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Critical properties of coupled anisotropic Haldane spin chains in a magnetic field
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We use inelastic neutron scattering to measure magnetic fluctuations as a function of transverse magnetic
field and temperature in a single crystal of the coupled Haldane chain compound SrNi2V2O8 with uniaxial
anisotropy. At the base temperature (2 K), spin excitations confirm a field-induced quantum phase transition
from the disordered Haldane (gapped singlet) state to a gapped long-range ordered state through a quantum
critical point (QCP) (μ0Hc ≈ 11.5 T). At elevated temperatures in the vicinity of the QCP, both the energy and
linewidth of the lowest triplet mode scale linearly with temperature, in accordance with quantum criticality. We
also demonstrate that the experimental field dependence of the triplet excitation modes at the base temperature
is in agreement with the bosonic and macroscopic models, but is in contrast to the fermionic and perturbative
models.
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Field-induced phenomena in quantum spin systems are of
special research interest in recent years. The discovery of
field-induced long-range order (LRO) [1,2], magnetization
plateau [3], novel quantum states [4], realization of hidden
rare symmetry [5], etc., has enriched the research in this
field over the last decades. In particular, the realization of
Bose-Einstein condensation (BEC) in quantum magnets gives
an alternative route to understanding the physics behind many-
body quantum systems [6]. Of particular interest is the gapped
one-dimensional (1D) spin systems under a magnetic field. In
zero field these systems have a disordered magnetic ground
state even at T = 0 K due to strong quantum fluctuations. In
general, a sufficiently strong external magnetic field can close
the energy gap by suppressing the zero point fluctuations and
drive the system into a new gapless phase. The low-energy
physics of the gapless phase is similar to that of the intrinsically
gapless S = 1/2 Heisenberg antiferromagnetic (AFM) chain
and can be described by relativistic field theory, also known
as the Tomonaga-Luttinger liquid (TLL) theory [7]. At zero
temperature, the field-induced disorder-order transition is
continuous [through a quantum critical point (QCP)] and
can be described as a quantum phase transition (QPT). At
nonzero temperature, it extends to a broad V-shaped region
of quantum criticality where the physical properties show
universal features independent of microscopic details [8].

In this Rapid Communication we report field-induced
behaviors of the coupled spin-1 Heisenberg chain (also known
as the Haldane chain) compound SrNi2V2O8 with uniaxial
anisotropy. In zero field, SrNi2V2O8 has a disordered spin-
singlet ground state and gapped triplet excitations [9]. An ap-
plied magnetic field results in a QPT to the three-dimensional
(3D) ordered state with two critical fields (μ0H

⊥c
c ≈ 12.0 ±

0.2 T and μ0H
‖c
c ≈ 20.8 ± 0.5 T, respectively, at 4.2 K)

[10]. Both the phase boundaries for H ‖ c and H ⊥ c follow
power law behavior with exponents 0.57 and 0.43, respectively
[9]. In the present study we have employed single crystal
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inelastic neutron scattering (INS) as a function of transverse
magnetic field and temperature to map the evolution of the
spin dynamics. The measured data clearly show that different
dynamical behaviors belong to different magnetic phases. Our
data also reveal universal scaling behaviors in the quantum
critical regime in the vicinity of the QCP, where both the
energy and linewidth of the lowest triplet mode scale linearly
with temperature. Our detailed measurements unambiguously
reveal that the field dependences of the triplet states at the base
temperature are well estimated by the bosonic and macroscopic
model over the full field range, but do not agree with the
fermionic and perturbative models. The experimental phase
diagram of SrNi2V2O8 in the H -T plane is found to be in
good agreement with the theoretical phase diagram predicted
for gapped 1D systems.

The screw chains in SrNi2V2O8 are formed by edge-shared
NiO6 octahedra along the crystallographic c axis. All magnetic
Ni2+ ions (3d8, S = 1) are equivalent within a unit cell. The
screw chains are separated by nonmagnetic VO4 (V5+; 3d0,
S = 0) tetrahedra [9]. The dominant interaction in SrNi2V2O8

is the nearest-neighbor intrachain interaction (J = 8.7 meV).
The presence of multiple competing interchain interactions
(J eff

⊥ /J ≈ 0.03) leads to complicated low-energy excitations
where the Haldane gap is replaced by three energy minima at
different AFM zone centers [11], each of them split into two
modes by the uniaxial anisotropy (D = −0.32 meV) [11].

Single crystals of SrNi2V2O8 were grown by a traveling
solvent floating zone technique [12]. INS spectra were mea-
sured on a cylindrical single crystal (diameter ≈ 6 mm and
length ≈ 30 mm; mass ≈ 2.5 g) by using the cold neutron
triple axis spectrometer PANDA at Heinz Maier-Leibnitz
Zentrum (MLZ), Garching, Germany. A double focusing
pyrolytic graphite monochromator and analyzer were used and

the final energy was fixed at 5.1 meV (kf = 1.57 Å
−1

) with a
cooled beryllium filter after the sample to remove higher order
neutrons. The temperature and field dependent measurements
were performed using a commercial Oxford 15 T vertical
magnet. The zero-field temperature dependent measurements
were performed using a closed cycle refrigerator.
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FIG. 1. (Color online) Field dependence of triplet states at 2 K.
(a) Constant-Q energy scans at the AFM zone center (3,0,1) under
μ0H = 0, 6, 11.5, and 13 T at 2 K. The individual contributions of
the three excitation modes are shown by the dark, medium, and light
shaded regions. The thick red curves through the experimental data
points are the sum of the three contributions. (b) Color map of the field
dependence. The thick solid cyan lines and the thin dashed blue lines
are the calculated field dependence as per the bosonic/macroscopic
and perturbative/fermionic models, respectively (see text for details).

The low-energy excitation spectra (constant-Q scans) of
SrNi2V2O8 at an AFM zone center (3,0,1) are shown in
Fig. 1(a) for transverse magnetic fields 0, 6, 11.5, and 13 T
(H ‖ a; perpendicular to the easy axis along the c axis). First,
the system is characterized in zero field [top panel of Fig. 1(a)].
In agreement with previous studies [10], two distinct branches
of gapped excitations (magnons) are found at 1.56 ± 0.1 and
2.58 ± 0.1 meV, respectively. The two peaks correspond to the
splitting of the triplet states into a longitudinally polarized low-
energy singlet and a high-energy transverse-polarized doublet
by the uniaxial single-ion anisotropy [11]. The contribution
of the individual modes was estimated by the fits to the line
shapes that took account of the instrumental resolution, the
energy gap, and the local curvature of the mode dispersion.
For the field and temperature dependent measurements, the
AFM zone center (3,0,1) was selected where the intensities of
both modes are almost equal.

All the data collected at different fields, including those
plotted in Fig. 1(a), are combined in a 2D color plot in
Fig. 1(b). With the application of magnetic field, the triplet

FIG. 2. (Color online) Temperature dependence of the triplet
states at the AFM zone center (3,0,1). (a) Constant-Q scans at
different temperatures (symbols) in zero field. The data sets are shifted
vertically for clarity. Solid red lines are fits to the data, as described in
the text. Color maps of the temperature dependence under (b) 0 T, (d)
10 T, (e) 11.5 T, and (c) and (f) 13 T. The green circular points are the
fitted peak positions. The blue points in (b) are the mean values of the
triplet sublevels expected without anisotropy. The cyan dashed-dotted
and solid black lines are the fits to the lowest triplet level and the mean
values, respectively, by Eq. (1). The temperature dependence of the
energy gap as per the nonlinear sigma model (NLσM) [22] is shown
by the pink crosses in (b). The dashed line in (d) is the fitted curve
as per Eq. (1). The solid curves in (e) and (f) are the linear fits. (c)
An enlarged view of the 13 T data over low temperatures and low
energies.

states split further into three distinct branches (|1,−1〉, |1,0〉,
|1,+1〉 states) due to the Zeeman effect. With increasing
magnetic field, the lowest singlet mode (|1,−1〉) shifts to
the lower energy and becomes gapless at the critical field
μ0Hc ≈ 11.5 T, resulting in a QPT. The modes |1,−1〉 and
|1,+1〉 show nonlinear field dependence, while |1,0〉 is field
independent. Upon further increasing magnetic field above Hc,
an energy gap reappears and the lowest-energy mode shows a
parabolic type field dependence. Both the higher-energy modes
show an upturn above Hc.

The temperature dependence of the triplet states in zero field
is depicted in Figs. 2(a) and 2(b). With increasing temperature,
the energies of the triplet states increase monotonically and
show an activation type behavior. The inelastic peaks broaden
progressively with increasing temperature and could not be
observed above ∼30 K. The temperature dependences of the
triplet states under magnetic fields of 10, 11.5, and 13 T
(below, at, and above the Hc) are depicted in Figs. 2(d)–2(f),
respectively. At μ0H = 10 T (H < Hc), all the states show
nonlinear temperature dependence similar to the zero-field
case. At the critical field μ0Hc = 11.5 T, the energy of the
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lowest mode increases linearly with increasing temperature,
whereas the two higher-energy modes retain the nonlinear
behavior. At μ0H = 13 T (in the 3D ordered state), the energy
of the lowest mode first decreases rapidly with increasing
temperature and becomes zero at ≈5.5 K (corresponding to
TN ) [Fig. 2(c)], then show a linear temperature dependence
above TN . The higher two modes decrease first with increasing
temperature and then show a nonlinear behavior at higher
temperatures.

The field dependence of the triplet states at the base
temperature (2 K) was compared to various theoretical models.
Several theoretical approaches have been made to explain the
field dependence of the Haldane chains in the presence of
single-ion anisotropy. First, a macroscopic field theory method
(bosonic model) was proposed by Affleck [13,14] based on
the O(3) nonlinear sigma model (NLσM). In this model, a
three-component bosonic field was introduced with a quartic
potential and was treated in the Gaussian approximation. The
anisotropy was introduced by assuming three different masses
(three different gap values �α , α = 1,2,3) for the three-field
components. The second theory was proposed by Tsvelik
[15] (fermionic model) where the spin-1 Heisenberg chain
is described in terms of a field theory of three right- and left-
moving Majorana fermions. This model was successfully used
to describe the field dependencies of the triplet states below the
Hc of the Haldane chain compound Ni(C2H8N2)2NO2(ClO4)
(NENP), which has planar anisotropy. The third theory, pro-
posed by Golinelli et al. [16], uses a perturbation calculation
for the singlet phase (perturbative model). The perturbative
model predicts similar field dependences of the triplet states
and exactly the same critical field values as the fermionic
model. Another macroscopic theory (macroscopic model),
considering a general case of a spin-gap magnet with the
field-induced 3D ordering, was developed by Farutin et al.
[17]. The field dependences of the triplet sublevels and the
critical fields predicted by this theory are identical to the
bosonic model.

The field dependences of the triplet states are calculated
by both the bosonic/macroscopic model (thick solid cyan
lines) [17] and fermionic/perturbative model (the dashed blue
lines) [16] and compared with the present experimental data
in Fig. 1(b). For these calculations, we fixed the zero-field
gap values to 1.57 and 2.58 meV and used the g value of
2.24 [18]. It is clearly evident that the bosonic/macroscopic
model reproduces the observed behavior well all over the
whole field range. However, the fermionic/perturbative model
significantly deviates from the data near the Hc and results in
a different critical field of μ0Hc = √

�1�2/gμB ≈ 15 T. It is
also worth mentioning that, in contrast to our experimental
data, the fermionic model does not predict any change of
slope at Hc for the upper two triplet modes (Fig. 1). The
models are, however, indistinguishable in the low field region
(μ0H < 7 T). In agreement with the present observations, the
field dependences of the isostructural compound PbNi2V2O8

were also described by the bosonic/macroscopic model [19].
On the other hand, for most of the studied Haldane chain
compounds, which have planar anisotropy, the fermionic
model estimates the gap values more accurately [20,21].

The reappearance of the energy gap above Hc indicates
long-range anisotropic magnetic ordering. This is consistent

with our previous magnetization and specific heat study
which revealed 3D magnetic ordering above Hc [10]. The
field-induced 3D ordered state for H > Hc is further evident
from the temperature dependence of the triplet states in the
present study, where with increasing temperature the energy
gap decreases and becomes zero at TN . These results are in
contrast to the theoretical prediction of the absence of long-
range order and gapless excitations of the TLL state applicable
to uncoupled Haldane chains without anisotropy. The three
well-defined excitation modes in the ordered state (H > Hc)
are in contrast to two Goldstone modes in conventional
long-range ordered states. Therefore, at least one of the
three modes must be polarized along the ordered moment
direction (longitudinal magnon). Thus, quantum-mechanical
effects remain significantly important even in the ordered state,
which may be due to small ordered moment values.

The effects of temperature on the triplet states are discussed
below. In zero field, at low temperatures (T → 0), the
gapped magnon excitations in the Haldane chains are long
lived since mutual collisions between them are rare due
to their exponentially small density. However, at elevated
temperatures, the population of magnons is significant and
hence interactions between them become important. The
interactions result into a reduction of magnon lifetimes and
a renormalization of their energies. The quantum NLσM pre-
dicts activation behavior of the Haldane gap with temperature
[22]. This model agrees reasonably well with the experimental
temperature dependence of the Haldane gaps in CsNiCl3
and NENP at low temperatures (T < �) [23,24]. However,
this model is clearly inconsistent with our experimental data
[pink crosses in Fig. 2(b)] over the full temperature range.
Such inconsistencies were also reported for the Haldane
chain compound Ni(C3H10N2)2N3(ClO4) (NINAZ) [25]. The
temperature dependence of NINAZ was successfully modeled
by an empirical modification of the NLσM expression by
replacing the prefactor 2π�(0) by a refinable variable α [25],

�(T ) = �(0) +
√

αT exp

(−�(0)

T

)
, (1)

where the �(0) is the Haldane gap at T = 0 K. Equation
(1) reproduces the experimental data [Fig. 2(b)] well. The
best fitting parameters are α = 0.14 (meV/K)2 and �(0) =
1.58 meV for the lowest mode, and α = 0.105 (meV/K)2

and �(0) = 2.35 meV for the mean energy mode [�mean =
(0.57�+ + 1.41�−)/1.98], respectively. Both α values are
significantly smaller than that of the respective theoretical
values of α = 2π�(0) ≈ 9.9 [22] and ≈14.76 (meV/K)2,
respectively. At 10 T (H < Hc), the temperature dependence
is also reproduced by Eq. (1) [Fig. 2(d)] with �(0) = 0.7 meV
and α = 0.14 (zero-field value).

In contrast to the activation type behavior for H < Hc,
the striking linear temperature dependence of the lowest
triplet mode at and above the Hc [Figs. 2(e) and 2(f)] is
observed. At the critical field μ0Hc = 11.5 T, the lowest triplet
mode follows a linear temperature dependence with a slope
∼0.07 meV/K [Fig. 2(e)]. The linear temperature dependence
(dE/dT ∼ 0.076 meV/K) is also found for μ0H = 13 T
(H > Hc) above TN ≈ 5.5 K [Fig. 2(f)]. These results reveal
that the energy of the lowest mode scales linearly with the
temperature [E(T ) ≈ kBT ] in the vicinity of the QCP (Hc).
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FIG. 3. (Color online) Constant-Q scans over the lowest excita-
tion mode at different temperatures (symbols) under (a) 11.5 and (b)
13 T. Solid red lines are fits to the data, as described in the text.
The data sets are shifted vertically for clarity. (c) The linewidth [full
width at half maximum (FWHM)] of the lowest excitation mode
as a function of temperature at the critical field 11.5 and at 13 T.
The shaded region represents the transition region between the 3D
ordered state and the QC state. (d) The experimental H -T phase
diagram for the Haldane chain compound SrNi2V2O8. The solid and
dashes curves represent the ordered-disorder phase boundary and the
crossover regions, respectively.

Therefore, the intrinsic energy scale of the system is energy
over temperature (E/T , the universal scaling parameter) rather
than these two quantities separately, which is a signature of
a quantum critical (QC) state [26,27]. The scaling behaviors

are further investigated by extracting the linewidths (�) from
the measured excitation spectra. The linewidth was also found
to scale with temperature (� = αT ) [Fig. 3(c)], revealing that
the critical damping is an essential property of the quantum
critical excitations [27]. The change of slope (α = d�/dT )
around 19 K is due to a crossover from the 3D QC state to the
1D QC state. This also implies that the weakly coupled spin
chains feature well-separated temperature scales relevant for
the physics in 3D and 1D, as predicted by a recent theory [28].

The experimental phase diagram is shown in Fig. 3(d),
and reproduces the theoretically predicted phases for quasi-1D
gapped spin systems [28]. The experimental points from the
present study are shown by the half-solid diamonds. Open
square data points are from our previous high-field magne-
tization study [10]. Between the disordered Haldane and the
field-induced long-range ordered states, the dominant behavior
is quantum critical (E/T ) scaling. When the temperature
is larger than the interchain interactions (kBT > J3D), the
system behaves as a set of independent rather than coupled
chains and features a different rate of critical slowing down,
resulting in separate temperature scales for 1D QC and 3D
QC states. The expected phase boundary for the TLL phase
[Tc ∼ 0.76(H − Hc)] [29] is shown by the red dashed line.

In summary, our single crystal INS investigation of the
coupled Haldane chain compound SrNi2V2O8 with uniaxial
anisotropy at 2 K reveals a field-induced QPT with a QCP
at μ0Hc ∼ 11.5 T. The field dependences of the triplet states
are in quantitative agreement with the bosonic and macro-
scopic models, but are inconsistent with the fermionic and
perturbative models. Detailed field and temperature dependent
measurements reveal quantum critical behaviors in the vicinity
of the QCP. Universal scaling is found in the QC regime,
where both the energy and linewidths of the excitations scale
linearly with temperature. Further, the temperature dependent
spin dynamics in the QC regime reveals a crossover between
3D QC and 1D QC states at ∼19 K.
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