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The quasiharmonic (QH) approximation uses harmonic vibrational frequencies ωQ,H (V ) computed at volumes
V near V0 where the Born-Oppenheimer (BO) energy Eel(V ) is minimum. When this is used in the harmonic free
energy, QH approximation gives a good zeroth order theory of thermal expansion and first-order theory of bulk
modulus, where nth-order means smaller than the leading term by εn, where ε = �ωvib/Eel or kBT /Eel, and Eel

is an electronic energy scale, typically 2 to 10 eV. Experiment often shows evidence for next-order corrections.
When such corrections are needed, anharmonic interactions must be included. The most accessible measure
of anharmonicity is the quasiparticle (QP) energy ωQ(V,T ) seen experimentally by vibrational spectroscopy.
However, this cannot just be inserted into the harmonic free energy FH . In this paper, a free energy is found that
corrects the double-counting of anharmonic interactions that is made when F is approximated by FH (ωQ(V,T )).
The term “QP thermodynamics” is used for this way of treating anharmonicity. It enables (n + 1)-order corrections
if QH theory is accurate to order n. This procedure is used to give corrections to the specific heat and volume
thermal expansion. The QH formulas for isothermal (BT ) and adiabatic (BS) bulk moduli are clarified, and the
route to higher-order corrections is indicated.
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I. INTRODUCTION

In nonmagnetic, insulating materials, thermodynamic be-
havior is controlled by vibrational excitations, which are
often close to harmonic. There is a unique and correct
version of harmonic theory, based on Taylor-expanding the
Born-Oppenheimer (BO) energy Eel({ �R�}) around the atomic
coordinates { �R�,0} of a crystal with volume V . The BO energy
is a “ground-state” property, and the main target of density
functional theory (DFT). This gives normal mode eigenvectors
and frequencies ωQ,H (V ), where the index Q = { �Q,j} labels
the states; �Q runs over the N wave vectors of the Brillouin
zone, and j runs over the 3n branches. These states can be
called “noninteracting quasiparticles.” However, in this paper,
the term quasiparticle (QP) will be reserved for the vibrational
resonances seen experimentally. These differ from harmonic
eigenfrequencies because higher-order (“anharmonic”) terms
in the Taylor expansion are not negligible.

In this paper, the term “harmonic” will refer to the unique
correct harmonic limit, further specialized to the case when
the volume is chosen to be V0, where the BO energy is
minimum. It is useful also to know the harmonic normal modes
[and their frequencies ωQ,H (V )] at other volumes; this is the
“quasiharmonic” (QH) theory. The harmonic approximation
is a good starting point, successfully implemented by “ab
initio” DFT calculations [1], and gives a good zeroth-order
approximation for things like specific heat, CP (T ). Vibrational
spectroscopy [2] of reasonably pure crystals most often sees
reasonably sharp Lorentzian resonances. They can be assigned
a wave vector �Q, and are expected to show a one-to-one
correspondence with the harmonic normal modes. They are
the QP’s of this paper. The central frequency ωQ (the QP
frequency, or energy) is T dependent. There is good evidence
from theory-experiment comparisons [3] that the QH energy
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ωQ(V ), evaluated at the correct thermally expanded volume
V (T ) at higher T , does not reproduce well the measured
thermal shifts �ωQ of QP energies ωQ(V,T ). There is an
anharmonic thermal shift, additional to and different from,
the pure volume-related shift of QH theory, and it is often
significant at higher T .

Terminology is not universally agreed upon. Cowley [4], in
his seminal paper, derived the modern Matsubara perturbation
theory for anharmonic effects. He occasionally uses the word
“quasiharmonic” to denote what is here called “quasiparticle.”
In recent literature, QH most often denotes use of ωQ,H (V )
from T = 0 DFT. Occasionally, papers about anharmonic
theory still use “QH” and “QP” interchangeably when referring
to approximate normal modes, ωQ(V,T ), which are here
called QP.

The QP relaxation rate 1/τQ is the full width at half
maximum of the spectroscopic Lorentzian line. In pure
crystals, it lies outside harmonic theory, and is also T

dependent. This paper is about extracting additional ther-
modynamic information from the temperature dependence of
ωQ, ignoring 1/τQ. This suffices for most low-order thermal
corrections. I will call this “quasiparticle thermodynamics.”
It differs from “quasiharmonic thermodynamics.” Deviations
from harmonic vibrations are responsible for thermal shifts
of many properties. The ones of prime concern in this paper
are CP and CV (constant pressure and constant volume), bulk
modulus BT and BS (isothermal and adiabatic), and volume
expansion V (T ) and α = (1/V )dV/dT (constant pressure).
Good general discussions can be found in older literature [4–8].

There are two main ideas in QP theory: (1) low-lying
excitations correspond 1-to-1 with a noninteracting single-
particle picture; they have QP energies �ωQ(V,T ) and
mode occupancies 〈n̂Q〉. (2) The low-energy dynamics can
be described as the dynamics, in space and time, of the mode
occupancy. QP theory can fail in at least two ways. (a) The
resonance can be very non-Lorentzian so that ωQ is poorly
defined. (b) Correlated occupancy 〈n̂Qn̂Q′ 〉 − 〈n̂Q〉〈n̂Q′ 〉 may
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become important. In this paper, nQ denotes the equilibrium
(Bose-Einstein) mean occupancy [exp(�ωQ(V,T )/kBT ) −
1]−1, nQ,H its harmonic or QH version, and 〈n̂Q〉 denotes
the actual occupancy in a general ensemble, not necessarily
equilibrium. Entropy plays a special role [9], since it is
just 1/N times the logarithm of the number of ways of
distributing 〈n〉N�ω of excitation energy into N oscillators of
frequency ω,

Ŝ = kB

∑
Q

[(〈n̂Q〉 + 1) ln(〈n̂Q〉 + 1) − 〈n̂Q〉 ln〈n̂Q〉]. (1)

The equilibrium occupancy nQ is the one that maximizes
Eq. (1) at fixed energy, and the thermodynamic entropy
S(T ) is given by Eq. (1) with 〈n̂Q〉 → nQ. When harmonic
frequencies ωQ,H are used in nQ, the result is the harmonic
entropy SH . When the T -dependent QP energies are used in
nQ, and inserted in S(T ), an accurate improvement of the
thermodynamics is achieved. This will be denoted SQP. The
same replacement does not work for the harmonic free energy.
If ωQ(T ) is inserted into FH , the resulting F does not obey
−dF/dT = SQP. A “correct” QP free energy that does agree
with SQP is found as follows. The thermodynamic energy
U (T ) = F + T S in harmonic theory is

UH =
∑
Q

�ωQ,H (nQ,H + 1/2). (2)

When normal mode frequencies acquire an anharmonic cor-
rection, ωQ,H → ωQ(T ), the energy acquires a correction [10],

UQP =
∑
Q

�ωQ(T )(nQ + 1/2)

− (1/2)
∑
Q

�[ωQ(T ) − ωQ,H ](nQ + 1/2). (3)

This corrects for the double-counting of the interaction, but
only in leading anharmonic approximation where [7]

ωQ(T ) − ωQ,H ≡ �
(2)
Q = 1

N

∑
Q′

(
∂ωQ

∂nQ′

)
0

(
nQ′ + 1

2

)
, (4)

where the superscript �(2) indicates the lowest-order correc-
tion (second-order perturbation theory), which comes from
third- and fourth-order anharmonicity. Further details are in
Appendix. Here, ∂ωQ/∂nQ′ is a T -independent anharmonic
interaction function. In higher-order perturbation theory, there
are presumably additional shifts of the type

�
(3)
Q = 1

N2

∑
Q′,Q′′

(
∂2ωQ

∂nQ′∂nQ′′

)
0

(
nQ′ + 1

2

)(
nQ′′ + 1

2

)
(5)

involving anharmonic interactions up to sixth-order in dis-
placement uQ. We assume these can be omitted, and this
approximation enables the correction in Eq. (3) to be sufficient.
Then an accurate and consistent thermodynamic free energy is
FQP = UQP − T SQP. Notice that the anharmonic shift, Eq. (4),
does not vanish at T = 0, but has a zero-point component
where nQ′ + 1/2 → 1/2. The quasiparticle frequencies are
shifted from the harmonic frequencies even at T = 0.

QH thermodynamics is a limiting case. It uses only the
volume dependence of ωQ,H (V ). The correction factor in UQP,

Eq. (3), vanishes, and the quasiharmonic free energy is just
the harmonic free energy with a volume-dependent harmonic
frequency. It improves pure harmonic theory and gives correct
lowest-order thermal shifts for properties such as the bulk
modulus, which are volume derivatives of F . The reason
it works to lowest order is because dωQ/dV differs from
dωQ,H /dV only in next order. QH theory is computationally
accessible, but QP theory much less so. QP theory suffers from
the difficulty that the anharmonic shift is not usually measured
except at a few temperatures. It can be numerically computed
using DFT for the anharmonic forces. It is not yet computed
routinely, but this is changing [11–16].

The exact theory associates the vibrational resonances
with the poles of a phonon Green’s function, a correlation
function describing the dynamics on the BO energy sur-
face. The exact thermodynamics should be computed from
a corresponding theory for the free energy. This can be
computed perturbatively [4,17]. At high T , classical molecular
dynamics (MD) describes the dynamics nonperturbatively,
if the BO forces are known. This is called ab initio MD,
or AIMD. Thermodynamics generally then requires a tricky
“thermodynamic integration” [15,18–21]. To do a correct
nonperturbative computation at lower T , requires quantum
corrections, as in path-integral MD [22].

Zero-point and related thermal nuclear motions cause
shifts and isotope dependencies in many measured physical
properties [4–7,23–28]. Explicit formulas are given here for
the first-order shifts of CP , BT , BS , and α. If no specification
(adiabatic versus isothermal) is made, isothermal is implied.
The adiabatic shift can be found by thermodynamic rules, as
shown in Sec. VI. Many of these results can be found in some
form in the literature. There is a lot of correct [4–7], plus much
partially correct, as well as incorrect or confusing literature on
this subject. There are semiempirical formulas that have a long
history of enabling useful fitting, even though the formulas do
not seem to be justifiable in detail [29,30]. The aim of this
paper is a simplified, possibly less confusing, derivation of
correct formulas.

The paper is organized as follows. In Sec. II, examples
of thermal shifts from experiments are given. In Sec. III,
extra complexities of noncubic crystals, and crystals with
internal coordinates, are discussed. In Sec. IV, the QH
approximation and the QP approximation are discussed.
Specific heat formulas are presented, showing that the QP
theory provides a thermal correction inaccessible in the QH
approximation. In Sec. V, two orders of thermal correction to
the volume are discussed. This gives a Grüneisen theory of
thermal expansion α0 plus a first-order correction. In Sec. VI,
the leading correction to the bulk modulus is derived (from
QH theory). The Appendix reviews the microscopic theory of
Eqs. (1)–(4).

II. EXPERIMENTAL EXAMPLES

Figures 1–3 illustrate the thermal shifts under discussion.
Figure 1 shows that the bulk modulus has surprisingly large
vibrational corrections [31–40]. These have serious signifi-
cance for geoscience, for example [23,24]. The leading-order
bulk modulus B0 comes from electronic stiffness. The product
B0Va (Va = V0/Nn is the volume per atom in leading order
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FIG. 1. Experimental bulk modulus B vs temperature. The
isothermal data for ice Ih are from Ref. [31]. For NaCl, the low-T
adiabatic data are from Ref. [32], and the high-T data are from
Ref. [33]. The isothermal data for NaCl are from Ref. [34]. For MgO,
the adiabatic low-T data are from Ref. [35] and the high-T data from
Ref. [36]. The isothermal data for MgO are from Ref. [37]. The MgO
data are larger by 10 than the others, and have a weaker thermal
shift. Many metals (Al, Cu, Ni, etc., Ref. [38]) have bulk moduli
similar in magnitude to MgO, with large thermal shifts (similar
to NaCl, for �T ∼ 	D). Covalent materials, like carbon [39] and
silicon [40], are more similar to MgO, showing weaker T dependence.
The dashed lines are approximate extrapolations suggesting that
the zero-temperature, frozen-lattice values of B are larger than
the measured zero-temperature values by ∼15% (NaCl) and ∼9%
(MgO). The extrapolation for ice Ih is not given, and would require
detailed calculations as explained in the text.

theory) has order of magnitude 10 eV, a characteristic electron
energy. Vibrational energies are two orders of magnitude
smaller. I will define ε as the dimensionless ratio of phonon
to electron energies. This will appear explicitly in the form
�ω/BVa or kBT /BVa in various results. A parameter like
ε ≈ 0.01 controls the size of the vibrational corrections under
discussion. Figure 1 shows ≈10% shifts, indicating that there
can be a significant prefactor multiplying ε.

The small parameter ε can be estimated as ε ≈
kB	D/B0Va , where 	D is the Debye temperature. Experi-
mental B and Va may be used. Rough values are ε = 0.0045
(silicon [40]), 0.0087 (MgO [41]), 0.0072 (NaCl [41]), and
0.042 (ice Ih [31,42]). However, the parameter ε for ice Ih
is poorly defined. The number ε = 0.042 used the low-T
	D ≈ 300 K. This measures only thermally excited (acoustic
and librational) vibrations at T � 273 K. The “O-H stretch”
vibrations at the opposite end of the spectrum have �ω/kB

larger by 11. These modes also contribute to the zero-point
shifts in ice. If optic modes are used to define ε, the value of
this “small parameter” increases to 0.5.

It is perhaps worth mentioning that the representation
of a physical property P as an expansion in ε (P = P0 +
P1ε + P2ε

2 + ...) is not forced to have universally defined
coefficients. Especially because the expansion is truncated
after the P1 or possibly P2 term, it is normal that the last
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FIG. 2. Experimental volume Va per atom vs temperature. The
data for silicon are from Ref. [43]. The data for MgO are from
Ref. [44]. The data for ice Ih are from Ref. [31]. The data for NaCl
were constructed by integrating the polynomial expressions for linear
thermal expansion given in Ref. [45]. The dashed curve extrapolates
the NaCl V (T ) using the quasiharmonic high-T slope (valid for T >

	D) dVa/dT = 3kBγ̄ /B0, with experimental values γ̄ = 1.57 and
B0 = 23.7 GPa, as tabulated in Ref. [46]. This suggests that the
zero-point expansion �V (T = 0)/V0 of NaCl is about 5%. Crude
extrapolations for MgO and silicon suggest zero-point expansions
of less than 2% and 1%, respectively. The extrapolation for ice Ih
is not given. Detailed calculations for ice show that (as is true for
silicon as well) Grüneisen parameters are negative for some modes
and positive for others; the theoretical zero-point expansion of ice Ih
was computed to be ≈1% in Ref. [47].

coefficient may (or may not, depending on the source) contain
some higher effects (P1 = P10 + P11ε, for example.) The only
rule is that Pnε

n should contain nothing of lower order than
εn. This will be mentioned again in Secs. V and VI.

The volume shifts [31,43–47] shown in Fig. 2 are smaller in
relative size. Figure 3 shows that α, the temperature derivative
of the volume [48], roughly follows a harmonic specific heat
(CH) type of T dependence. This is the result of Grüneisen
theory [49]. However, at higher T , there is a very significant
thermal shift of both CP (T ) and α(T ) away from the CH(T )
form.

Figures 1 and 2 also illustrate zero-point shifts. Mean square
thermal lattice displacements of the ith atom, in harmonic
theory, are [5]

〈
u2

i

〉 =
∑
Q

�

MiωQ,H

|〈i|Q〉|2
(

nQ,H + 1

2

)
, (6)

where 〈i|Q〉 is the component of the phonon eigenvector |Q〉
on the ith atom, and where nQ is the equilibrium occupation
number. The zero-temperature value 〈u2〉 ∼ �/2Mω is the
quantum zero-point motion, which depends on nuclear mass,
whereas the high-T value kBT /Mω2 is classical and depends
only on the force constant Mω2, not on the nuclear mass
M . The low-T 〈u2〉 causes zero-point shifts of atomic volume
V (T = 0) and bulk modulus, which differ for different
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FIG. 3. Experimental volume expansion α(T ) and specific heat
CP (T ), for crystalline argon, at P = 1 atmosphere, up to the melting
temperature (82.3 K). The data were compiled by Bodryakov [48],
who analyzed ≈10 different experiments. Shown for comparison
is the Debye model with 	D = 81.2 K fitted to CP data. Both
experimental and Debye-model specific heats were scaled, by the
same factor, to lie on top of the volume expansion curve at lower T .

isotopes. Therefore the DFT (“frozen-lattice”) value V0 or
B0 should differ from the actual value V (0) or B(0). It is
interesting that the frozen-lattice value can sometimes be
deduced from experiment [28]. This is because the thermal
factor n + 1/2 at high T becomes x(1 − 1/12x2 + · · · ), where
x = kBT /�ω. An asymptotic linear-in-T fit to n + 1/2 at high
T passes through 0 at T = 0. It is of course difficult to find the
“correct” experimental asymptote, since thermal corrections
enter to alter it. However, the bulk modulus simplifies the fit if
both isothermal and adiabatic versions are available, because
each should extrapolate to the same T = 0 value B0, as is
shown on Fig. 1. Curves of this type are in the review of
Leibfried and Ludwig [6].

We have already seen that the anharmonic shift �ωQ =
ωQ − ωQ,H of phonon frequencies has a similar form, Eq. (4).
The T -independent coupling parameter ∂ωQ/∂nQ′ has con-
tributions like V4 and |V3|2/�ω; see Appendix, Eq. (A3).
They have order-of-magnitude ε�ωQ. For example, the term
of the type |V3|2/�ω involves a third-order anharmonic
coupling coefficient V3, of structure u3∂3Eel/∂u3, and of
order (u/a)3Eel. The ratio (u/a)2 of lattice displacement
to interatomic distance is of order �ω/Mω2a2 ≈ ε. Putting
all these factors together, we see that ∂ωQ/∂nQ′ ≈ εωQ (or
�ωQ/ωQ ≈ ε).

The smallness of the anharmonic shift is only a crude
estimate which sometimes may fail. A failure is likely to cause
anharmonic broadening �Q of vibrations to be bigger than
the spacing of vibrational levels ωQ. In such cases, phonon
quasiparticles are poorly defined, perturbative treatments
may fail, and thermal shifts may not be described well by
quasiparticle theory.

The validity of perturbative computation beyond harmonic
approximation for thermodynamic properties is not a closed
issue. Wallace [26] summarizes evidence for failure of anhar-
monic perturbation theory to reproduce apparently reliable
MD. However, Boltzmann equation treatments of thermal

conductivity are now very successful [50–52], and are based
on the third-order term in the same perturbation theory.
Computations based on DFT anharmonic forces are becoming
more common, and generally claim decent agreement with
experiment. A nice example is theory and experiment for
aluminum by Tang et al. [53]. A thermal conductivity κ >

5 W/mK is a good hint that phonon quasiparticles are mostly
well behaved. This crude estimate comes from κ ∼ Cv�/3
where the specific heat is C = 3kB/a , a is the volume
per atom, v ∼ πωmax/a is the sound velocity, a the lattice
constant, and � the phonon mean free path. Quasiparticle
theory requires � large compared to a, or κ large compared
to κmin = Cva/3. If we choose �ωmax/kB ∼ 	D to be 300 K,
and a to be 5 Å, then κmin ∼ 1 W/mK, and κ > 5κmin should
be sufficient to trust the quasiparticle theory for most of the
phonons of the material. However, 	D may be significantly
bigger or smaller than 300 K, and the criterion could be scaled
to κ > (	D/300 K) × 5 W/mK.

III. NONCUBIC CRYSTALS AND INTERNAL
COORDINATES

Pressure, volume, and temperature are not the only thermo-
dynamic variables in crystals. One can also have anisotropic
stress σαβ and anisotropic strains εαβ . Pressure and volume
change are the traces of these tensors. This paper looks
only at pressure and volume. The generalization to tensor
properties complicates notations and results, but the principles
are not changed. Consider hexagonal structures as a simple
example of noncubic. The separate a(T ) and c(T ) lattice
parameters are relevant thermodynamic variables. They are
also not considered in this paper, only V (T ) = √

3a2c/2 is
considered. When T changes, not only does V change, but
also c/a. This can not be ignored, but is kept hidden in this
paper. The volume-dependent phonon frequency ωQ0(V ) is
treated as a well-defined variable. There is a hidden assumption
that this has been computed at various volumes, and for each
volume, the correct c/a ratio has been found and used in
the phonon calculation. Finally, consider the wurtzite crystal
structure (hexagonal symmetry and four atoms per cell). There
is one “internal coordinate” u(T ), which determines the c-axis
offset between the cation and anion sublattices. This also
cannot be ignored. However, it is hidden by the assumption
that for a particular choice of V , the correct u(T ) as well as
c/a have been computed, and used to find ωQ,H = ωQ(V0),
and ∂ωQ,H/∂V , etc. Cubic crystals can also have internal
coordinates not fixed by symmetry, which need to be treated
the same way.

IV. QUASIPARTICLE THERMODYNAMICS

Even when the harmonic approximation is seriously per-
turbed by anharmonic effects, there may still be phonon
quasiparticles, with effective interactions not too strong. Ther-
modynamics is then approximated by using the QP frequencies
ωQ(V,T ) in the noninteracting entropy formula [9],

SQP = kB

∑
Q

[(nQ + 1) ln(nQ + 1) − nQ ln nQ]. (7)
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Because of the V and T dependence of the QP energy, SQP

has altered V and T derivatives, which give corrections in
thermodynamic calculations [7,25,54–56]. The corresponding
free energy is

FQP = Eel(V ) + Fvib,H(V,T ) + �FAH , (8)

Fvib,H = kBT
∑
Q

ln

[
2 sinh

(
�ωQ(V,T )

2kBT

)]
, (9)

�FAH = −�

2

∑
Q

�
(2)
Q (nQ + 1/2), (10)

where �
(2)
Q = ωQ(V,T ) − ωQ,H was defined in Eq. (4). The

part Fvib,H has the standard form of the harmonic free energy,
but here the quasiparticle frequency ωQ(V,T ) is inserted.
The double-counting correction �FAH is nominally smaller
by ε than the part Fvib,H. This version of FQP is the same
as UQP − T SQP and Eq. (3) for UQP . The quasiharmonic
formulas SQH and FQH are the same except that ωQ(V,T )
is replaced by ωQ(V ), usually calculated by DFT. In that
case, the anharmonic term, Eq. (10), vanishes. In a metal
or a magnetic material, one should include additional terms
in FQP for thermal excitation of electrons or magnons. Such
effects are omitted here. The QH procedure of using just a
volume-dependent QP energy in the harmonic free-energy
formula, does give correct first-order V derivatives, but fails
to give thermal shifts, which depend on T derivatives. In
this sense, it can be regarded as an incomplete, rather than
an incorrect, theory, and as a partially correct simplification
of QP theory. It correctly contains the information available
from DFT calculations of the frequency-spectra at different
volumes. Ramirez et al. [57] made a careful study of the
accuracy of the QH approximation by comparison with well-
converged path-integral MD for three phases of ice. They find
generally very good agreement between QH and PIMD

As an example of QP thermodynamics, consider the specific
heat, C = T dS/dT . The free energy is not needed; the correct
QP entropy is Eq. (7) with QP frequencies in the equilibrium
occupation functions

CX = T

(
∂S

∂T

)
X

≈
∑
Q

�ωQ

(
∂nQ

∂T

)
X

. (11)

Here, X is pressure P or volume V . This gives

CX,QP =
∑
Q

�ωQ

(
dnQ

dT

)
H

[
1 − T

ωQ

(
∂ωQ

∂T

)
X

]
, (12)

where the subscript “H” means (dnQ/dT )H =
(�ωQ/kBT 2)nQ(nQ + 1), obtained by differentiating nQ

by the explicit T in the Bose function, but not by the implicit
T contained in ωQ(V,T ). The first term of Eq. (12) is a
harmonic specific heat CH, but not the purely harmonic C0,
because the frequencies ωQ appearing in the formula are
the renormalized T -dependent quasiparticle frequencies.
The difference between CH and C0 is a gentle T -dependent
stretching of the harmonic C0(T ) curve along the T axis. This
does not affect the high-T classical limit, 3NnkB . A serious
high-T deviation from harmonic theory (see the measurement
for Ar, Fig. 3) must be caused by the second term of Eq. (12).

In QH theory, (∂ωQ/∂T )V = 0, so CV,QH = CH. Also in
QH theory, (∂ωQ/∂T )P = (∂ωQ/dV )T (∂V/∂T )P , so there is
a significant QH correction to CP . QH theory gives the correct
difference, CP − CV , but it misses the anharmonic correction,
which appears in the correct QP theory for both CV and CP .
Computational evidence [55] shows that QH theory shifts
CP (T ) away from the harmonic value C0, but that experiment
exhibits different shifts [58].

V. VOLUME EXPANSION

The aim is to get corrections to one higher order than the
standard Grüneisen theory [49]. The method is to use Eq. (8)
for the free energy, calculate P (V,T ) = −∂F/∂V , and then
find the volume V (T ) at which the pressure is zero. It is
convenient to have a notation for the dimensionless volume
expansion ζ :

ζ = (V − V0)/V0, (13)

where V0 is as usual the volume that minimizes the frozen
lattice (Born-Oppenheimer) energy. For results to order ε2, it
is necessary to know the DFT frozen lattice energy Eel to third
order in ζ ,

Eel(V ) = Eel(V0) + 1
2B0V0ζ

2 + 1
6 Ḃ0V0ζ

3 + · · · . (14)

Here, B0 = V0(d2Eel/dV 2)V0 is the order ε0 electronic contri-
bution to the bulk modulus, and Ḃ0 is the third derivative,
V 2

0 (d3Eel/dV 3)V0 . Ḃ0 is similar in order of magnitude to
B0. The notation Ḃ is used because the notation B ′ means
dB/dP = −1 − Ḃ/B in the equation-of-state theory [23,24].
Normally, Ḃ0 < 0 is found. Crystals are softer when expanded
and stiffer when compressed. From the volume derivative, we
get an “equation of state,”

P (V,T ) = −B0ζ − 1

2
Ḃ0ζ

2 −
∑
Q

∂FH

∂ωQ

∂ωQ

∂V

+ �

2

∑
Q

[
∂�

(2)
Q

∂V
(nQ + 1/2) + �

(2)
Q

∂nQ

∂ωQ

∂ωQ

∂V

]
.

(15)

Making the substitutions ∂FH/∂ωQ = �(nQ + 1/2) and
∂nQ/∂ωQ = −(�/kBT )nQ(nQ + 1), and setting P = 0, this
becomes

ζ = − Ḃ0

2B0
ζ 2 +

∑
Q

�ωQ

B0V
(γQ − δQ/2)(nQ + 1/2)

+ 1

2

∑
Q

�ωQ

B0V

��
(2)
Q

kBT
γQnQ(nQ + 1). (16)

Here, the following definitions have been introduced:

γQ = − V

ωQ

∂ωQ

∂V
, (17)

δQ = − V

ωQ

∂�
(2)
Q

∂V
, (18)

where γQ is the “mode Grüneisen parameter,” and δQ is the
analogous volume derivative of the correction ωQ − ωQH .
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Therefore δQ = γQ − (ωQH/ωQ)γQH , where

γQH = − V

ωQH

∂ωQH

∂V
. (19)

A. Lowest-order (Grüneisen) theory

Grüneisen parameters γQ are of order 1, while �
(2)
Q is a

small anharmonic correction of order εωQ. Therefore δQ is
of order εγQ. All the terms on the right of Eq. (16) except
the first term involving γQ are higher order in ε. Therefore
the leading-order relation for the thermal shift of the volume
[ζ ≡ (V − V0)/V0] is

ζG ≡
(

V − V0

V0

)
G

=
∑
Q

(
�ωQ

B0V

)
γQ

(
nQ + 1

2

)
, (20)

αG ≡ 1

V

(
∂V

∂T

)
G

= 1

B0

∑
Q

CQH (T )γQ, (21)

where CQH (T ) = (�ωQ/V )∂nQ/∂T is the specific heat per
harmonic mode. These are the famous Grüneisen relations.
Grüneisen’s papers [49] of 1912 and 1918 were a remarkable
advance, simultaneous with the first true understanding of
crystals that came from Rutherford and Bohr, von Laue and
the Braggs, Born and von Karman, Eucken, and Debye.
Geophysicists and others like to define an average Grüneisen
parameter γ and to write Eq. (15) as P = Pel + γUvib/V ,
where Uvib is the harmonic vibrational energy, see Eq. (2).
This is called the “Grüneisen equation of state.” It omits the
higher-order corrections, which are now to be discussed.

B. Quasiharmonic theory

The need for corrections is evident from Fig. 3, showing
large high-T deviations of thermal expansion relative to the
specific heat. If Eq. (21) were correct, this would require
unphysically large T dependence of Grüneisen constants. To
correctly find the volume shift ζ to next order, it is necessary
to solve Eq. (16) self-consistently. The job is complicated by
the fact that γQ as defined in Eq. (17), and γQH as defined in
Eq. (19), are volume dependent.

An interesting example is the computation by Skelton
et al. [59] of α(T ) for PbS, PbSe, and PbTe. Above the Debye
temperature, α shows strong T dependence, similar to argon
in Fig. 3. These computations had no anharmonic corrections.
This shows that a good quasiharmonic theory does in fact
have important corrections beyond the lowest-order Grüneisen
theory. The volume-dependent electron and vibrational free
energy in Eq. (8) are included, omitting the correction term
involving �

(2)
Q . The resulting FQH (V,T ) is minimized at fixed

T , giving VQH (T ). This is equivalent to a self-consistent
solution of Eq. (16), omitting the terms involving δQ and �

(2)
Q .

C. Full second-order theory

It is rather messy to do the full solution to second order.
To simplify things, consider just the high-T limit, where
nQ + 1/2 is ≈ kBT /�ωQ and nQ(nQ + 1) is ≈ (kBT /�ωQ)2.
The quantum corrections are factors [1 ± (�ω/kBT )2/12 +

4thorder + · · · ]. Then, to order ε2, Eq. (16) becomes

ζ = − Ḃ0

2B0
ζ 2

0

+ kBT

B0V0(1 + ζ0)

∑
Q

(
γQ(V ) − δQ0

2
+ �

(2)
Q0

2ωQ0
γQ0

)
.

(22)

The subscript 0’s indicate that quantities are all (except the
first appearance of γQ) evaluated at the frozen-lattice T = 0
minimum volume V0. The lowest-order volume expansion, ζ0,
at high T , from Eq. (20) or from Eq. (22) is

ζ0 = kBT

V0B0

∑
Q

γQ0. (23)

The definition of γQ0 is

γQ0 = − V0

ωQ0

(
∂ωQH

∂V

)
V0

, (24)

and the phonon frequencies ωQ0 are similarly the T = 0
harmonic frozen lattice values.

We now need to expand the fully anharmonic γQ around
γQ0, to first order in ζ . This is done in two stages. First, we
expand around γQH ,

γQ(V ) ≡ − V

ωQH + �
(2)
Q

∂
(
ωQH + �

(2)
Q

)
∂V

≈
(

1 − �
(2)
Q0

ωQ0

)
γQH (V ) + δQ0. (25)

Subscripts 0 indicate sufficient accuracy for a first-order result.
Next, we expand γQH (V ) around the volume V0 where γQ0 is
defined. To do this, we need to know the harmonic frequencies
to second order in ζ around V0,

ωQH (V ) = ωQ0[1 − γQ0ζ − γ̇Q0ζ
2/2 + · · · ], (26)

γ̇Q0 ≡ − V 2
0

ωQ0

(
∂2ωQH

∂V 2

)
V0

. (27)

The notation γ̇Q used here [Eq. (27)] is not the same as
V (∂γQ/∂V ) = γQ + γ 2

Q + γ̇Q. The volume dependence of
γQ(V ) has often been neglected. If the mode Grüneisen param-
eter were independent of volume, one could integrate to find
ωQ(V ) = ωQ(V0)(V/V0)γQ . As observed previously [60,61],
there is no justification for this except unwarranted opti-
mism. After some algebra, the relation between γQH and
γQ0 is

γQH (V ) = γQ0 + [
γQ0 + γ 2

Q0 + γ̇Q0
]
ζ. (28)

Combining the two stages, the result is

γQ = γQ0 + [
γQ0 + γ 2

Q0 + γ̇Q0
]
ζ0 − �

(2)
Q

ωQ0
γQ0 + δQ0 + · · · .

(29)
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Finally, we insert this into Eq. (22) and keep only the first-order
corrections. The result is

ζ = ζ0 − Ḃ0

2B0
ζ 2

0 + kBT

B0V0

∑
Q

[(
γ 2

Q0 + γ̇Q0
)
ζ0

+ δQ0

2
− �

(2)
Q0

2ωQ0
γQ0

]
. (30)

The corresponding high-T formula for the volume thermal
expansion coefficient is

α = α0 + �αQH + �αAH . (31)

The leading term, α0, is just the Grüneisen formula evaluated
with frozen-lattice parameters. Its high-T form is

α0 = kB

B0V0

∑
Q

γQ0. (32)

The high-T quasiharmonic correction is explicitly linear in T ,

�αQH = 2T α0

⎛
⎝ kB

B0V0

∑
Q

(
γ 2

Q0 + γ̇Q0
)⎞⎠ − Ḃ0T

B0
α2

0 . (33)

These are smaller than the leading term α0 by a factor like
T α0 ∼ ε. The high-T anharmonic correction is

�αAH = kB

B0V0

∑
Q

(
δQ0 − �

(2)
Q0

ωQ0
γQ0

)
. (34)

This is also smaller than α0 by one power of ε. The anharmonic
factors δ − (�/ω)γ vary linearly with T at high T . This is
why the factors of 1/2 multiplying δQ0 and (�(2)

Q0/ωQ0)γQ0 in
Eq. (30) disappear in Eq. (34) after taking the temperature
derivative.

The QH calculations of Karki et al. [58] for MgO show
that QH corrections, Eq. (33), can cause a large effect, even
exceeding the experimental linear rise in α. The calculations
of Mounet and Marzari [39] also show a significant QH
linear increase of α(T ) in diamond, but less than the shift
observed experimentally by Slack and Bartram [62]. These
results indicate that the anharmonic part of Eq. (31) is as
important as the QH part. A path integral Monte Carlo study
by Herrero and Ramirez [22] confirms this.

VI. THERMAL CORRECTION TO BULK MODULUS

The literature about B(T ) is large because of its importance
in geoscience. The bulk modulus is the simplest and most ac-
cessible part of the elastic constant matrix Cij , all components
of which show related zero-point and thermal alterations. This
paper focuses on B for simplicity, but generalization to the
full elasticity tensor is not hard [6,7,38,39,58,63–69]. The bulk
modulus is dominated by the large electronic contribution B0.
Corrections to first and second order in ε can be found from
the quasiparticle free energy, Eq. (8), and pressure, Eq. (15).
The first-order shift of the isothermal bulk modulus uses only

the first two correction terms in Eq. (15),

P (V,T ) = −B0ζ − 1

2
Ḃ0ζ

2 −
∑
Q

�ωQ

V
γQ(nQ + 1/2). (35)

There is no anharmonic contribution to B = −V ∂P/∂V in
first order. The simulations by Ramirez et al. [57] [using a
fluctuation formula [9] for B(T )] confirm the accuracy of
quasiharmonic theory for phases of ice. For cases like ice,
where volume shifts are relatively large, it is insufficient to
compute only low-order derivatives of energy and vibrational
frequency. However, QH theory, with γQ(V ) computed sep-
arately for different volumes along the QH V (T ) curve, has
been shown to work [57].

Taking the volume derivative of Eq. (35),

BT,QH (T ) = V

V0
(B0 + Ḃ0ζ ) − B0

∑
Q

(
�ωQ

B0V

)

×
[
T

(
∂nQ

∂T

)
H

γ 2
Q +

(
nQ + 1

2

)
γ̇Q

]
. (36)

The last term uses the identity ∂(ωQγQ/V )/∂V = ωQγ̇Q/V 2.
The next to last term uses the fact that V ∂nQ/∂V equals
T (∂nQ/∂T )HγQ. The first term of Eq. (36) is the purely
electronic term, Bel. To first order in ε it can be written
as B0 + (B0 + Ḃ0)ζ0. The high-T version of ζ0 is given in
Eq. (23), and the general expression is the same as the
Grüneisen version, Eq. (20), except frequencies and derivatives
are evaluated at (V,T ) = (V0,0). Then Eq. (36) becomes(

�B

B0

)
T

=
∑
Q

(
�ωQ0

B0V0

)[
− T

(
∂nQ0

∂T

)
H

γ 2
Q0

+
(

nQ0 + 1

2

)(
γQ0

[
1 + Ḃ0

B0

]
− γ̇Q0

)]
. (37)

This equation is contained in somewhat hidden form in
Leibfried and Ludwig [6]. Born and Huang [5] and Wallace [7]
also give this result, except altered because frequencies and
derivatives are evaluated at (V,T ). The paper of Karch
et al. [65] gives an alternate derivation. Many simplified
versions exist [70].

The parameter ε is not truly small for ice Ih. For this
reason, Eq. (37) does not work particularly well [57,71]. Direct
computation and minimization of the QH free energy [Eq. (8)
without the last term] may work. This was used for many years,
even in cases where the shifts are small enough that Eq. (37)
should be adequate [38,39,64,66,72,73]. In cases, like ice Ih,
where ε is too large to use Eq. (37), there is no guarantee
that truly anharmonic terms of order ε2 and higher are not as
important as QH terms found by direct minimization.

It is important to distinguish between adiabatic (BS) and
isothermal (BT ) conditions [63]. The definitions are

BT = −V (∂P/∂V )T = V (∂2F/∂V 2)T , (38)

BS = −V (∂P/∂V )S = V (∂2U/∂V 2)S, (39)

where U and F are the internal energy and Helmholz
free energy, respectively. Thermodynamics gives exact
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relations [6,7,23,24,38,63,74–76],

BS

BT

− 1 = CP

CV

− 1 = T α2BT V

CV

= T α2BSV

CP

, (40)

where CV /V is the heat capacity per volume. The product
αT is of order ε, and CV T/BT V is also of order ε, so the
shift (BS − BT )/B is positive and of order ε. The full tensor
version also is available [7,76–78]. The vibrational corrections
δS (adiabatic) and δT (isothermal) are both first order in ε, and
they differ from each other in the same order. The leading order
value of T α2BT V/CV is sufficient for correcting isothermal
to adiabatic. Using Eq. (21) and the harmonic specific heat,
the result is

BS − BT = T

V

[∑
Q �ωQ0

( ∂nQ0

∂T

)
HγQ0

]2

∑
Q �ωQ0

( ∂nQ0

∂T

)
H

. (41)

Figure 1 shows approximate high-T slopes (dB/dT ) of
both BS and BT for NaCl. In the high-T limit where
�ωQ(dnQ/dT ) → kB , Eq. (41) reduces to d(BS − BT )/dT =
3kBγ̄ 2/Va , where γ̄ = ∑

Q γQ/3N . The slopes shown in
Fig. 1 then require γ̄ ≈ 1.5, in good agreement with other
estimates of γ̄ for NaCl.
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APPENDIX

This appendix tries to illuminate the quasiparticle ther-
modynamics of Eqs. (1)–(4) by using anharmonic thermal
perturbation theory. According to Cowley [4], the vibrational
thermal Green’s function matrix, in the basis of harmonic
eigenstates |λ〉 with frequencies ωλ,H , is

(G−1)λλ′ = (
ω2

λ,H − ω2
)
δλλ′ + 2(ωλωλ′)1/2[�λλ′ − i�λλ′].

(A1)
The eigenvalues ω2 of the matrix Ĝ−1 + ω21̂, with the imagi-
nary part �̂ omitted, are denoted ω2

λ. They are the renormalized
squared normal mode frequencies. If anharmonicity is weak,
then in the leading approximation, these eigenvalues are
ω2

λ = ω2
λ,H + 2ωλ�λλ. At the same level of approximation,

ωλ = ωλ,H + �λλ. Cowley gives an explicit formula from
the lowest-order perturbation theory, for the anharmonic shift
�

(2)
λλ = �

(2)
Q = ωQ − ωQ,H . The normal mode index λ is now

replaced by Q = ( �Q,j ). Cowley’s formula can be written in

the form

�
(2)
Q = 1

N

∑
Q′

∂ωQ

∂nQ′
(nQ′ + 1/2), (A2)

∂ωQ

∂nQ′
= 24

�
V (4)(QQ,Q′Q′)

− 36

�2

∑
Q′′

|V (3)(QQ′Q′′)|2
(

1

ωQ′′ + ωQ′ + ωQ

+ 1

ωQ′′ + ωQ′ − ωQ

+ 1

ωQ′′ − ωQ′ + ωQ

+ 1

ωQ′′ − ωQ′ − ωQ

)
. (A3)

This is an explicit form for Eq. (4). Here, V (3) and V (4)

are third and fourth derivatives of the BO potential taken
around the periodic sites of the crystal of volume V0, and
the frequencies ωQ and the occupation number nQ′ use
anharmonic renormalization (computed self-consistently).

Cowley also derives the anharmonic free energy at the
same level of perturbation theory. His answer can be
written as

F = FH,0 + �

2

∑
Q

�
(2)
Q (nQ + 1/2) + FA0, (A4)

FA0 = − 3

2�

∑
QQ′Q′′

|V (3)(QQ′Q′′)|2

×
(

1

ωQ′′ + ωQ′ + ωQ

− 3

ωQ′′ + ωQ′ − ωQ

)
, (A5)

where FH,0 is the free energy of noninteracting (har-
monic) quasiparticles. Now find the corresponding entropy,
S = −dF/dT . The noninteracting part gives the harmonic
entropy

SH,0 = kB

∑
Q

[(nQ + 1) ln(nQ + 1) − nQ ln nQ]. (A6)

Consider what happens if the “quasiparticle entropy” is
constructed by replacing the harmonic frequencies in Eq. (A6)
by the anharmonic frequencies ωQ,H + �

(2)
Q . Taylor expanding

to first order in �Q, the answer is

�S = SQP − SH,0 = −�

∑
Q

∂nQ

∂T
�

(2)
Q . (A7)

This is the same as the entropy dF/dT from Eq. (A4).
The factor 1/2 in (A4) disappears when using Eq. (A2),
while differentiating Eq. (A4) for �F , because ∂ωQ/∂nQ′

is symmetric in Q and Q′. An alternate derivation using a
variational principle is given in Ref. [55]. This suggests that
the use of QP energies in the harmonic entropy formula may
be valid somewhat beyond low-order perturbation theory.

Consider then what happens if the same substitu-
tion ωQ,H → ωQ is done in the harmonic free energy
FH = ∑

Q �ωQ,H (nQ + 1/2) − T SH . The answer is �FH =
�

∑
Q �

(2)
Q (nQ + 1/2) − T �S. This differs from the correct

anharmonic free energy, Eq. (A4), by not having the correct
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factor of 1/2. This is a proof of the double-counting correction
that was added to the internal energy in Eq. (3). The correct

formula, Eq. (A4), does differ from the QP theory of Eqs. (1)–
(4) by a small T -independent term FA0.
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