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From generalized stacking fault energies to dislocation properties: Five-energy-point approach
and solid solution effects in magnesium
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Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany;
and Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH-Aachen University,

D-52062 Aachen, Germany

Bob Svendsen
Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH-Aachen University, D-52062 Aachen, Germany

and Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany

Dierk Raabe and Jörg Neugebauer
Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany

(Received 18 May 2015; revised manuscript received 25 July 2015; published 11 August 2015; corrected 29 October 2015)

Using ab initio calculations and symmetrized plane waves, we analyze the basal-plane generalized stacking
fault energies in pure Mg and Mg-Y alloys and show that the knowledge of energies of only five specific points
is sufficient to accurately predict the core structures and Peierls stresses of 〈a〉-type edge dislocations in these
alloys. Our five-point approach substantially reduces the computational cost related to the Peierls-Nabarro (PN)
model and allows for a high-throughput application of the PN model to study Peierls stress changes in Mg upon
alloying. We employ our approach to study Mg binary alloys containing nine rare-earth (RE) and 11 other solutes.
Based on the Peierls stresses of these 20 Mg alloys calculated from the Peierls-Nabarro model, the solutes are
divided into three groups: (i) the first group, consisting of Be, Zn, Tl, Tc, Os, Ru, Re, and Co, when added as
solutes into Mg, lead to more compact dislocation core structures and larger Peierls stresses than found for pure
Mg. (ii) Elements in the second group, including Ti, Nd, Lu, Zr, Hf, La, and Pr change the core widths and Peierls
stresses moderately. (iii) The solutes in the third group containing Y, Er, Tm, Ho, and Sc extend the stacking fault
width, and the resulting Peierls stresses are generally very low. Based on an error analysis, we conclude that the
first group has a clear solute strengthening effect and the third group has a clear solute softening effect, while the
effects of the elements in the second group are too small to be resolved by the present approach.
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I. INTRODUCTION

Magnesium and magnesium alloys are promising structural
materials because of their low specific weight and relatively
high strength [1,2]. Their wider commercial use, specifically
for sheet forming applications is, however, hindered by their
low ductility at room temperature. In order to improve the
ductility of Mg alloys, it is necessary to analyze the underlying
mechanisms controlling the brittle behavior. Dislocations
are the most important extended defects closely related to
the plastic mechanical properties of Mg alloys. Their core
structure determines their mobility and further influences the
yield stress and ductility through their influence on glide
behavior, cross slip, and dislocation reactions to name but a few
critical phenomena in that context. According to the von Mises
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criterion, homogeneous polycrystal deformation requires the
activation of at least five independent slip or respective shear
systems. Otherwise, the kinematic compatibility is violated
and the material fails since an arbitrary externally imposed
mechanical load cannot be accommodated by the material’s
internal degrees of shear [3,4]. For hcp Mg, the number of
active deformation modes in one crystal is lower than five
since shear is confined to basal slip.

As a complementary approach to performing corresponding
systematic crystal mechanical experiments to gain insight
into the deformation mechanisms, theoretical simulations of
dislocation cores of both 〈a〉-type and 〈c + a〉-type dislocations
have been performed [5–8]. Here, 〈a〉-type slip refers to
dislocation shear inside the basal plane, while 〈c + a〉-type
shear refers to slip involving out-of basal plane shear modes.
To name a few examples, Yasi and co-workers [6] simulated
the core structures of basal and prismatic dislocations by using
the flexible boundary condition method and later the same
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authors developed different models to calculate the critical
resolved shear stresses (CRSS) of basal dislocations [9] and
the cross-slip stresses of prismatic screw dislocations [10].
This knowledge was recently further combined with a solute
strengthening effect by Leyson and co-workers in their simu-
lations of basal dislocations of Mg-Al alloys [11]. As another
example, Shin and Carter applied a previously developed
orbital-free density functional theory (OFDFT) method and
applied it to dislocation core structures [7] and, subsequently,
also to Peierls stresses [8] in pure Mg.

The aforementioned atomistic-scale simulation methods
belong to the direct methods or full-field approaches that
address dislocation cores by explicitly constructing them in
computer simulations in an atom-by-atom manner. The struc-
ture is subsequently relaxed by molecular dynamics simula-
tions. The molecular dynamics simulations can be of quantum-
mechanical nature as, e.g., the density functional theory
based flexible boundary condition method (DFT-FBC) [12],
or based on atomisitc interatomic potential simulations, such
as embedded atom methods (EAM). It should be noted that
the DFT-FBC simulations are accurate but computationally
very expensive. Atomistic simulations are fast but there is lack
of sufficiently reliable EAM potentials for Mg alloys that are
sensitive enough to predict composition-dependent dislocation
and plasticity trends.

Different from the direct methods, indirect methods do
not describe the dislocation core structure explicitly but
employ, e.g., the Peierls-Nabarro model [13]. The dislocation
core structures can be analyzed by the two-dimensional
Peierls-Nabarro model, which was developed by Leibfried and
Dietze [14]. The primary input is taken from the generalized
stacking fault energies (GSFEs, so-called gamma surface)
proposed by Vitek [15]. The gamma surface can be accu-
rately calculated by DFT methods. Therefore, Peierls-Nabarro
modeling represents an alternative to the above discussed
direct fully atomistic simulation methods for dislocations with
simple core structures. In the last years, these models have been
substantially improved and optimized. For example, Wang
has added gradients of the misfit density to the total energy
functional of dislocations in order to address dislocations
possessing narrow cores [16]. The misfit density refers to the
spatial variation of the dislocation’s core misfit function as will
be discussed in more detail below. Others have discretized the
originally used arctan-type functions to describe the misfit
density of dislocations in Al [17,18], since the discretized
functions can provide more flexibility than the analytical
(arctan-type) functions. The dislocation core structures in Mg
are usually very complicated, but the basal dislocation has a
dissociated planar core, which can be adequately described
by a Peierls-Nabarro (PN) model. For example, very recently,
Tsuru et al. employed a semidiscrete variational PN model to
study the core structures and Peierls stresses of Mg and two
Mg alloys, namely, Mg-Al and Mg-Y [19].

Despite numerous examples of applying the Peierls-
Nabarro model to pure metals, its application to alloys is not
straightforward. Calculations of gamma surfaces of alloys rep-
resent conceptional and computational challenges due to the
vast configurational spaces of different atomic species. Here,
we propose an efficient and at the same time accurate method,
which is based on an approach that allows us to represent

TABLE I. The elastic constants (all in GPa) of Mg taken from
Ref. [21] that were used as input for the Peierls-Nabarro model, see
Eq. (1).

Elatic constant C11 C12 C13 C33 C44 Ke Ks

Value 59.5 26.1 21.8 61.6 16.4 1.96 1.31

the full gamma surface using a few carefully selected sample
points only. After carefully testing our proposed approach, we
demonstrate its performance in a high-throughput study of an
extensive set of Mg binary alloys containing 20 different types
of solutes. For these, we accurately predict widely dissociated
cores of basal-plane 〈a〉 dislocations and analyze the influence
of solutes on the Peierls stress.

II. METHODOLOGY

A. Peierls-Nabarro model

The equilibrium configuration of a dislocation is within the
Peierls-Nabarro model determined by the balance of restoring
force and elastic resistance of the crystal lattice. Let us suppose
that we have an edge dislocation in a Cartesian coordinate. The
dislocation line runs along the z axis (for screw dislocation
the dislocation line runs along the x axis), slips in the xz plane
and its Burgers vector �b is parallel to x. The mathematical
expression of such a dislocation is

2K

∫ +∞

−∞

�ρ(x ′)
x − x ′ dx ′ = −dγ (�u)

d �u , (1)

where the left side is the elastic resistance and the right side
represents the restoring forces. Specifically, �u is the misfit
function and �ρ(x) is the misfit density �ρ(x) = d �u(x)/dx. The
generalized stacking fault energy, γ (�u), or gamma surface, is
the key input quantity of the model. In the two-dimensional
case, �u is a vector consisting of components along x and z,
ux and uz, respectively. Mathematically �u=(ux , uz). Further,
K is a proportionality constant (so-called energy factor) that
is in elastically isotropic materials described by the shear
modulus μ and the Poisson ratio ν. K = Ke = μ/4π (1 −
ν) for edge dislocations and K = Ks = μ/4π for screw
dislocations. The subscripts Ke and Ks indicate whether
the constant is for an edge “e” or a screw “s” dislocation.
In elastically anisotropic media, K depends on the slip
system and dislocation character. For a basal 〈a〉 dislo-
cation, Ke = 1/4π (C̄11 + C13)((C44(C̄11 − C13))/(C33(C̄11 +
C13 + 2C44)))1/2, C̄11 = (C11C33)1/2; Ks = 1/4π (C44C66)1/2,
C66 = (C11 − C12)/2 [20]. The values used in our simulations
are summarized in Table I.

An analytical solution of �u determined by Eq. (1) exists
only for rather simple gamma surfaces. For more complex
(and more realistic) gamma surfaces, solutions can be obtained
only numerically. Often, the solution is obtained by expanding
�u into a series of arctan functions [13]. The arctan function
is a suitable basis since it is the analytical solution to Eq. (1)
when the gamma surface is expressed by one cosine function.
Dislocations described by arctan-type functions are called
Peierls dislocations.

Specifically, in our study, we focus on 〈a〉-type edge
dislocations that are known to dissociate and where the
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distance between the two partials is rather large [6]. This type
of dislocations can be well described by only four arctan func-
tions, i.e., two for the edge component and two for the screw
component. The misfit functions are then written as follows:

ux(x) = b

2π
arctan

x − de/2

we

+ b

2π
arctan

x + de/2

we

+ b

2
,

(2a)

uz(x) =
√

3b

6π
arctan

x − ds/2

ws

−
√

3b

6π
arctan

x + ds/2

ws

,

(2b)

where ux(x) and uz(x) describe the edge and the screw
displacements, respectively. Here, de or ds is the distance
between the edge or screw components of the two partial
dislocations and we or ws is the width of the edge or screw
components of the Peierls dislocations, respectively. The
subscript differentiates the edge component from the screw
component.

By proposing the solution in the form of trial functions as
suggested in Eq. (2) and applying the variational principle, we
transform the integral-differential Eq. (1) into an optimization
problem. The left part of Eq. (1) is transformed into the elastic
energy Eel [13],

Eel = H11

⎡
⎣∑

i,j

pipj ln

(
R

wi + wj

)
−

∑
i<j

pipj ln

(
1 + r2

e,ij

(wi + wj )2

)⎤
⎦

+H33

⎡
⎣∑

i,j

qiqj ln

(
R

vi + vj

)
−

∑
i<j

qiqj ln

(
1 + r2

s,ij

(vi + vj )2

)⎤
⎦

+ 2H13

⎡
⎣∑

i,j

qipj ln

(
R

vi + wj

)
− 1

2

∑
i,j

qipj ln

(
1 + r2

ij

(vi + wj )2

)⎤
⎦. (3)

The last two terms in Eq. (3) vanish since the dislocation core
structure is symmetric. In this expression, H is the Stroh tensor.
{H11, H33}={Ke, Ks}, and p1 = p2 = b

2 , q1 = −q2 =
√

3b
6 .

The terms in the first bracket represent the elastic energy of the
edge component, the second stands for the elastic energy of
the screw component. The half widths of the partials are w1 =
w2 = we, v1 = v2 = ws . R is the outer cutoff radius, rij is the
distance between the edge component of Peierls dislocation j

and screw component of Peierls dislocation i, and re,ij or rs,ij

is the distance between the edge or screw components of the
Peierls dislocations i and j . The distance re,12 = de applies
for edge components and rs,12 = ds for screw components.
The right part is transformed into the misfit energy EA, i.e.,
the integral of the gamma surface within the core region of a
dislocation:

EA =
∫ R

−R

γ (ux(x),uz(x))dx. (4)

In our present work, we take the gradient of the misfit energy
EA as Peierls stress. The solutes are in the current model
placed at positions where they have the strongest effect on
the gamma surface (see Sec. II B). Since they remain fixed to
the positions during the dislocation motion, the current model
provides an upper bound for the Peierls stresses at the studied
solute concentrations. Since the stress field far away from the
dislocation core does not affect the core structure, a large but
finite R is sufficient for the evaluation. In the present study, we
take R = 5000b, where b is the length of the Burgers vector
of a basal 〈a〉 dislocation. A larger R does not change the
numerical solutions. The total energy of a dislocation is the
sum of the misfit energy and the elastic energy,

Etot = Eel + EA. (5)

Minimizing the total energy Etot to create a dislocation is
equivalent to solving Eq. (1). Therefore we minimize Etot [see
Eq. (5)] in our present study in order to determine the geometry
(characterized by the parameters w and d) of the studied
dislocations. To conduct the minimization, we use the particle
swarm algorithm (PSA). This algorithm can effectively avoid
local minima in the solution space and identify the optimal
solution [22–24].

B. Computational parameters

Our quantum-mechanical calculations of generalized stack-
ing fault energies (GSFEs) were carried out with the Vienna
ab initio simulation package (VASP) [25] using the projector
augmented wave functions and the generalized gradient
approximation, with the electron exchange-correlation func-
tion described by the Perdew-Burke-Ernzerhof parametriza-
tion [26]. A plane-wave cutoff energy of 350 eV is used
both for pure Mg and Mg alloys. To sample the Brillouin
zone, the Gamma-point-based scheme is employed and the
k-point mesh is optimized to guarantee the convergence of
the computed total energies. The convergence criterion of the
total energy is 10−4 eV, i.e., electronic structure iterations
stop when the energy difference between two subsequent
electronic steps is smaller than this value. The computed lattice
constants for pure Mg, a = 3.189 Å and c/a = 1.626, are in
very good agreement with experimental data, a = 3.206 Å and
c/a = 1.624 [21]. For all Mg alloys considered in this study,
the lattice parameters were also optimized. We only show the
lattice parameters of pure Mg and Mg47Y in Table II.

The generalized stacking fault energy (GSFE) profiles are
then computed by changing the out-of-glide-plane primitive
vector of the supercell in Cartesian coordinates (see, e.g.,
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TABLE II. DFT computed lattice parameters of pure Mg and a
Mg47Y alloy.

Stoichiometry a (Å) c/a

Mg 3.189 1.626
Mg-Exp. [21] 3.206 1.624
Mg47Y 3.206 1.622

Refs. [27,28]). When a fraction of the slip direction vector
is consecutively added to the primitive vector until the total
vector is reached, the supercell and its image together represent
a series of supercells that gradually model the gliding and thus
the corresponding GSFEs. Specifically, the gamma surface of
the basal plane in pure Mg is first divided into a 20 × 20 mesh
and the total energy is calculated at each grid point. All atoms
are relaxed along the direction perpendicular to the simulated
glide plane.

More specifically, two perpendicular vectors 1
3 [112̄0] and

[101̄0] are selected within the {0001} plane and all possible slip
displacements can be written as a combination of these two
vectors. Suppose ux/a and uz/

√
3a are fractional displace-

ments along these two directions determined by the selected
vectors, the GSF vector �f is then written as

�f = ux

a

1

3
[112̄0] + uz√

3a
[101̄0], (6)

where 0 � ux � a and 0 � uz �
√

3a. More details about
computing gamma surfaces can be found, e.g., in Refs. [27,28].

In order to eliminate any spurious interactions between
(i) extended defects (i.e., a glide plane) within the computa-
tional supercells and (ii) their periodic images created when
applying periodic boundary conditions, the supercell sizes
were optimized by performing convergence tests. Specifically,
in our supercells, there are two atoms in each direction within
the slip plane (four atoms in total in the plane). To test
the convergence of our computed generalized stacking fault
energies, the number of atoms in the third direction, along
the 〈c〉 direction, which is equivalent to the number of layers
within the supercell, was varied (2, 4, 6, 8, and 12 atomic
layers). The GSFEs difference between six layers (2 × 2 × 6,
i.e., 24 atoms) and 12 layers (2 × 2 × 12, i.e., 48 atoms) is less
than 1%. Thus supercells with more than six atomic layers are
considered to be large enough to provide accurate results. In
our study, a 48-atomic supercell (i.e., cells with 12 atomic
layers) was employed to describe Mg alloys with one Mg
atom being replaced by a solute atom X within the glide
plane. Therefore, for Mg47 X, the atom concentration of X

in the supercell is 2.08 at.% and the planar concentration is
25 at.%. Our additional calculations show that GSFEs at points
A and B (see Fig. 1) are linearly proportional to the planar
concentration of yttrium from 25 at.% down to 11 at.% and
further to pure Mg. We assume similar trends also in the case
of other solutes. In order to compare quantum-mechanical and
atomistic approaches, the gamma surface of pure Mg was also
calculated using an embedded atom method (EAM) approach
with the potential developed by Sun [29]. Using the same
supercells as in the ab initio calculations, these simulations
were performed employing the LAMMPS [30] code.

(a) (b) 

(d) 

1/3<11-20> 

<10-10> 

X 
I2SFE 

A 
X 
B 
X 

E 
X 

D 
X 

C X 

(c) 

(e) 

FIG. 1. (Color online) Contour figures of basal-plane gamma
surfaces for Mg and Mg-Y alloys computed by DFT [(a) and (b)]
and EAM methods (e). The gamma surfaces obtained by applying the
five-point approach are shown as well for comparison [(c) and (d)].
The five points A,B,C,D,E that are used as input in our five-point
approach are denoted in (a). The minimum energy pathways are
indicated by red arrows. The units at the color bars are J m−2.

C. Plane-wave expansion of the gamma surface

Generally, for a crystal, the gamma surface can be expressed
by the displacement vector �u = (ux,uz),

γ (�u) =
∑

�G
c �G exp(i �G�u), (7)

where �G = (m 2π
ax

,n 2π
az

),m,n = 0, ± 1, ± 2, . . . , ± ∞, ax and
az are the lengths of one period of the computational supercell
along the x and z directions, so that γ (�u) = γ (�u + �T ),
translation vector �T = (ax,az) = (a,

√
3a). The coefficient c �G

can be calculated by the Fourier transform

c �G = 1

axaz

∫∫ (ax,az)

(0,0)
γ (ux,uz) exp(−i �G�u)duxduz. (8)
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Writing c �G = R �G + iI �G, the gamma surface can be reformu-
lated as

γ (�u) =
∑

�G
R �G cos(2 �G�u) − I �G sin(2 �G�u), (9)

where �G defines the reciprocal space of the gamma surface.
After being Fourier transformed, the gamma surface can
be represented by discrete points in reciprocal space. Each
of these points corresponds to one coefficient of the terms
shown in Eq. (7). Since γ (�u) is a real number, the imaginary
terms have been excluded in Eq. (9). A more common
and computationally more intuitive definition would be to
introduce a cutoff wave function, i.e., all

| �G| = 2π√
3a

√
3m2 + n2 � Gk = k

2π√
3a

(10)

will be included. In the following, we will use k to denote the
plane-wave cutoff, and the corresponding gamma surface is
represented by γk .

III. FIVE-POINT APPROACH

As stated above, the energetics of the full 2D gamma surface
is the key input in Eq. (5). Unfortunately, quantum-mechanical
calculations that determine these energies with a high accuracy,
are computationally rather costly. As we are aiming at a
rapid high-throughput testing of different solutes, lengthy
calculations of hundreds of energies within dense meshes
covering the gamma surface are not feasible. Therefore, in
order to reduce the computational costs, we below propose an
approach within which the energies of only five specific points
are shown to be sufficient for accurately studying the core
structure of 〈a〉 dislocations in hcp materials. Our approach
will be validated for Mg and Mg-Y alloys.

The gamma surface of the basal plane in pure Mg
has a threefold symmetry [Fig. 1(a)]. Within the unit cell
there are three symmetry equivalent global unstable stacking
fault energies (0.473 J m−2) and three symmetry equivalent
stable stacking fault energies (0.037 J m−2). The minimum
energy path along the 〈112̄0〉 direction starts from the point
corresponding to a perfect crystal and goes through a stable
stacking fault energy to later reach another point corresponding
to the perfect crystal (see red arrows). For the Mg-Y alloy, the
threefold symmetry of the gamma surface [Fig. 1(d)] is slightly
broken due to the addition of yttrium lifting the degeneracy of
the three global unstable stacking fault energies (0.440, 0.440,
and 0.438J m−2).

For comparison, the identical gamma surface is also
computed employing the EAM potential [Fig. 1(e)]. The EAM
gamma surface shares the same qualitative features as the DFT
one, but the maximum GSFE is significantly lower (see the
color-coded scale). This difference results in a significantly
different barrier along the minimum energy path.

As our aim is to determine the Peierls stress of the basal 〈a〉-
type edge dislocation, we analyze the sensitivity of the derived
Peierls stress on the approximation used to fit the gamma
surface. For this purpose, we construct a series of gamma
surfaces with a different plane-wave cutoff k [in Eq. (10)].
Starting with a high cutoff (k = 10), we find that only very few
plane-wave coefficients are larger than 10−1 mJ m−2 (i.e., are

TABLE III. Geometrical parameters and Peierls stresses of the
〈a〉-type basal-plane edge dislocation calculated for different plane-
wave cutoffs (denoted by k).

(a) pure Mg

k de/b ds/b we/b ws/b τ/MPa

2 8.799 9.087 0.997 0.865 0.026
4 6.970 7.119 0.664 0.574 0.98
5 6.979 7.143 0.668 0.581 1.15
10 7.008 7.183 0.677 0.597 1.15
five-point 6.947 7.097 0.649 0.579 1.08

(b) Mg-Y alloy

k de/b ds/b we/b ws/b τ/MPa

2 9.116 9.601 1.064 0.946 0.022
4 8.961 9.172 0.714 0.582 0.55
5 8.964 9.173 0.704 0.570 0.52
10 8.913 9.077 0.704 0.564 0.46
five-point 8.956 9.086 0.698 0.607 0.58

smaller than the estimated accuracy of DFT method) indicating
that the majority of the terms equals to zero. This indicates that
the Fourier representation rapidly converges implying that an
accurate representation of the gamma surface can be achieved
by only a few low-frequency terms.

For each of the thus constructed gamma surfaces, we
calculated the dislocation core structure parameters (listed
in Table III and visualized in Fig. 2). Both the edge
and screw components quickly converge for both pure Mg
[Figs. 2(a) and 2(b)] and Mg-Y alloys [Figs. 2(c) and 2(d)].
When all plane waves with coefficients smaller than G4

(k � 4) are included into the gamma surface, the computed
dislocation core structures are convergent.

(a) 

(c) (d) 

(b) 

FIG. 2. (Color online) Convergence of the core structure of the
〈a〉-type edge dislocation with increasing number of plane waves for
(a) the edge and (b) the screw components of a dislocation in Mg,
and (c) the edge and (d) the screw components of a dislocation in the
Mg-Y alloy.
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FIG. 3. (Color online) Convergence of the Peierls stress of the
〈a〉-type edge dislocation in pure Mg and Mg-Y as a function of the
plane-wave cutoff.

Figure 3 shows that the Peierls stress is very sensitive to the
number of plane waves used to approximate a gamma surface.
The Peierls stress of pure Mg and Mg-Y is almost 0 MPa
when k = 2 or 3, and then increases to 0.98 MPa (0.55 MPa
for Mg-Y) before it becomes converged. Therefore the Peierls
stress is a more stringent test than the core structure to identify
an accurate plane-wave cutoff. In the following, we choose
k = 5, which is a good compromise between accuracy and
computational efficiency (error in the Peierls stress: <1% for
pure Mg; <13% for Mg-Y).

The threefold symmetry of the gamma surface of Mg can be
used to substantially reduce the number of independent coeffi-
cients in the Fourier expansion. We therefore employ the con-
cept of symmetrized plane waves where the simple plane waves
are replaced by linear combinations that preserve the desired
symmetry. Limiting the plane waves in the range of k � 5,
we include the first three symmetrized plane waves (plane
waves with coefficients > 10−1 mJ m−2) into the analytical
expression of the gamma surface [Eq. (11)],

γfive-point(ux,uz) =R0 + R1

{
cos

[
2π

(
ux

a
− uz√

3a

)]
+ cos

[
2π

(
ux

a
+ uz√

3a

)]
+ cos

(
4π

uz√
3a

)}

+ R2

{
cos

[
2π

(
ux

a
− 3uz√

3a

)]
+ cos

[
2π

(
ux

a
+ 3uz√

3a

)]
+ cos

(
4π

ux

a

)}

+ R3

{
cos

[
4π

(
ux

a
+ uz√

3a

)]
+ cos

[
4π

(
ux

a
− uz√

3a

)]
+ cos

(
8π

uz√
3a

)}

+ I1

{
sin

[
2π

(
ux

a
− uz√

3a

)]
− sin

[
2π

(
ux

a
+ uz√

3a

)]
+ sin

(
4π

uz√
3a

)}

+ I2

{
sin

[
4π

(
ux

a
− uz√

3a

)]
− sin

[
4π

(
ux

a
+ uz√

3a

)]
+ sin

(
8π

uz√
3a

)}
, (11)

where a is the lattice parameter. In this expression, one group
of sin-type functions is dropped since their coefficients are
smaller than 10−2 mJ m−2.

For convenience, the analytic expression γfive-point [Eq. (11)]
is referred as five-point expression. The five coefficients in the
equation can be determined by five symmetry inequivalent
points on the gamma surface [the sixth coefficient is excluded
since its value can be determined by γfive-point(0,0) = 0]. The
dislocation core structures and Peierls stresses computed by
our five-point approach are marked in Table III as “five-point.”
The results computed by the five-point approach are in good
agreement with those computed by the converged gamma
surface (γ10, see Sec. II C). The maximum error bar we observe
is for the Peierls stress of the Mg-Y alloy (which is the most
sensitive quantity) and is about 24%. The sources of these
errors are discussed in detail in Appendix.

The gamma surfaces for Mg and Mg-Y approximated by
Eq. (11) are shown in Figs. 1(b) and 1(d). They reproduce the
key characteristics of the quantum-mechanically calculated
ones [Fig. 1(a)]. The predicted stable stacking fault energies
and unstable stacking fault energies agree well with the ones
derived by DFT simulations. For pure Mg, the predictive
quality of our method is much better than that of the
computationally inexpensive EAM simulation [Fig. 1(e)],
which only qualitatively reproduces the main features.

IV. GENERALIZED STACKING FAULT ENERGIES
OF MG ALLOYS

Even though any set of five symmetry inequivalent data
points in the basal-plane gamma surface would be sufficient
to compute the gamma surface according to Eq. (11), not all
possible data points are an equally good choice. On the one
hand, data points that are spatially too close may result in
noticeable numerical errors. Moreover, the data points around
the minimum energy path in the gamma surface are particularly
important. We therefore choose the five data points A, B, C, D,
and E, marked in Fig. 1(a). The I2 stacking fault energy (B), the
unstable SFE along the 〈a〉-type direction (A) and the global
maximum USFE (C) have also a clear physical meaning and
significance. In pure hcp metals, the I2 stacking fault energy
(B) is usually considered to be the maximum energy barrier
that dissociated dislocations of the same type must overcome
to move. Thus this quantity is directly related to the mobility of
dissociated 〈a〉-type dislocations. Similarly, point A is relevant
to the mobility of perfect 〈a〉-type dislocations. Finally, the
point C is the barrier to nucleate the dislocations. In addition
to these three points, the two points C and D that are close to
the minimum energy path are selected.

To analyze chemical trends in solid solution effects, a set
of 20 solutes with either hcp or double hcp crystal structures is
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TABLE IV. Generalized stacking fault energies of five selected
points (see text) in the basal-plane gamma surface for 20 Mg47 X

alloys, which are applied in fitting Eq. (11). The planar and bulk
concentrations are 25 and 2.08 at.%, respectively.

Solute A B C D E

J m−2 J m−2 J m−2 J m−2 J m−2

Mg 0.275, 0.037, 0.036 [31], 0.473 0.159 0.158
0.288 [31] 0.033 [32],

Mg-Exp. 0.060–0.15 [33]
Y 0.213, 0.248 [31] 0.010, 0.025 [31] 0.446 0.145 0.146
Be 0.277 0.038 0.476 0.154 0.166
Co 0.302 0.077 0.495 0.168 0.191
Er 0.258 0.027 0.448 0.145 0.152
Hf 0.267 0.036 0.458 0.149 0.160
Ho 0.257 0.025 0.447 0.145 0.151
La 0.234 0.001 0.422 0.132 0.132
Lu 0.262 0.029 0.453 0.152 0.155
Nd 0.242 0.011 0.430 0.137 0.139
Os 0.302 0.083 0.491 0.168 0.193
Pr 0.240 0.008 0.428 0.135 0.137
Re 0.301 0.078 0.491 0.167 0.191
Ru 0.308 0.085 0.502 0.170 0.197
Sc 0.271 0.036 0.465 0.151 0.162
Tc 0.306 0.080 0.498 0.169 0.194
Ti 0.275, 0.355 [31] 0.042, 0.036 [31] 0.469 0.153 0.166
Tl 0.282 0.035 0.485 0.158 0.168
Tm 0.260 0.028 0.451 0.146 0.154
Zn 0.279, 0.256 [31] 0.035, 0.037 [31] 0.480 0.155 0.166
Zr 0.267, 0.328 [31] 0.038, 0.026 [31] 0.457 0.149 0.160

selected from the periodic table of the elements. The five data
points (GSFEs) computed by DFT for these 20 Mg alloys are
listed in Table IV and visualized in Fig. 4. According to the
values of the GSFEs, the following five sequences are obtained
(pure Mg and Mg-Y are marked in bold):

According to A: Y<La<Pr<Nd<Ho<Er<Tm<Lu<Zr
<Hf<Sc<Ti<Mg<Be<Zn<Tl<Re<Os<Co<Tc<Ru;

La Pr Nd Y Ho Er TmLu Zr Hf Sc Ti MgBe Zn Tl ReOsCo Tc Ru
0.0

0.1

0.2

0.3

0.4

0.5
A
B
C
D
E

G
SF

E(
Jm

-2
)

Solutes

FIG. 4. (Color online) The five GSFEs for 20 Mg alloys (the
planar and bulk concentrations are 25 and 2.08 at.%, respectively).
The positions of these GSFEs in the 2D gamma surface are marked
in Fig. 1(a). Full horizontal color lines denote the GSFEs of pure Mg.

According to B: La<Pr<Y<Nd<Ho<Er<Tm<Lu<Tl
<Zn<Sc<Hf<Mg<Zr<Be<Ti<Co<Re<Tc<Os<Ru;

According to C: La<Pr<Nd<Y<Ho<Er<Tm<Lu<Zr
<Hf<Sc<Ti<Mg<Be<Zn<Tl<Re<Os<Co<Tc<Ru;

According to D: La<Pr<Nd<Ho<Er<Y<Tm<Zr<Hf
<Sc<Lu<Ti<Be<Zn<Tl<Mg<Re<Os<Co<Tc<Ru;

According to E: La<Pr<Nd<Y<Ho<Er<Tm<Lu<Mg
<Hf<Zr<Sc<Be<Ti<Zn<Tl<Co<Re<Os<Tc<Ru.

Any two of these five sequences are different from each
other. However, the sequences for A and C are almost same
except that the positions of yttrium are different. These trends
can be more clearly observed in Fig. 4. The different sequences
indicate that the alloying elements do not change the gamma
surface in a simple manner, i.e., one that can be described
by a single scaling factor. Therefore care should be taken
when extending the analysis of gamma surfaces to different
concentrations of solutes. However, some general trends may
be deduced. For example, if the unstable GSFEs (e.g., A or C)
are lower, the corresponding I2SFEs (B) are lower, too.

The rare-earth elements (RE) reduce all five GSFEs of pure
Mg (except Sc in sequence E). However, the non-rare-earth
elements (non-RE) generally increase the GSFEs but with
some exceptions, e.g., Zr and Hf in sequence A. The maximum
values of all five parameters are those computed for the
Mg-Ru system, and the minimum ones are those of Mg-La.
Ruthenium increases the GSFEs (A − E) of pure Mg by
0.01–0.05 J m−2. La can reduce the GSFEs (A − E) of pure
Mg by 0.02–0.04 J m−2. Interestingly, the I2SFE (B) of Mg-La
is 1 mJ m−2, very close to 0, followed by Mg-Pr, 8 mJ m−2,
and Mg-Nd, 11 mJ m−2. The other elements change the
GSFEs moderately. Next to our values, Table IV also lists
published theoretical and experimental GSFEs. For Mg, the
published theoretical data validate our GSFEs of points A

and B. Comparing the GSFEs with the experimental data [33]
shows that the lower experimental bound is a factor of two
larger than the theoretical value. The reason may be that the
stacking fault energy in pure Mg is rather small, making an
accurate experimental determination of this value challenging.
The I2SFEs of Mg-Y, Mg-Ti, Mg-Zn, and Mg-Zr published by
Muzyk et al. [31] agree well with the ones presented here. The
USFE (at point A) of Mg-Y is also very close to our result,
while those of Mg-Zn, Mg-Ti, and Mg-Zr are slightly different.
These differences might arise from the different computational
methods and slightly different VASP input parameters.

V. DISLOCATION PROPERTIES

A. Pure Mg

The gamma surface of pure Mg was evaluated by both
EAM (employing the Finnis-Sinclair potential developed by
Sun [29]) and DFT for comparison. Since the gamma surface
shapes obtained by EAM and DFT are quite different, the
dislocation cores obtained using the PN method are also very
different. The predicted stacking fault width (distance between
the two dissociated partial dislocations) by the PN model using
the EAM gamma surface is ≈3b, and the one obtained by DFT
≈7b. Hence the EAM predicted dislocation core is much more
compact than the one derived by DFT. The difference can
be explained by the theory of the Volterra dislocations. The
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(a) Mg 

(b) Mg-Y 

FIG. 5. (Color online) The core structures of pure Mg and the
Mg-Y alloy. The color bar denotes the hydrostatic stress in GPa. The
colored atoms clearly show the location of two partial dislocations
with a stacking fault in between, b and c are the lengths of one period
in each direction.

stacking fault width of a Volterra dislocation (here basal 〈a〉
dislocation) is inversely proportional to the I2 stacking fault
energy. Indeed, EAM predicts a higher I2 stable stacking fault
energy (48 mJ m−2) than DFT (I2SFE = 37 mJ m−2).

To conveniently compare the dislocation core computed
by atomistic simulations, the dislocation core of Mg by our
method is visualized in Fig. 5(a). Here, the parameters of
the core structure are employed to compute the hydrostatic
stress field around the dislocation [24] in Mg, which is used
as a parameter to color the atoms. The colored atoms clearly
indicate the location of the two partial dislocations that are
separated by the I2 stacking fault.

Wang et al. employed a modified Peierls-Nabarro model
(including a new gradient term, which is considered to be
important to describe dislocations having a narrow core) to
calculate the dislocation core structure of pure Mg [34]. The
stacking fault width calculated in Wang’s work is 6.7b and
in excellent agreement with ours, 7b. Applying the modified
model with the gradient terms they predicted a much wider
half width (e.g., wd,ws) for each partial. The planar core
was computed directly by Yasi et al. [6] using both DFT
and a Finnis-Sinclair EAM potential [29]. The predicted
stacking fault widths were 5.2b (DFT) and 4.5b (EAM),
respectively. The fully atomistic dislocation core predicted by
DFT is slightly smaller than the one predicted here by DFT

using Peierls-Nabarro model, but their fully atomistic EAM
dislocation core is slightly wider than our Peierls-Nabarro one
using the same EAM potential. Shin and Carter [7] computed
the same stacking fault width using obital-free DFT, i.e.,
7.6–8.0 b, which is very close to our result.

The Peierls stress computed by our approach and using
the DFT derived gamma surface is 1.08 MPa at 0 K, about
1/20 (i.e., more than one order of magnitude) of that using
the EAM gamma surface (22.9 MPa at 0 K). The DFT value
is significantly closer to the experimental values observed in
pure Mg single crystals (0.5–0.8 MPa) although it is still a
factor of two too high. Using the fully DFT computed gamma
surface [i.e., without using the approximate five-point formula
Eq. (11)], we find a slightly larger value for the Peierls stress
of 1.15 MPa at 0 K, i.e., the deviation from the experiment
is not related to this approximative description of the gamma
surface.

TABLE V. Geometrical parameters of dislocation cores and
Peierls stresses for 20 solute solution Mg alloys computed by the
five-point approach.

Solute de/b ds/b we/b ws/b τp/MPa

Mg-DFT1a 7.00 7.18 0.68 0.60 1.15
Mg-DFT2b 6.95 7.10 0.65 0.59 1.15

6.7 [34] 6.7 [34] 3.7 [34] 3.0 [34]
Mg-Exp.c 0.52–0.81[35–37]
Mg-EAM1d 3.06 2.90 0.45 0.38 22.9
Mg-EAM2e 4.48 [6]
Mg-FBCf 5.2 [6]
Mg-OFDFTg 7.6–8.0 [7]
Y 8.91 9.08 0.70 0.56 0.46
Be 6.98 7.07 0.61 0.52 1.90
Co 3.03 3.16 0.55 0.48 6.60
Er 12.93 13.00 0.67 0.56 0.59
Hf 6.99 7.09 0.64 0.54 1.57
Ho 10.96 11.04 0.66 0.56 0.83
La 19.18 19.24 0.72 0.59 1.65
Lu 8.96 9.06 0.64 0.55 1.30
Nd 13.10 13.18 0.69 0.58 1.18
Os 3.01 3.15 0.56 0.49 5.41
Pr 17.09 17.15 0.69 0.58 1.70
Re 3.03 3.17 0.56 0.48 6.02
Ru 3.01 3.14 0.55 0.48 5.59
Sc 8.93 9.01 0.63 0.53 0.88
Tc 4.82 4.92 0.58 0.51 4.30
Ti 6.95 7.05 0.62 0.53 1.17
Tl 7.00 7.10 0.59 0.50 2.96
Tm 10.94 11.00 0.65 0.54 0.70
Zn 6.94 7.11 0.64 0.52 2.53
Zr 6.98 7.09 0.64 0.54 1.47

aThe gamma surface γ10 by DFT.
bThe gamma surface γfive-point by DFT.
cExperimental results.
dThe gamma surface computed by the Finnis-Sinclair-EAM potential.
eDirect simulation of dislocation using the Finnis-Sinclair-EAM
potential.
fFlexible boundary condition using DFT.
gOrbital-free DFT.
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FIG. 6. (Color online) Peierls stresses of 20 different Mg solute
solution alloys predicted by using the Peierls-Nabarro model in
conjuction with the five-point approach, Eq. (11). The black line
corresponds to the Peierls stress of Mg as a reference.

B. Mg alloys

Employing our five-point approach, the dislocation core
structures and Peierls stresses of 20 different solid solution Mg
alloys are computed and their characteristics are summarized
in Table V. As an example, the dislocation core structure of
Mg-Y is shown in Fig. 5(b). The Peierls stress caused by
the various solutes is visualized in Fig. 6. The black line in
Fig. 6 denotes the Peierls stress of pure Mg as a reference
measure. Solutes that lie in their respective effects above the
Mg reference line increase the Peierls stress of Mg, i.e., they
lead to a solute strengthening effect; solutes below the line
reduce the Peierls stress, i.e., they cause solute softening.

However, when the error bar of the Peierls stress is
considered (see Appendix for detail), the impact of the solute
on the Peierls stress cannot be predicted if the change is small.
Therefore the solutes are divided into three groups: (i) solutes
pertaining to the first group, including Be, Zn, Tl, Tc, Os, Ru,
Re, and Co lead to more compact dislocation core structures
(3.0 b to 7.1 b, b = 3.19 Å) and larger Peierls stresses than
pure Mg (1.9 to 6.6 MPa) when added as solutes into Mg.
(ii) Elements in the second group, including Ti, Nd, Lu, Zr,
Hf, La, and Pr change the stacking fault widths from 7.0 b

to 19.2 b and Peierls stresses moderately (1.2 to 1.7 MPa).
(iii) Solute elements in the third group include Y, Er, Tm,
Ho, and Sc extend the core width from 8.9 b to 12.9 b, and
the resulting Peierls stresses are generally very low (0.46 to
0.88 MPa). Assuming that the error bar of the Mg-Y alloy is
representative to all Mg alloys, we conclude that the first group
is able to strengthen the basal 〈a〉 dislocation, while the third
group softens them. The effect of the second group is, however,
quite small to render distinct alloy design rules from this effect.

VI. CONCLUSIONS

The gamma surfaces of Mg and 20 different solid solution
Mg alloys have been systematically studied employing both
quantum-mechanical and atomistic simulations and used as

input to determine the dislocation core structures and Peierls
stresses of basal-plane 〈a〉-type edge dislocations within a
Peierls Nabarro model. We summarize our most important
conclusions as follows.

(i) The gamma surface of basal-plane 〈a〉-type edge dis-
locations in hcp materials can be well approximated by a
Fourier series with only a few terms. Specifically, coefficients
determined from the knowledge of only five special points
within the generalized stacking fault energy surface are found
to be sufficient. The computational efficiency of this approach
allows us to systematically evaluate the influence of a large
number of solute atoms in Mg and to derive chemical trends.

(ii) Within the framework of our approach, dislocation cores
and Peierls stresses of pure Mg, computed by using EAM and
DFT derived gamma surfaces are compared. This comparison
shows that the present parameterization of the Mg potential
is not sufficient and gives rise to large errors in the computed
Peierls stress. This argument of having not sufficiently accurate
parameter sets is even more critical for Mg alloys. Therefore
the proposed approach provides a computationally efficient
and sufficiently reliable method to study the influence of
solutes on the dislocation core geometry and some of the
associated solid solution effects.

(iii) Our analysis of 20 different solutes shows that the
energetics of the gamma surfaces cannot be described by a
simple scaling factor.

(iv) For pure Mg, the predicted basal-plane 〈a〉-type
dislocation core structure calculated using a DFT derived
gamma surface is 7b wide. The calculated Peierls stress is
1.15 MPa at 0 K and close to the reported experimental values.

(v) Among the 20 solutes, Be, Zn, Tl, Tc, Os, Ru, Re, and
Co are able to strengthen the basal 〈a〉 dislocation motion,
while Y, Er, Tm, Ho, and Sc soften it. The effects of the other
solutes are much less pronounced.

The success of the five-point approach for calculating basal
〈a〉-type edge dislocations encourages us to continue to use
it for prismatic 〈a〉-type dislocations in a next step. The
knowledge about these dislocations will help to improve our
understanding on the mechanical behavior of Mg alloys and
thus paving the path towards new ductile Mg alloys.
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APPENDIX: SENSITIVITY ANALYSIS

We now analyze how errors in the input parameters of the
PN model propagate and affect the final results. We focus here
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TABLE VI. Sensitivity analysis of approximations to the gamma
surfaces for pure Mg and the Mg-Y alloy in the Peierls-Nabarro
model.

(a) Core structure parameters and Peierls
stresses computed by the various

approximations to the gamma surface.

γ de/b ds/b we/b ws/b τ/MPa

Mg γ10 7.008 7.183 0.677 0.597 1.15
γ5 7.009 7.040 0.668 0.581 1.15

γfive-point 6.947 7.097 0.649 0.579 1.08
Mg-Y γ10 8.913 9.077 0.704 0.564 0.46

γ5 8.964 9.173 0.704 0.570 0.52
γfive-point 8.956 9.086 0.698 0.607 0.58

(b) Error bars of the quantities listed in (a).

Errors de/% ds/% we/% ws/% τ/%

Mg E0 0.00 0.00 0.00 0.00 0.00
E1 0.01 −1.99 −1.33 −2.68 0.44
E2 −0.88 0.81 −2.84 −0.34 −6.25
E3 −0.87 −1.20 −4.14 −3.02 −5.84

Mg-Y E0 0.00 0.00 0.00 0.00 0.00
E1 0.58 1.05 −0.08 1.09 12.50
E2 −0.10 −0.95 −0.86 6.38 10.54
E3 0.48 0.09 −0.94 7.54 24.35

on two test cases: pure Mg and Mg-Y. Apart from systematic
errors due to approximating the atomistic system by an ap-
proximate PN model, there are three sources of errors entering
the Peierls-Nabarro model: (i) the approximation of the elastic
energy Eel [Eq. (3)]; (ii) the numerical algorithm applied to
solve the model; and (iii) the accuracy of representing the
gamma surface.

To estimate (i), we notice that the basal plane of an hcp
metal can be treated as elastically isotropic. We can therefore
ignore the interaction between screw and edge components
when expressing the elastic energy. The corresponding error
is thus considered to be negligible. To address (ii), we notice
that the applied numerical algorithm in this study is a particle
swarm optimization. This algorithm is believed to effectively
avoid trapping in local minima, nevertheless, this cannot be
guaranteed. In order to find the global minimum and avoid
local minima, we therefore run the optimization calculations
several times with random initial parameters until no further
changes in the absolute minimum are observed. Therefore,
also this error contribution is well under control. Thus the
remaining and major source of errors lies in the representation
of the gamma surface.

In order to analyze the propagation of these errors, the
results computed by the gamma surfaces (γ10, see Sec. II C)
of both Mg and Mg-Y are used below as references. These
references are assumed by definition to be error free [see “E0”
in Table VI(b) ]. By representing the gamma surface of γ5 and
dropping the terms with higher frequencies, we introduce the

first error “E1” [see Table VI(b)]. The core structure and the
Peierls stresses calculated by the five-point approach includes
the approximations of (i) dropping the terms included in γ5 but
excluded from the gamma surface of the five-point approach
γfive-point [Eq. (11)] and (ii) using only five points to fit γfive-point.
These two error sources are merged into the error “E2.” For
the Mg-Y alloy, the error “E2” also includes the influence
of yttrium on the gamma surface symmetry. Total errors
introduced by the five-point approach (i.e., with respect to
the converged γ10 surface) are marked as “E3” in Table VI(b).
Applying the data under the lists of γ10, γ5, and γfive-point, these
errors can be calculated by the following equations:

E1 = Dγ5 − Dγ10

Dγ10

× 100%,

E2 = Dγfive-point − Dγ5

Dγ5

× 100%, (A1)

E3 = Dγfive-point − Dγ10

Dγ10

× 100%,

where Di(i = γ5,γ10,γfive-point) represents the results for the
geometric parameters and the Peierls stresses listed in Ta-
ble VI(a).

Table VI(b) shows the results of these errors. The error bars
of our five-point approach are listed as “E3.” Generally, the
error bars of the Peierls stresses are much larger than those of
the core structure parameters. For example, the maximal error
bars of the core structure parameters are 4% in pure Mg and 7%
in Mg-Y alloy, while for Peierls stresses the error bars can be as
large as 6% for pure Mg and 24% for the Mg-Y alloy. Therefore
Peierls stresses are more sensitive to approximations to the
gamma surfaces than the geometrical parameters describing
the core structures: small variations in the core structures
are magnified when passing to Peierls stresses. Since adding
yttrium atoms slightly breaks the symmetry of the gamma
surface, which introduces an additional approximation to the
case of Mg, the error bars of Mg-Y are generally larger than
those of Mg both in terms of the core structure and the Peierls
stress. Since symmetry breaking is expected for all solutes, we
assume that the error bars for the alloys are similar as for the
Mg-Y.

The errors listed under “E1” (dropping high frequency
components in the gamma surface) are less than 3% for pure
Mg, which means the smaller terms of the high frequencies
(coefficients <10−1 mJ m−2) are not important for the case of
pure Mg. However, neglecting these terms causes a moderate
error for the Mg-Y alloy of 12.5%. Using the five-point
formula (11) instead of expressing the gamma surface up to
k = 5 (i.e., γ5) introduces errors of about 6% to the value of
the Peierls stress and less than 3% to the core structure. In
the case of the Mg-Y alloy, this approximation leads to errors
of 10.5% for the Peierls stress and up to 6% for the core
structure. These error bars validate our approximations and
choice of convergence parameters.
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