]⊥ + [s]||. (72)

The following identities are helpful during mathematical
manipulations with jumps and averages:

[A · B] = 〈A〉 · [B] + [A] · 〈B〉, (73)

〈A · B〉 = 〈A〉 · 〈B〉 + 1

4
[A] · [B], (74)

where B(x) is another vector or tensor field of the same rank
as A(x). Similar relations obviously hold for scalar fields.

Going through a chain of mathematical transformations
described in Appendix, the final form of the free energy
dissipation rate becomes

�̇ =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv (75)

+
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv (76)

+
∫
S

Jb·∇b〈M〉dA −
∫
S

Jn[M]dA (77)

+
∫
S

([s]⊥ + kατnα)·〈vL〉⊥dA (78)

+
∫
S

[s]||·〈vL〉||dA (79)

−
∫
S

((
〈ω〉 − 1

2
kα

[
ϕ

∂γ

∂ϕ

])
nα − 〈s〉⊥

)
·[vL]⊥dA,

(80)

+
∫
S

〈s〉||·[vL]||dA (81)

+
∫
S

([ω] + kαγ )nα·〈vb − vL〉dA, (82)
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where

τ ≡ γ + ϕα

∂γ

∂ϕα

+ ϕβ

∂γ

∂ϕβ

(83)

has the meaning of the surface stress of the grain boundary. In
Eq. (77), we introduced the normal flux of atoms leaving grain
α across the grain boundary and entering grain β:

Jn = (νβ − να)

2
= −1

2
[ν]. (84)

B. Classification of grain boundaries by mechanical response

Applications of the obtained Eqs. (75)–(82) depend on
whether the velocity jumps and velocity averages at the grain
boundary can vary independently or are subject to constraints
arising, for example, from a particular grain boundary structure
or mechanism of motion. Three types of grain boundaries will
be distinguished in this work, depending on the existence and
nature of such constraints.

(i) Suppose all velocity jumps and averages appearing in
Eqs. (78)–(82) are completely independent of one another. As
will be shown below, the boundary then responds to applied
shear stresses by sliding. In equilibrium, the parallel (shear)
component of the traction vector s = nα·σ must be zero,

sα
|| = sβ

|| = 0. (85)

Following Larché and Cahn [13,14], we classify such grain
boundaries as incoherent interfaces.

(ii) As will be discussed later,

vGB ≡ nα·〈vb − vL〉 = nα·vα
b − 1

2 nα·(vα
L + vβ

L

)
(86)

has the meaning of the velocity of GB migration relative to
the lattices of the two grains. This velocity is positive if grain
α grows at the expense of grain β and negative otherwise. For
some grain boundaries, vGB is coupled to relative translations
of the grains represented by the parallel velocity jump [vL]||.
Suppose the grain translations occur parallel to a particular
direction t (unit vector) tangential to the boundary. The
coupling effect [9,17] is characterized by the linear relation,

[vL]|| · t = βvGB, (87)

where the coupling factor β depends on crystallographic
characteristics of the grain boundary and other factors [9].
The sign of the coupling factor β defines the direction of GB
motion for the same jump in parallel velocity. To simplify
further analysis, suppose the grain translations always occur
in the direction parallel to the shear traction 〈s〉|| applied to
the boundary: t||〈s〉||. Then, due to the constraint imposed
by Eq. (87), Eqs. (81) and (82) can be combined into one
integral, ∫

S
([ω] + kαγ + β〈s〉|| · t)vGBdA. (88)

As will be shown later, such boundaries can be equilibrated in
the presence of applied shear stresses. They can be referred to
as coherent interfaces [13,14,18].

(iii) There can be an intermediate case when the boundary
responds to applied shears by both coupling and sliding. As
before, we assume for simplicity that the grain translations

occur parallel to the direction of 〈s〉||. The respective constraint
on the velocities can be written as [17,19]

[vL]|| · t = βvGB + w, (89)

where w is the sliding velocity. A grain boundary obeying this
constraint can be called semicoherent. In this case, Eq. (81)
becomes ∫

S
(〈s〉|| · t)wdA, (90)

whereas the last line of Eq. (82) is given by the same Eq. (88).
Several classifications of solid-solid interfaces can be found

in the literature [20]. The classification outlined above is
based on different mechanical responses to applied shear
stresses, namely, pure sliding, coupled motion, and a mixture
of both. Interfaces are often classified as incoherent, coherent,
and semicoherent according to their structure, a semicoherent
interface being composed of a network of misfit dislocations.
These three interface structures often display mechanical
responses corresponding to the three cases (i)–(iii) introduced
above, which justifies our terminology.

The assumption that the relative grain translations accom-
panying coupled motion and sliding always occur parallel to
〈s〉|| is consistent with our treatment of the grain boundary
as isotropic. A generalization of Eqs. (88)–(90) to anisotropic
cases is straightforward but is beyond the present work.

C. Equilibrium conditions

Before formulating dynamic equations, we will first apply
the obtained free energy dissipation rate, Eqs. (75)–(82),
to find the conditions of thermodynamic equilibrium in the
system. This will be achieved by requiring that the coefficients
multiplying all independent velocities and fluxes be zero.

Equations (75) and (76) require that the diffusion potentials
be spatially uniform inside the grains. In addition, the
grains must satisfy the internal mechanical equilibrium con-
ditions ∇′·Pα = 0 and ∇′·Pβ = 0, respectively. Equation (77)
states that there must be no jump of the diffusion potential
across the boundary, [M] = 0, and that the average value of
the diffusion potential, 〈M〉, must be uniform along the grain
boundary. In other words, M must be uniform throughout
the entire two-grain system. Equations (78) and (79) give the
conditions of mechanical equilibrium at the grain boundary,
namely, the parallel component of the traction vector must be
continuous across the boundary,

[s]|| = 0, (91)

while the normal component undergoes a nonzero jump equal
to −kατ ,

[s]⊥ + kατnα = 0. (92)

For a plane boundary, kα = 0 and this equation gives [s]⊥ =
0; the traction vector s is continuous across the boundary.
According to Eq. (80), the average boundary value of ω must
satisfy the relation,

〈ω〉 = 1

2
kα

[
ϕ

∂γ

∂ϕ

]
+ nα·〈s〉⊥. (93)
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As will be discussed later, this is the condition of equilibrium
with respect to site generation at the grain boundary.

The remaining equilibrium conditions depend on the type
of the boundary. For an incoherent boundary, Eq. (81) gives
〈s〉|| = 0, which in combination with the already established
condition [s]|| = 0 leads to the conclusion that the parallel
component of the traction vector must be zero [see Eq. (85)].
Thus the traction vector is normal to the incoherent boundary.
The remaining condition (82) states that ω undergoes a jump
equal to −kαγ ,

[ω] + kαγ = 0. (94)

This equation expresses the absence of driving forces for grain
boundary migration (see below). In the particular case of a
plane grain boundary, the traction vector is continuous across
the boundary, [s]⊥ = 0 [see Eq. (92)]. The grand potential
density is also continuous and, by Eq. (93), has the boundary
value,

ω = nα·s⊥ (plane grain boundary). (95)

Now turn to a coherent interface. Recall that in this case,
Eqs. (81) and (82) merge into one integral (88). We can no
longer conclude that the parallel component of the traction
vector must be zero. Although it is still continuous across the
boundary, it can remain finite at equilibrium. In other words, a
coherent grain boundary is capable of supporting a static shear
stress parallel to its plane [13,14,18]. The condition preventing
grain boundary migration now reads

[ω] + kαγ + β〈s〉|| · t = 0. (96)

Note that the grand potential density is now discontinuous
even across a plane grain boundary (kα = 0). The magnitude
of the jump [ω] can vary along the boundary due to variations
in both 〈s〉|| · t and β.

Finally, for a semicoherent boundary, Eq. (81) is replaced
by Eq. (90), which leads to a zero parallel component of
the traction vector similar to the incoherent case. As a
result, Eqs. (94) and (95) remain valid. Thus, all equilibrium
conditions are exactly the same as for an incoherent boundary.
Both types of boundary are capable of sliding under shear and
thus can be only equilibrated in the absence of shear stresses.
Their dynamics properties, however, are different as will be
discussed below.

D. Phenomenological equations of time evolution

The free energy dissipation rate given by Eqs. (75)–(82)
allows us to formulate a set of phenomenological equations
for the evolution of the system. In the context of creep
deformation, it is reasonable to assume that the interiors of
the grains maintain mechanical equilibrium at all times. These
equilibrium conditions only involve elastic deformation of the
material and can be readily maintained during slow processes
such as creep. Likewise, we can assume that the mechanical
equilibrium conditions at the grain boundary, Eqs. (91) and
(92), are also satisfied at all times. In addition, we will neglect
all cross-effects between different thermodynamic driving
forces and generalized fluxes. Taking these assumptions into

account, the free energy dissipation rate becomes

�̇ =
∫
Rα

Jα
L · ∇Mαdv +

∫
Rβ

Jβ

L · ∇Mβdv (97)

+
∫
S

Jb·∇b〈M〉dA −
∫
S

Jn[M]dA (98)

−
∫
S

((
〈ω〉 − 1

2
kα

[
ϕ

∂γ

∂ϕ

])
nα − 〈s〉⊥

)
·[vL]⊥dA,

(99)

+
∫
S

〈s〉||·[vL]||dA (100)

+
∫
S

([ω] + kαγ )vGBdA, (101)

with vGB defined by Eq. (86).
From Eq. (97), diffusion inside the grains is described by

the equations,

Jα
L = −Lα∇Mα, (102)

and

Jβ

L = −Lβ∇Mβ, (103)

Lα > 0 and Lβ > 0 being diffusion kinetic coefficients. The
remaining equations describe grain boundary kinetics. For
diffusion of atoms across the grain boundary we obtain

Jn = −Lt (Mβ − Mα), (104)

where Lt > 0 is the kinetic coefficient for trans-boundary
diffusion. Diffusion of atoms along the grain boundary is
described by the equation,

Jb = −Lp∇b〈M〉, (105)

Lp > 0 being the kinetic coefficient of lateral grain boundary
diffusion.

Suppose the grain boundary is incoherent. Then [vL]⊥,
[vL]|| and vGB can be treated as three independent variables
representing generalized fluxes. The normal velocity jump
[vL]⊥ characterizes the rate of separation of the two lattices
in the direction normal to the boundary. This separation is
a measure of the site generation at the boundary. Based on
Eq. (99), the site generation kinetics can be described by the
equation,

nα·[vL]⊥ = R

(
〈ω〉 − 1

2
kα

[
ϕ

∂γ

∂ϕ

]
− nα·〈s〉⊥

)
, (106)

R > 0 being the kinetic coefficient of site generation. Thus,
the driving force for site generation depends on the average
value of ω at the boundary, the boundary curvature, and the
average normal component of the traction vector. For a plane
grain boundary, the traction vector is continuous across the
boundary and Eq. (106) becomes

nα·[vL]⊥ = R(〈ω〉 − nα·s⊥) (plane grain boundary). (107)

The parallel velocity jump [vL]|| represents grain boundary
sliding which, according to Eq. (100), is driven by the shear
component of the traction vector 〈s〉||. As in Sec. IV C, we
assume that [vL]|| is parallel to 〈s〉||, leading to the sliding law,

[vL]|| = −Ks〈s〉||, (108)

where Ks > 0 is the sliding coefficient.
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Turning to Eq. (101), recall that the velocity vGB defined by
Eq. (86) represents the grain boundary motion relative to the
lattices of the two grains. Indeed, if the lattice velocities are
equal, vα

L = vβ

L ≡ vL, then Eq. (86) gives vGB = nα·(vα
b − vL),

which is indeed the grain boundary velocity relative to
the common velocity of the grains. Note that according to
Eq. (106), the total rate of site generation is then zero, which
is consistent with the notion that lattice sites disappear in
front of the moving grain boundary and reappear in its wake.
This is the case of pure grain boundary migration without
net generation of lattice sites. On the other hand, suppose the
lattices of the grains are pushed away from the grain boundary
in opposite directions with equal speeds, i.e., nα·(vα

b − vα
L) =

−nα·(vα
b − vβ

L). Thus the rate of site generation is the same
on either side of the boundary. This process is not associated
with grain boundary migration as commonly understood. And
indeed, in this case Eq. (86) yields the expected result vGB = 0.
We can now formulate the phenomenological equation of grain
boundary migration in the form,

vGB = −LGB([ω] + kαγ ), (109)

where the kinetic coefficient LGB characterizes grain boundary
mobility. In particular, the motion of a plane incoherent grain
boundary is driven by the jump of the grand potential density
[ω].

These phenomenological laws have been derived for an
incoherent grain boundary. For a coherent boundary, [vL]||
and vGB are coupled by Eq. (87). As a result, Eqs. (100) and
(101) merge into one Eq. (88). Sliding disappears and the law
of grain boundary migration becomes

vGB = −LGB([ω] + kαγ + β〈s〉|| · t). (110)

The third term in the right-hand side is the “coupling driving
force” responsible for the effect of stress-induced grain
boundary migration [7,9,17]. Namely, a shear stress applied
parallel to a coherent grain boundary causes its motion in the
normal direction.

A semicoherent grain boundary supports both coupling and
sliding. We have three independent flux variables, as in the
incoherent case, but the lattice velocity jump [vL]|| is now
decomposed into coupling and sliding components according
to Eq. (89) [9,17,19]. The boundary migration law in Eq. (110)
remains valid but the sliding law is formulated in terms of the
sliding velocity w,

w = −Ks〈s〉|| · t. (111)

The obtained grain boundary migration and sliding laws,
Eqs. (110) and (111), are consistent with the equations derived
previously for the shrinkage and rotation of an embedded
cylindrical grain [17,19] with the following modifications: (i)
for the cylindrical grain analysis [17,19] included an additional
driving force arising from the change in the boundary free
energy γ as a result of grain rotation, which is disregarded
in the present treatment; (ii) the “volume free energy” term
[17,19] has now been identified as the jump of the grand
potential density [ω]; (iii) our theory includes site generation at
the grain boundary, which was not part of any previous models.

V. SPECIFIC MODEL OF STRESSED SOLID

A. Bulk thermodynamics

We will now consider a particular model of the solid in
which the elastic deformation is treated in the small-strain
approximation. As the reference state for the small-strain
tensor ε we choose the stress-free solid without vacancies
(c = 1). It should be noted that this reference state changes
with temperature due to thermal expansion. However, all cal-
culations discussed below are conducted at a fixed temperature.

We postulate that the stress-free deformation ε0 produced
by vacancies is isotropic and given by

ε0 = �v

3�′ (1 − c)I. (112)

Here and everywhere below, the superscript 0 refers to
the stress-free state. The quantity �v < 0 is the vacancy
relaxation volume, i.e., the change in equilibrium volume of
the solid when an atom is replaced by a vacancy under zero
stress conditions. In the present model, �v is treated as a
function of temperature only and thus remains fixed. The total
lattice strain ε is composed of the stress-free strain ε0 and an
elastic component obeying Hooke’s law of linear elasticity:

ε = ε0 + S : σ . (113)

Here, S is the tensor of isothermal elastic compliances
considered to be a function of temperature only (and thus
fixed). Note that the volume of the deformed lattice per site
equals

� = �′[1 + Tr(ε)] = �′
[

1 + �v

�′ (1 − c) + Tr(S : σ )

]
.

(114)

The Helmholtz free energy per site has the functional form
similar to Eq. (1),

fs = fs(T ,ε,c), (115)

with the differential form,

dfs = Mdc + �′σ : dε, T = const, (116)

where

M ≡
(

∂fs

∂c

)
T ,ε

(117)

is the diffusion potential of atoms relative to vacancies.
For the stress-free state, the free energy f 0

s (T ,c) ≡
fs(T ,ε0,c) is postulated in the form,

f 0
s (T ,c) = f + Mc + kT [c ln c + (1 − c) ln(1 − c)], (118)

where f and M are functions of temperature only (and thus
constant) and k is Boltzmann’s constant. This free energy form
corresponds to the ideal solution model [21]. The free energy
of a stressed state is obtained by integrating fs with respect to
stress at fixed values of c and T :

fs = f 0
s +

∫ σ

0

(
∂fs

∂ε

)
T ,c

:

(
∂ε

∂σ

)
T ,c

: dσ

= f 0
s +

∫ σ

0
�′σ : S : dσ , (119)
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where we used Eqs. (113) and (116). Performing the integra-
tion,

fs = f +Mc + kT [c ln c + (1 − c) ln(1 − c)] + �′

2
σ : S : σ .

(120)
As expected, the stress effect on fs is quadratic in stress.

We next determine the effect of stress on the diffusion
potential M . For the stress-free state we use Eq. (118) to obtain

M0 =
(

∂f 0
s

∂c

)
T

= M + kT ln
c

1 − c
. (121)

The stress effect on M is found by the standard manipulation
involving the Legendre transformation of Eq. (116) [11–14],

d(fs − �′σ : ε) = −�′ε : dσ + Mdc, T = const, (122)

and the Maxwell relation,(
∂M

∂σ

)
T ,c

= −�′
(

∂ε

∂c

)
T ,σ

. (123)

Integration of this relation gives

M = M0 +
∫ σ

0

(
∂M

∂σ

)
T ,c

: dσ

= M0 − �′
∫ σ

0

(
∂ε

∂c

)
T ,σ

: dσ . (124)

Using Eqs. (112) and (113) for ε, the integrand equals(
∂ε

∂c

)
T ,σ

=
(

∂ε0

∂c

)
T

= −�v

3�′ I, (125)

which immediately gives

M = M0 + �v

3
I : σ = M0 + �vσh, (126)

where

σh = 1

3
Tr(σ ) (127)

is the hydrostatic part of the stress tensor. Thus the diffusion
potential is

M = M + kT ln
c

1 − c
+ �vσh, (128)

showing that the stress effect on M is linear in σh. Combining
Eqs. (120) and (128), the grand potential per site equals

ωs = fs − Mc = f + kT ln(1 − c) − �vcσh

+ �′

2
σ : S : σ . (129)

Equations (128) and (129) can be further rearranged as
follows. Equation (95) shows that for a plane stress-free
grain boundary, the condition of thermodynamic equilibrium
dictates ωs = 0. This condition is satisfied at a particular
composition denoted c∗, for which Eq. (129) gives

f + kT ln(1 − c∗) = 0. (130)

For brevity, c∗ will be referred to as the “equilibrium vacancy
concentration.” The latter depends only on temperature and

is treated here as a material constant. Using Eq. (128), the
respective equilibrium diffusion potential is

M∗ = M + kT ln
c∗

1 − c∗ . (131)

Utilizing these relations, Eqs. (128) and (129) can be rewritten
as

ωs = kT ln
1 − c

1 − c∗ − �vcσh + �′

2
σ : S : σ , (132)

M = M∗ + kT ln
c(1 − c∗)

c∗(1 − c)
+ �vσh. (133)

The obtained expressions for ωs and M are exact within
the adopted model of the solid. We will now make certain
approximations.

Given that the vacancy concentration cv ≡ (1 − c) is very
small in most solids, it can be neglected in comparison with
all terms of order unity. In particular, Eqs. (132) and (133) can
be approximated by

ωs = kT ln
cv

c∗
v

− �vσh + �′

2
σ : S : σ , (134)

M = M∗ − kT ln
cv

c∗
v

+ �vσh. (135)

Furthermore, the term �vcv/�′ appearing in Eq. (114) is

1 and can be neglected, giving

� ≈ �′[1 + Tr(S : σ )]. (136)

This is equivalent to neglecting the stress-free strain caused by
the vacancies. In this approximation, the site volume is only
affected by the elastic strain.

In most applications, the stress effect on thermodynamics
is captured accurately enough by keeping only terms linear in
stress and neglecting higher order terms. In this approximation,

1

�
≈ 1

�′ [1 − Tr(S : σ )], (137)

and the grand potential per unit volume can be approximated
by

ω = ωs

�
≈ kT

�′ ln
cv

c∗
v

− kT

�′

(
�vσh

kT
+ Tr(S : σ ) ln

cv

c∗
v

)
.

(138)

The second term in the right-hand side of Eq. (138) is
often neglected. This is equivalent to disregarding the vacancy
relaxation volume �v and assuming that the stress is small
enough to neglect elastic dilatation Tr(S : σ ). It is in this
approximation that the equilibrium condition of plane grain
boundary expressed by Eq. (95) takes the form,

kT ln
cv

c∗
v

= �′nα·s⊥. (139)

This equation reproduces the frequently used Herring’s rela-
tion for the effect of stresses on the vacancy concentration near
boundaries in solids [2,22]. Insertion of ω from Eq. (138) into
Eq. (95) gives a more accurate equation for this effect. This
equation shows that the equilibrium vacancy concentration
near a boundary is affected by not only the normal stress nα·s⊥
but also lateral stresses parallel to the interface.
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B. Diffusion kinetics

Diffusion kinetics inside the grains are governed by the
phenomenological relations (102) and (103) between the dif-
fusion flux relative to the lattice and the gradient of the
diffusion potential. Using Eq. (128) for M ,

JL = −L∇M = − LkT

c(1 − c)
∇c − L�v∇σh. (140)

For diffusion in a uniform stress-free lattice we have

J0
L = − LkT �

c(1 − c)
∇ c

�
. (141)

The coefficient before the gradient of the atomic density
c/� can be identified with the diffusion coefficient of atoms.
Assuming the vacancy mechanism of diffusion, this diffusion
coefficient is proportional to the vacancy concentration cv and
can therefore be written as Dcv/c

∗
v , where D is the diffusion

coefficient in the stress-free solid with the equilibrium vacancy
concentration c∗

v . Thus, the kinetic coefficient L can be found
from the condition,

LkT �

c(1 − c)
= D

cv

c∗
v

, (142)

where D is treated as a material constant. Inserting this L

in Eq. (140) and expressing the composition in terms of the
vacancy concentration cv , the flux equation becomes

JL = D
cv

�c∗
v

∇cv − D
�vc

2
v

�kT c∗
v

∇σh. (143)

In the second term we approximated c(1 − c) ≈ cv .
The continuity equation (13) can be rewritten in terms of

the vacancy concentration,

∂cv

∂t
= −vL·∇cv + �∇·JL. (144)

Inserting JL from Eq. (143) and keeping only first-order terms
in stress,

∂cv

∂t
= D

c∗
v

cv∇2cv + D

c∗
v

(∇cv)2 − vL·∇cv

− D�v

kT c∗
v

c2
v∇2σh − 2D�v

kT c∗
v

cv∇σh · ∇cv

+D
cv

c∗
v

∇cv · ∇Tr(S : σ ), (145)

where we applied Eq. (136) for the stressed site volume �. In
Eq. (145), all stress-free terms have been collected in the first
line, while the second line contains the terms linear in stress
or its derivatives.

VI. DISCUSSION AND CONCLUSIONS

Previous sharp-interface descriptions of creep deformation
[1–4] relied on numerous rough approximations and ad hoc
assumptions regarding the vacancy generation and absorption
process and the associated interface motion that causes the
shape deformation. In this work, we presented a rigorous
irreversible thermodynamic description of creep deformation
treating the interfaces as geometric surfaces capable of vacancy
generation and absorption. The central result is the free energy

dissipation rate given by Eq. (37) for an open surface and
by Eqs. (75)–(82) for a grain boundary. The dissipation rate
enables us to identify clearly the thermodynamic forces for
vacancy generation and absorption at the interface, interface
migration, and vacancy diffusion along the interface and inside
the grains. In addition, and in contrast to previous theories,
our equations naturally incorporate mechanical processes at
interfaces, such as grain boundary sliding and shear-coupled
motion. These processes are part of the overall creep defor-
mation process and can impact the deformation rate and the
microstructure evolution during the creep.

To treat the grain boundary processes mentioned above,
we have introduced a classification of grain boundaries into
three categories according to their mechanical response to
applied shear stresses. The concepts of coherent and incoherent
interfaces has been known before [13,14,18], although not in
the context of creep deformation and without considering the
lattice site generation at the interface. We find that a complete
description of creep requires the introduction of semicoherent
interfaces, in which the shear-coupled motion can coexist with
sliding. Formally, the coherent and incoherent interfaces can
be obtained as limiting cases of a semicoherent interface when
the sliding coefficient Ks → 0 and when Ks → ∞ and β → 0,
respectively. However, in view of their practical significance,
the coherent and incoherent interfaces should be kept as
separate categories.

It should be emphasized that the equations obtained for
the dissipation rate fully incorporate capillary effects, which
can be especially important in nanoscale creep phenomena.
Care has been taken to separate the interface free energy
and interface stress, which are two related but physically
and numerically different interface properties [15,23,24]. The
equations derived here clearly display their separate roles in
the creep process.

The free energy dissipation rate derived in this work has
the structure of thermodynamic driving forces multiplied
by generalized fluxes or rates of different processes. This
enables us to derive phenomenological kinetic equations
employing the Onsager formalism of irreversible thermody-
namics [25–27]. In this paper, we have formulated a set of
kinetic equations assuming constant kinetic coefficients and
neglecting cross-effects. Numerical solution of these equations
enables a description of the creep deformation kinetics and
microstructure evolution in the material. To prepare for future
applications, the model has been specialized to a linear-elastic
solid material with a small vacancy concentration. Work
is under way to apply this model to creep deformation in
relatively simple structures, such as a spherical nanoparticle
with an oversaturated vacancy concentration and a bi-crystal
subject to applied stresses and containing nonequilibrium
vacancies (to be published).

The present version of the theory is based on several sim-
plifying assumptions that can be lifted in the future. Although
we restricted the analysis to a single-component material, the
equations can be readily generalized to a multicomponent
solid solution containing both vacancies and interstitials. The
interface coupling and sliding relations can be reformulated
for anisotropic cases. In particular, the theory could include
the multiplicity coupling modes and switching between them
during the grain boundary motion [9]. The phenomenological
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kinetic equations can include cross-effects between different
driving forces and fluxes. The incorporation of such effects
may reveal new interesting phenomena, such as the possible
effect of grain boundary motion and sliding on the vacancy
generation and absorption processes, as well as the reciprocal
process: the effect of vacancy generation and absorption on
the coupling factor and sliding resistance of grain boundaries.
Finally, the present version of the theory assumes that the sinks
and sources of vacancies are located only at interfaces. The
theory does not consider the role of sinks and sources inside
the grains, such as climbing dislocations. A generalization of
the theory to include such bulk sinks and sources could be the
subject of future work.
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APPENDIX: DERIVATION OF EQS. (75)–(82)

In this Appendix we derive the free energy dissipation rate
given by Eqs. (75)–(82). The starting point is Eq. (64) derived
in the main text. Using the notations (67) and (68) for grain
boundary jumps and averages, Eq. (64) can be rewritten as

�̇ =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv

+
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv

+
∫
S

2〈νM〉dA +
∫
S

nα · [σ ·vL]dA

+
∫
S

nα·[ω(vb − vL)]dA

+
∫
S

kαnα·
(

γ vα
b + 2

〈
ϕ

∂γ

∂ϕ
vL

〉)
dA. (A1)

Decomposing the jumps and averages according to Eqs. (73)
and (74),

�̇ =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv

+
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv

+
∫
S

2

(
〈ν〉〈M〉 + 1

4
[ν][M]

)
dA

+
∫
S

nα · (〈σ 〉·[vL] + [σ ]·〈vL〉)dA

+
∫
S

nα·([ω]〈vb − vL〉 + 〈ω〉[vb − vL])dA

+
∫
S

kαnα·
(

γ vα
b + 2

〈
ϕ

∂γ

∂ϕ

〉
〈vL〉 + 1

2

[
ϕ

∂γ

∂ϕ

]
[vL]

)
dA.

(A2)

The product 〈ν〉〈M〉 appearing in the second line of Eq. (A2)
can be transformed using Eq. (61) rewritten as 2〈ν〉 = −∇b·Jb:

〈ν〉〈M〉 = − 1
2 〈M〉∇b·Jb = − 1

2∇b·(〈M〉Jb) + 1
2 Jb·∇b〈M〉.

(A3)

The surface integral of 〈ν〉〈M〉 is computed using the surface
divergence theorem,∫

S
〈ν〉〈M〉dA = 1

2

∫
S

Jb·∇b〈M〉dA − 1

2

∫
L

〈M〉e·Jbdl,

(A4)

where e is a unit vector parallel to the boundary S and normal
to the contour L bounding S. The line integral is zero by our
supposition that the boundary S is either closed or terminates
at the walls where Jb = 0. The second line of Eq. (A2) finally
becomes ∫

S
Jb·∇b〈M〉dA −

∫
S

Jn[M]dA, (A5)

where the normal diffusion flux Jn is given by Eq. (84). Tak-
ing into account that nα·[vb − vL] = −nα·[vL] and nα·vα

b =
nα·〈vb − vL〉 + nα·〈vL〉, Eq. (A2) becomes

�̇ =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv

+
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv

+
∫
S

Jb·∇b〈M〉dA −
∫
S

Jn[M]dA

+
∫
S

nα · (〈σ 〉·[vL] + [σ ]·〈vL〉)dA

+
∫
S

nα·([ω]〈vb − vL〉 − 〈ω〉[vL])dA

+
∫
S

kαnα·
(

γ 〈vb − vL〉 +
(

γ + 2

〈
ϕ

∂γ

∂ϕ

〉)
〈vL〉

+ 1

2

[
ϕ

∂γ

∂ϕ

]
[vL]

)
dA. (A6)

At the next step, we group the terms with 〈vL〉, [vL], and
〈vb − vL〉 into separate lines:

�̇ =
∫
Rα

(
Jα

L · ∇Mα − G−1
α (∇′·Pα)·vα

L

)
dv

+
∫
Rβ

(
Jβ

L · ∇Mβ − G−1
β (∇′·Pβ)·vβ

L

)
dv

+
∫
S

Jb·∇b〈M〉dA −
∫
S

Jn[M]dA

+
∫
S

nα·([σ ] + kατ I)·〈vL〉dA

−
∫
S

nα·
((

〈ω〉 − 1

2
kα

[
ϕ

∂γ

∂ϕ

])
I − 〈σ 〉

)
·[vL]dA,

+
∫
S

([ω] + kαγ )nα·〈vb − vL〉dA. (A7)
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Decomposing the lattice velocity vL and boundary traction
vector s ≡ nα·σ into parallel and normal components ac-

cording to Eqs. (69)–(72), we finally obtain the free energy
dissipation rate given by Eqs. (75)–(82).
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