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Chainlike transitions in Wigner crystals: Sequential versus nonsequential
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The structural transitions of the ground state of a system of repulsively interacting particles confined in a
quasi-one-dimensional channel, and the effect of the interparticle interaction as well as the functional form of the
confinement potential on those transitions are investigated. Although the nonsequential ordering of transitions
(non-SOT), i.e., the 1 − 2 − 4 − 3 − 4 − 5 − 6 − . . . sequence of chain configurations with increasing density,
is widely robust as predicted in a number of theoretical studies, the sequential ordering of transitions (SOT), i.e.,
the 1 − 2 − 3 − 4 − 5 − 6 − . . . chain, is found as the ground state for long-ranged interparticle interaction and
hard-wall-like confinement potentials. We found an energy barrier between every two different phases around
its transition point, which plays an important role in the preference of the system to follow either a SOT or
a non-SOT. However, that preferential transition requires also the stability of the phases during the transition.
Additionally, we analyze the effect of a small structural disorder on the transition between the two phases around
its transition point. Our results show that a small deformation of the triangular structure changes dramatically
the picture of the transition between two phases, removing in a considerable region the non-SOT in the system.
This feature could explain the fact that the non-SOT is, up to now, not observed in experimental systems, and
suggests a more advanced experimental setup to detect the non-SOT.
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I. INTRODUCTION

At low temperatures, a classical system of charged particles
arranges itself in a close packet structure, also known as a
Wigner crystal [1–3]. This organization of particles allows
the lowest energy configuration and, due to the absence of
kinetic energy, the arrangement of particles results in a stable
crystalline structure. In a two-dimensional system, Wigner
crystals have a hexagonal lattice structure [4–6].

For a quasi-one-dimensional (Q1D) system of classical
charged particles confined in a parabolic channel, Piacente
et al. [7] predicted a nonsequential ordering of transitions
(non-SOT) between ground state (GS) configurations: 1 − 2 −
4 − 3 − 4 − 5 − 6 − . . . chainlike structures with increasing
particle density. They found that the range of the interaction
between particles does not affect the ordering of the transition,
when the particles are confined by a parabolic potential [8–10].
The structural transition from two- to four-chain configuration
(2 → 4) occurs, in the case of a non-SOT, through a zigzag
transition of each of the two chains and a simultaneous
small shift along the chain, which makes it a discontinuous
transition [7].

Although this non-SOT has been found as the GS in a
number of theoretical works [7–,11,12], it was not, to the best
of our knowledge, observed in experiments so far. Instead, in
the experiments they observed a direct transition from the two-
to the three-chain configuration (2 → 3), allowing the system
to follow the usual sequential order of transitions (SOT), with
increasing linear density, as reported in the case of electrons
on liquid He at low temperatures [13–15] and even in dusty
plasma clusters [16]. The SOT in a system of electrons on
liquid He has been indirectly measured by interpreting the
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steplike increment of the conductance of a channel, while
an electrical force guides the motion for the particles in the
structure [13,14]. Theoretical works have modeled this system,
evidencing the SOT during that dynamical process [17–19],
although modifying the shape (i.e., increasing the length) of the
confining constriction was shown to facilitate the observations
of the non-SOT [19]. Similarly, a SOT has been predicted
theoretically for a binary mixture of repulsive particles trapped
in a channel [20], and for an Abrikosov-vortex arrangement in
a superconducting slab for low temperatures [21–25], as well
as for Pearl vortices [26].

Ikegami et al. [13] observed a periodic change of melted
and ordered states as a function of linear density, i.e., re-entrant
melting. However, in that work, melting temperature was just
a measure of the disorder of the system. In terms of structural
transitions, they always observed SOT, in agreement with
Ref. [7] if temperature was above a certain value. However,
following the results of Piacente et al. [7] one might expect
that lowering temperature would result in the non-SOT, which
was not seen experimentally within the attainable temperature
range [13,14]. Thus the important question rises: How do
we optimize experimental setups in order to realize the
observation of the non-SOT?

Previous theoretical works have shown the robustness of
the non-SOT for a system of particles trapped in a perfect
parabolic channel irrespective of the range of the interaction
between the particles [7], and also for a system of particles with
a fixed interparticle interaction, confined in Q1D channels with
potentials of various functional form [27]. However, it has been
recently proven that it is possible to find a SOT region by tuning
the parameters of the confinement potential, e.g., by invoking
a profile similar to the Bean-Livingston barrier for vortices in a
superconductor [27]. At first glance, we note that two extreme
cases of this problem have been analyzed: a fixed confinement
varying the range of the interaction, and a fixed interaction
range varying the profile of the confinement channel. From
these results a trend of the ordering of the transitions was
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revealed, but it still did not resolve two important issues: Why
does the system prefer following a non-SOT rather than a SOT?
And, most importantly, why have experiments not found a
non-SOT if it is a preferable scenario? In this work, we present
an in-depth analysis which answers these questions.

The present paper is organized as follows. We first give,
in Sec. II, an overview of the model and the perspective of
the current work done in this area. Section III is devoted
to the analytical study of the effect of the interaction range
on the ordering of the structural transitions for different
confinement potentials. In Sec. IV, we induce transitions
from two- to three-chain (2 → 3) and from two- to four-
chain (2 → 4), and calculate the energy barrier for each
transition, analyzing the stability of the configurations formed
in the vicinity of the transition point. The effects of small
imperfections on the energy barrier and on the ordering of the
transitions are analyzed in Sec. V. Finally, our conclusions are
given in Sec. VI.

II. MODEL SYSTEM

First, we consider a two-dimensional infinite system of
identical interacting particles with electric charge q and mass
m, which move in the xy plane. The particles are confined
by a one-dimensional potential limiting their motion in the y

direction, forming a quasi-one-dimensional channel along the
x axis [Vconf(y)]. The total energy of the system is given by

H =
∞∑

i=1

∞∑

j>i

Vint(|ri − rj |) +
∞∑

i=1

Vconf(yi), (1)

where ri is the relative position of the ith particle in the system,
while Vint(r) represents the pairwise interparticle interaction,
which is taken as a screened power-law potential, which will
allow the simulation of both short- and long-range interactions,
as follows:

Vint(r) = q

εR

Rne−κr/λ

rn
, (2)

where the parameters λ and n allow us to tune the range of the
interaction between particles in the system, ε is the dielectric
constant of the medium the particles are moving in, and R is an
arbitrary length parameter which we introduced to guarantee
the right units.

Due to the importance of the profile of the confinement
potential on the ordering of the transitions, as shown in
Ref. [27], we use the following two different functional forms
of the confinement potential, which allows us to vary the profile
of the channel continuously from a paraboliclike to a hard-wall
potential:

VA(β,y) = mυ2
Ay2

0

2

cosh(βy) − 1

cosh(βy0) − 1
, (3)

VB(γ,y) = mυ2
By2

0

2

[
e−γ 2(y−y0)2 + e−γ 2(y+y0)2]

, (4)

where β and γ control the sharpness, υ the strength, and y0

the effective width of the confining channel. In the following,
we refer to VA(β,y) [VB(γ,y)] as exponential [Gaussian]
confinement.

In dimensionless form, the interaction and the confinement
potentials in our model become

Vint(r) = e−κr

rn
, (5)

VA(β,y) = υ2y2
0

cosh(βy) − 1

cosh(βy0) − 1
, (6)

VB(γ,y) = σ 2y2
0

[
e−γ 2(y−y0)2 + e−γ 2(y+y0)2]

, (7)

where the energy is expressed in units of E0 =
(mω2

0/2)n/(n+2)(q2/ε)2/(n+2)R2(n−1)/(n+2) and all distances are
expressed in units of r0 = (2q2/mω2

0ε)1/(n+2)R(n−1)/(n+2). The
dimensionless frequencies are given by υ = υA/ω0 and σ =
υB/ω0, while ω0 measures the strength of the confinement
potential, and the screening of the pairwise interaction is
κ = r0/λ. The dimensionless linear density η is defined as
the number of particles per unit of length along the unconfined
direction.

Concerning the sequence of the GS configuration for
increasing system density, previous works have shown the
following: (1) In the case of parabolic confinement, the
GS follows the non-SOT irrespective of the range of the
interparticle interaction [7]. (2) In the case of the interaction
potential given by n = 1 and κ = 1 in Eq. (5), and varying
the profile of the channel, the GS follows the non-SOT in the
limiting cases of hard-wall and paraboliclike profiles [27]. The
latter study also showed that non-SOT is present in all systems
for intermediate values of the shape parameter, evidencing that
the non-SOT is extremely robust for a broad range of possible
profiles and shape parameters. However, in case of Gaussian
confinement, SOT for the GS was found within a small window
of the shape parameters [27], indicating that the shape of the
channel profile is of crucial importance when one is looking
for a SOT in the system.

These results bring in evidence the strong relation between
the range of the interparticle interaction and the confinement
profile. Due to the fact that in experiments it is very common
to observe the SOT but not the non-SOT, a complete and
detailed study about the effects of the range of the interparticle
interaction and the profile of the confinement channel on the
ordering of the transitions are needed, as well as a trustable
recipe for the experimentalist about the regions where the
non-SOT could be observed. The present paper will address
those problems.

III. INTERACTION RANGE VS CONFINEMENT PROFILE

Analytical calculation of the energy of a system of different
chainlike structures is performed by following the model pro-
posed in Ref. [27]. As a result, we found “shape parameter vs
density” phase diagrams for different confinement potentials
and different ranges of the interaction between particles, as
shown in Fig. 1. The phase diagrams are the zero temperature
GS configuration as a function of the shape parameters and the
linear particle density η. All the transitions are of first order,
except the zigzag transition between the one- and two-chain
configurations, which is of second order. Interestingly, these
results show the appearance of a region where the GS is guided
by a SOT for three of the model systems, as highlighted by the
patterned region in each phase diagram. These results evidence
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FIG. 1. (Color online) Phase diagrams of the ground state for exponential and Gaussian confinement for different interaction potentials.
Each phase diagram shows the GS as a function of shape parameter (β or γ ) and linear density of the system (η). Solid and dashed lines
represent first- and second-order transitions, respectively. Regions highlighted by a line pattern indicate the existence of SOT in the GS of the
system.

the complementing behavior between the confinement and the
interaction potential. Previously [27], SOT had been reported
theoretically only for Gaussian confinement for the interaction
parameters n = 1 and κ = 1. In that case, the SOT was found
within a small window of γ (including γ = 1 which models
the Bean-Livingston barrier for superconducting vortices).

An extended phase diagram for the ordering of the transi-
tions is plotted in Fig. 2, as a function of the parameters of
the interparticle interaction κ and n, which control the range
of the interaction [see Eq. ((5). The solid symbols (triangles
for exponential and circles for Gaussian confinement) indicate

0

1

2

3

0 1 2 3n

κ

SOT

non-SOT

FIG. 2. (Color online) Extended phase diagram of the ground-
state transition for exponential (blue triangles) and Gaussian confine-
ment (red circles), as a function of the interaction parameters n and
κ . The solid symbols indicate that GS always follows a non-SOT by
increasing density, while open symbols indicate the cases where a
SOT region has been found.

the case when the GS configuration always follows a non-SOT
irrespective of the shape parameters, while the open symbols
indicate the case when the SOT has been found. From Fig. 2
one can see that the non-SOT is robust for a vast range of
shape parameters of both confinement potentials studied. This
behavior allows one to interpret the non-SOT as the “natural”
mechanism, which determines the behavior of a system of
classical particles with increasing particle density, irrespective
of the interaction between them or the shape of the confinement
potential of the channel. This result is a generalization of
previous theoretical works [7, 10,27] to a large set of different
interparticle interactions and confinement potentials.

Note that the SOT has been found in some regions of
the shape parameters, when the interaction potential is long
range. However, the range of the interaction to observe a SOT
must be even longer in the case of exponential confinement
as compared to Gaussian confinement. This finding is very
interesting because the experimental observation of SOT in
systems of electrons floating on the surface of liquid He assume
a Coulomb-like interaction between particles [13], which is
clearly a long-range interaction.

IV. ENERGY BARRIER AT THE TRANSITION POINT

To understand why the system prefers to follow one
ordering (SOT versus non-SOT) instead of the other one,
we compare the energy barrier the system has to overcome
during the transitions 2 → 3 and 2 → 4. For this purpose, we
will focus on the case of the interaction parameters n = 2 and
κ = 1, for the Gaussian confinement potential given by Eq. (7),
because in this case the SOT is present in a small window of
values of the parameter γ . To calculate the energy barrier
between the configurations, we set the two-chain structure,
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Induced transition from two- to three-chain

Induced transition from two- to four-chain

y=0

FIG. 3. (Color online) Paths of the motion for the dragged parti-
cles, during the induced transition: (a) 2 → 3 and (b) 2 → 4.

which was found as metastable or GS configuration close to the
transition point (ηt ), as the initial configuration. We induce the
transitions 2 → 3 and 2 → 4, at a given density (ηo < ηt ), by
forcing the displacement of some selected particles, allowing
the rest of the particles to adjust themselves in order to reach
the most energetically favorable configuration.

The selected particles are dragged along straight trajectories
as shown in Figs. 3(a) and 3(b) for the transitions 2 → 3 and
2 → 4, correspondingly. The straight paths are expected to be
close to the real trajectories of the selected particles taking into
account the symmetry of the initial and the final configurations
during the transitions 2 → 3 and 2 → 4.

Following the displacements shown in Fig. 3, we found
that an energy barrier is formed very close to the transition
point (ηo � ηt ), and at ηt , the barrier for transition 2 → 3 is
always higher than the barrier for transition 2 → 4, as shown
in Fig. 4. This behavior shows that in terms of energy cost,
the system always prefers the transition 2 → 4 rather than
the transition 2 → 3. This result provides an understanding of
why the system prefers to follow the non-SOT which appears
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FIG. 4. (Color online) Energy barrier for the induced transitions
as a function of the displacement of the dragged particles, for different
values of the confinement parameter and electron density. Red dashed
line represents the transition 2 → 3, while blue solid line represents
the transition 2 → 4.
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FIG. 5. (Color online) Stability region of the transitions 2 → 4
(solid circles) and 2 → 3 (open squares). The regions defined by the
different colors represent the analytically calculated phase diagram
for the GS, as a function of the shape parameter (γ ) and the linear
density (η), as shown in Fig. 1. We took the parameters n = 2 and
κ = 1.

to be a straightforward mechanism for the transition from a
two-chain to a four-chain configuration, due to the minimum
energy cost for the system.

Now, we extend the calculation of the induced transition not
only around ηt , but to the whole region of parameters. For every
displacement during these induced transitions, we calculate
the dynamical matrix of the system, and by using the Newton
optimization [4], we calculate the most energetically favorable
configurations, together with their vibrational eigenfrequen-
cies. From the symmetry of our system, we know that it has
one translational symmetry, which is numerically evidenced
by the existence of only one vanishing eigenfrequency. This
condition is important in our case, because it allows us to
define the stability of the different configurations found, after
the induced transition is performed. In Fig. 5 we show, with
symbols, the regions where the induced transitions 2 → 3 and
2 → 4 are stable; at the same time we plot the analytical results
for the phase diagram of the GS (see Fig. 1).

From Fig. 5 one can see that while the induced transition
2 → 3 is stable irrespective of the value of γ , the stability of
the transition 2 → 4 is restricted to two different regions of γ .
We can observe that our numerical results show a perfect match
with the transition point analytically calculated in Sec. III. It is
worth noting that the SOT formed in the window (0.7 � γ � 1),
as found analytically, arises from the fact that the transition
2 → 4 is not stable at the intermediate points (γ = 0.8 and
γ = 0.9).

Summarizing, the system “naturally” evolves following the
non-SOT with increasing density, since in all cases the transi-
tion 2 → 4 is more energetically favorable than the transition
2 → 3. However, the window of nonstability of the config-
urations during the transition 2 → 4 opens the door for the
transition 2 → 3 as the GS, and therefore the SOT takes place.

V. ROLE OF FLUCTUATIONS

In the above analysis, we assumed that there is no disorder.
As long as a small amount of disorder does not affect the
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FIG. 6. (Color online) Schematic representation of the structural
imperfections induced in the structures of (a) three- and (b) four-chain
configuration.

above findings, these can be considered as robust and reliable.
The goal of this section is to analyze the effect of disorder.
Typically, disorder is produced by thermal fluctuations or by
imperfections of the geometry of the channels. While the
geometry can be made nearly perfect, thermal fluctuations are
inevitable. Also, when thinking of experimental measurements
of electrons moving on the surface of He in microchannels,
we should keep in mind that the experimental methods [13]
do not allow control of the electron structure itself. The
structure is detected indirectly, via measuring the electron
current through a narrow constriction. Therefore, one cannot
judge whether the electrons were perfectly ordered or not
before they entered the constriction. Of course, the limiting
cases of a crystal and liquid can be distinguished by the
appearance of typical oscillations in the IV curves in the
case of a Wigner crystal [13–15,18,19]. On the other hand,
one can expect that weak disorder cannot be detected in
the electron current measurements, i.e., these measurements
cannot distinguish a perfect Wigner crystal from a slightly
disordered one. However, it is not known whether the order of
transitions studied above is sensitive to weak disorder.

To analyze the effect of disorder, we introduce a small
displacement of one particle (per simulation cell) from its
symmetric GS configuration, as shown in Fig. 6. Note that
in the general case this procedure is equivalent to the effect
of nonzero temperature (see, e.g., Ref. [7]). In particular,
a displacement of 10% of the lattice constant from its
equilibrium position, according to the Lindemann criterion,
is treated as (local) melting of the crystal.

Following the procedure described above, we increase the
particle’s density and analyze the structural transitions. We
calculate the relative energy barrier of the transition from two-
to the imperfect three-chain (2 → 3∗) and to the imperfect
four-chain (2 → 4∗) configurations. Figure 7(a) shows this
barrier plotted as a function of γ at the transition point;
circles and squares represent the energy barrier for 2 → 3∗ and
2 → 4∗, respectively. One can see that the energy barrier of
2 → 3∗ decreases as compared to the one of 2 → 4∗, resulting
in the shrinking of the region where the transition to the three-
chain configuration is more favorable than to the four-chain
one. Therefore, the GS of the system follows the SOT in
a wide range of parameters, as clearly shown in Figs. 7(a)
and 7(b). In the highlighted gray region in Fig. 7(a), the SOT
guides the GS due to the instability of the transition 2 → 4
configuration, as discussed in previous section. However, just a
small imperfection, as the one modeled in the present analysis,
breaks the robustness of the transition 2 → 4, allowing the
system to evolve following the SOT for a region of γ much
wider than in the case of perfect chainlike structures (cf. Fig. 5).
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FIG. 7. (Color online) (a) Relative energy barrier as a function of
the shape parameter (γ ) at the transition point. Open circles (squares)
represent the energy barrier of transition 2 → 3∗ (2 → 4∗). The gray
highlighted region indicates the values of γ where the transition
2 → 4 is not stable, as shown in Fig. 5. (b) The same phase diagram
as in Fig. 5, but with the effect of the induced imperfection in the
lattice.

Using these results we re-plot the phase diagram for the
above studied system (n = 2 and κ = 1), i.e., shown in Fig. 5.
In the new phase diagram [Fig. 7(b)] the GS of the system
follows the SOT for a broad range of densities, starting
from γ ≈ 0.7 and higher. Therefore, even a small amount of
disorder changes dramatically the picture of the ordering of the
transition in the GS configuration of the system. The non-SOT
earlier considered as a “robust” feature (since it survived
under various transformations of the confinement potential
and the interparticle interaction) turns out to be fragile against
a small deformation in the lattice, for low particle density.
This fragility of the non-SOT explains why experimentally
the non-SOT has never been observed under real experimental
conditions (e.g., nonzero temperature).

VI. CONCLUSIONS

The existence of the so-called nonsequential ordering of
structural transitions (non-SOT), when increasing the particles
density, in a system of repulsive particles confined in a
quasi-one-dimensional potential was theoretically predicted
in a number of works. The non-SOT, when the number of
chains follows the sequence 1-2-4-3-4-. . . , was shown to
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be the “natural” sequence of transitions for a broad range
of the interaction and confinement parameters. However, in
spite of the theoretically predicted robustness of the non-
SOT, experiments with various interacting particles including
electrons on the surface of liquid He in microchannels, colloids
in narrow channels, and superconducting vortices in narrow
stripes, did not reveal the non-SOT. Instead, the transitions
followed the SOT, i.e., 1-2-3-4-. . . .

In an attempt to investigate this controversial behavior, we
studied in detail the effect of boundaries on the sequence of
the structural transitions [27]. It was shown, in particular, that
in the case of a Bean-Livingston-type barrier, which appears
in the case of vortices in a superconductor, one observes SOT
rather than non-SOT. In this work, we took a deeper insight
into this problem by generalizing our study to interparticle
interactions of a very different range. In addition, we analyzed
the effect of fluctuations, which provided us with a deeper
understanding why real systems display SOT rather than the
theoretically predicted non-SOT.

In particular, we investigated the structural transitions for
the ground state (GS) of a classical system of particles confined
in a channel. The interparticle interaction was modeled as a
screened power-law potential, and the profile of the channel
confining potential was modeled by two different functional
forms, both being gradually tunable from a parabolic- to a hard-
wall-like confinement. In this context all the GS configurations
are presented by chainlike structures, which correspond to
Wigner crystal structures.

The effect of the interaction between particles on the order-
ing of transitions of the GS configurations was investigated
for different values of the interaction parameters, varying
from a short-range to a long-range interaction potential. We
analytically calculated the energy of the chainlike structures
at zero temperature, and analyzed the results obtained for
different confinement potentials. We found that the non-SOT
is present in all cases studied; it was found irrespective of the
range of the interaction and for different energy profiles of the
confining channel.

On the other hand, our calculations show that a region
where the SOT guides the transitions of the GS by increasing
particle density emerges in the case of a long-range interaction
potential (i.e., when approaching the limit of unscreened
Coulomb interaction), and this region is extended for longer
range interactions: The longer the range of the interaction, the
higher the probability to find the SOT as a sequence of the GS
of the system.

Two different types of trapping potentials, which control
the profile of the channel where the particles are confined,
were studied: exponential and Gaussian confinement. In both
cases the shape parameter allows us to control the shape of
the channel, varying it from a parabolic to a hard-wall-like
channel by increasing the shape parameter. We found that for
a hard-wall-like confinement, the transitions between different
configurations occur at lower particle linear density, and the
ordering of the transitions is related to the range of the
interaction potential. In contrast, in the case of a parabolic

confinement, we found in all studied cases that the transitions
between the different phases are always given by a non-SOT.

The existence of the sequential or nonsequential ordering
of transitions between phases in the GS is determined by
the existence or absence of the four-chain GS configuration
“inserted” in the direct transition 2 → 3. We investigated the
ability of the system to follow either the 2 → 3 transition or
the 2 → 4, by calculating the energy barrier which the system
has to overcome in order to reach the final state. We found
that, irrespective of the confinement profile and the interaction
potential, the barrier for the 2 → 3 transition is higher than that
for the 2 → 4, thus making the non-SOT as the most “natural”
ordering of transitions for the GS of the system.

However, when analyzing the stability of the configuration
during this transition (2 → 3), we found that if this transition
is not allowed as the GS, the reason for this behavior is the
instability of that state. Our numerical results obtained from
the analysis of the stability of the states perfectly confirm the
behavior of the transitions and the phase diagram calculated
analytically for this system. The analysis of the stability
explains that the robustness of the non-SOT is due to not
only the energetically favorable arrangement of the particles,
but also the instability of the transition 2 → 3.

As further follows from our analysis, the effect of weak
fluctuations in the chainlike structure can lead to the SOT
behavior. Thus our simulations showed that even a small
imperfection could change dramatically the ordering of transi-
tions facilitating the appearance of the SOT and considerably
increasing the window of parameters to observe it. This results
in a remarkable finding: The robustness of the non-SOT in the
system can be eliminated by a weak disorder of the Wigner
crystal, e.g., due to a non-zero temperature.

Our results indicated that small fluctuations destroy the
intermediate four-chain configuration (i.e., the hallmark of
the non-SOT), facilitating the experimental observation of
the SOT instead of the earlier predicted non-SOT as the
most “natural” sequence of transitions. At the same time, an
important result of our analysis is that we found the window
of parameters where the non-SOT still can be potentially
found, even in the presence of weak fluctuations (e.g., for
nonzero but relatively low temperature). In particular, our
analysis showed that the non-SOT is “protected” against small
fluctuations in the regime of high linear density and smooth
confinement; therefore, we expect that the non-SOT would be
experimentally observed in that region, rather than for low
density of particles confined in a hard-wall channel.
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