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We report on theoretical investigations of scattering asymmetry vs incidence of carriers through exchange
barriers and magnetic tunnel junctions made of semiconductors involving spin-orbit interaction. By an analytical
2 × 2 spin model, we show that when Dresselhaus interaction is included in the conduction band of antiparallel
magnetized electrodes, the electrons can undergo a large difference of transmission depending on the sign of their
incident in-plane wave vector. In particular, the transmission is fully quenched at some points of the Brillouin
zone for specific in-plane wave vectors and not for the opposite. Moreover, the asymmetry is universally scaled by
a unique function independent of the spin-orbit strength. This particular feature is reproduced by a 14 × 14 band
k · p model showing, in addition, corresponding effects in the valence band and highlighting the robustness of the
phenomenon, which even persists for a single magnetic electrode. Upon tunneling, electrons undergo an asymmet-
rical deflection which results in the occurrence of a transverse current, giving rise to a so-called tunnel Hall effect.
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The interplay between particle spin and orbital motion
is currently the basis of new functionalities. These require
efficient spin-current injection at magnetic-nonmagnetic in-
terfaces, efficient spin-transfer torque, and possibly efficient
spin Hall effect with heavy materials [1–4] for magnetic
commutation. Spin-orbit interaction (SOI) at an interface
with broken inversion symmetry may lead to the observation
of Rashba-split states [5–8] which can be used to convert
a perpendicular spin current into a lateral charge current
by inverse Edelstein effect (IEE) [9,10]. In that context,
investigations of SOI in solids and at interfaces is of prime
importance for basic physics and today’s technology.

In this Rapid Communication, we study unconventional
quantum effects resulting in giant transport asymmetry for
electrons or holes in structures composed of exchange and
spin-orbit-split electrodes made of III-V semiconductors with
antiparallel (AP) magnetizations, possibly separated by thin
tunnel barriers. The symmetry of the structure allows a trans-
mission difference vs carrier incidence near interfaces with
respect to the reflection plane defined by the magnetization
and the surface normal. This quantum process departs from
the effect of a beam deviation by the Lorentz force due to
the action of a local magnetic field in the barrier [11] and
from spin-filtering effects occurring in noncentrosymmetric
structures [12,13]. Unlike the latter, the effect we propose
requires the simultaneous action of both in-plane and out-of
plane spin-orbit fields for promoting transport spin asymmetry.
In order to address the issue in a simple way, we first
consider a heterojunction made of two identical magnetic
semiconductors of zinc-blende symmetry, with opposite in-
plane magnetizations: this structure (Fig. 1) constitutes an
ideal exchange step and is a paradigm for exchange-engineered
heterostructures, similarly to symmetrical spin valves in giant
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magnetoresistance [14,15]. Indeed, due to the axial character
of the magnetization, the AP configuration breaks the symme-
try with respect to the reflection plane (in Fig. 1 the reflection
plane is the xz plane), and also some possible rotation and time
conjugation invariances existing in the parallel (PA) magnetic
arrangement [16]. The result is that two waves with opposite
in-plane wave vectors k‖ may be differently transmitted in
amplitude.

We first consider SOI in the conduction band of bulk
materials through the Dresselhaus contribution [17]. Hereafter,
we refer the structure to the x,y,z cubic axes (unit vectors
x̂,̂y,̂z) and assume that electron transport occurs along the z

axis, whereas the magnetization lies along x. We study the
transmission asymmetry when the wave vector component
along y is changed from ξ to −ξ . Electrons are injected from
the first conduction band of material I to the left (ε = 1) into
the first conduction band of material II to the right (ε = −1).
Then, the relevant 2 × 2 Hamiltonians are respectively written

ĤI,II = γc(k2 + ξ 2)Î + wm · σ̂ + (γ̂ χ ) · σ̂

=
(

γc(k2 + ξ 2) − γ̃ ξ 2k −iγ ξk2 + εw

iγ ξk2 + εw γc(k2 + ξ 2) + γ̃ ξ 2k

)
, (1)

where (0,ξ,k) is the electron wave vector; Î is the identity
matrix, γc accounts for the conduction effective mass, m is the
unit magnetization vector, 2w the exchange splitting (assumed
to be positive), σ̂ the Pauli operator, and χ = [0,ξk2,−ξ 2k]
the D’yakonov-Perel’ (DP) internal field responsible for
the spin splitting [17,18]. For the subsequent discussion,
we introduce the tensor γ̂ = (γiδij ) which characterizes the
DP-field strength, with γx = γy = γ , γz = γ̃ , and δij the
Kronecker symbol. We consider the two cases γ̃ = γ and
γ̃ = 0, switching on and off the ξ 2 diagonal perturbation.

The two energies in the exchange and spin-orbit-split
subbands are given by E1 = γc(k2

1 + ξ 2) − w and E2 =

1098-0121/2015/92(6)/060403(5) 060403-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.060403


RAPID COMMUNICATIONS
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FIG. 1. Scheme of transmission process at an exchange-SOI step
with AP magnetizations M and −M along x. The propagation
direction of carriers (straight arrow) is along z with propagative wave
vector k1 whereas the in-plane incident component +ξ (heavy line) or
−ξ (dashed line) is along y; xyz forms a direct frame. The dash-dotted
curve denotes the evanescent waves, either reflected or transmitted.
Carriers with +ξ in-plane wave vector component are more easily
transmitted than those carrying −ξ. Top right inset: Energy profile of
the exchange step; E is the longitudinal kinetic energy along z and
2w is the exchange splitting in the magnetic materials.

γc(k2
2 + ξ 2) + w, where k1 (k2) is the z component of the

wave vector in the lower (upper) subband. These expressions
are correct up to first order in γ provided |γ̃ ξ 2k/w| � 1
and |γ ξk2/w| � 1, where k = k1 or k = k2. The respective
eigenvectors are written

uε,1(ξ,k1) = [
1 − 2εiμk2

1, − ε(1 − 2μ̃ξk1)
]
/
√

2, (2)

uε,2(ξ,k2) = [
1 − 2εiμk2

2,ε(1 + 2μ̃ξk2)
]
/
√

2, (3)

where μ = γ ξ/(2w) and μ̃ = γ̃ ξ/(2w). Note that the norm of
uε,� (� = 1 or 2) only involves even powers of ξ likewise the
direct overlap |〈uε,�|u−ε,�〉|2 between incoming and outgoing
states, so that no ±ξ transmission asymmetry can be expected
in the usual tunneling models, e.g., based on interface density
of states [19–21]. The asymmetry appears in full-quantum
treatments involving matching conditions at interfaces and
may be correctly described by embedding methods [22].

The corresponding wave functions in regions I and II can
be written in a compact form:

	I (z) = αu1,2(ξ,k2)eik2z + βu1,1(ξ,k1)eik1z

+Au1,2(ξ,−k2)e−ik2z + Bu1,1(ξ,−k1)e−ik1z, (4)

	II (z) = Cu−1,1(ξ,k1)eik1z + Du−1,2(ξ,k2)eik2z,

where the α and β (resp. A and B) amplitudes stand for
incident waves (resp. reflected waves) in region I, and C

and D for transmitted waves in region II. Because k‖ is

conserved in the transport process, we are dealing with states
with the same longitudinal kinetic energy E along z and
a total kinetic energy E = E + γcξ

2. The proper matching
conditions are the continuity of the wave function and of the
current wave Ĵ	I,II = (1/�)(∂ĤI,II /∂k)	I,II because ĤI,II

contains no more than quadratic k terms [23–27] and because
γ̂ /γc is continuous. The average transmission coefficient
T (ξ,k1,k2) upon positive and negative incidences is related
to the amplitude of the transmitted wave C(ξ,k1,k2) calculated
with the initial conditions α = 0 and β = 1 through

T (ξ,k1,k2) = |C(ξ,k1,k2)|2 + |C(−ξ,k1,k2)|2
2

, (5)

and we define the transmission asymmetry as

A(ξ,k1,k2) = |C(ξ,k1,k2)|2 − |C(−ξ,k1,k2)|2
|C(ξ,k1,k2)|2 + |C(−ξ,k1,k2)|2 . (6)

It can be checked that, when γ̃ = 0, A(ξ,k1,k2) vanishes
if α and β are real, which is a nontrivial result. The
transmission of a pure up-spin incident electron into a pure
down-spin state is only possible under oblique incidence via
SOI which introduces off-diagonal matrix elements. Moreover,
a nonvanishing diagonal part of SOI is necessary to obtain a
nonzero asymmetry although the z component of the DP field
along z does not depend on the sign of k‖ [28]. Then, from
now on, we take γ̃ = γ . The wave vector k1 in the lower
subband has to be real so that we can define K = k1 > 0. We
introduce the parameter λ > 0 with k2 = iλK , the reduced
longitudinal energy η = E/w = (1 − λ2)/(1 + λ2), and the
incidence parameter t = ξ/K . One obtains

C(ξ,K,λ) =
(

γK2ξ

w

)
[(ξ/K)(3λ2−1) + 2λ(λ2−1)]

(λ−i)2
. (7)

From Eq. (7), it can be checked that A(ξ,k1,k2) = 0
if λ would be taken as purely imaginary; the asymmetry
appears when the lower-energy band carries a propagative state
whereas the upper one acts as a barrier sustaining an evanescent
state. Transport is then described in a two-k-channel model, a
propagative channel (k1) and an evanescent channel (k2). One
obtains

T (t,η) = γ 2

γ 3
c

wt2(1 + η)2[4η2(1 − η) + t2(1 + η)(2η − 1)2]

(8)
and

A(t,η) = 4tη
√

1 − η2(2η − 1)

4η2(1 − η) + t2(1 + η)(2η − 1)2
. (9)

Equation (8) emphasizes the increase of T (t,η) with t

and γ . The validity range defined above can be written
|t2(γK3/γcK

2)| � 1, a condition easily fulfilled.
The analytical asymmetry A is plotted in Fig. 2(a) for

several values of t (full lines), where the symbols refer to the
2 × 2 numerical calculations, showing an excellent agreement.
It can be seen that the curves related to t and t

′ = 1/t are
located at almost symmetrical positions with respect to the t =
1 curve. They admit four zeros in the energy range considered:
(i) two at the two ends of the energy step when either the
propagative or the evanescent state disappears and (ii) one in
the middle of the energy barrier and one for η = 3/4 which is
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FIG. 2. (Color) (a) Universal asymmetry coefficientA vs reduced
energy η = E/w obtained for different values of t = ξ/K [t = 0.01
(black; circles), t = 0.5 (blue; squares), t = 1 (red; stars), and t = 2
(purple; triangles)] by 2-band analytical (full line) and numerical
(symbols) calculations. Two-dimensional map of the transmission
coefficient T in 2 × 2 (b) and 14 × 14 (c) k · p band models for
the exchange-SOI step schematized in Fig. 1; the parameters are
exchange energy 2w = 0.3 eV, total kinetic energy E = 0.08 eV
counted from the middle of the conduction step, and γ = −24 eV Å3;
band parameters of the 14-band k · p model taken from Ref. [30].

particular to Dresselhaus interaction. It is a remarkable result
that A(t,η) does not depend either on the material parameters
or on the sign of γ , thus conferring to A a universal character.
Reversing the magnetization (changing w into −w) makes
transport occur in the k2 channel leading to a change of A(t,η)
into −A(t,η) [29]. An important result is that A is positive
when (m,ξ ,k) forms a direct frame and negative otherwise.

Another striking feature is that an arbitrarily small perturbation
is able to produce a 100% transport asymmetry, i.e., a total
quenching of transmission. Figures 2(b) and 2(c) display the
2-dimensional map of the electron transmission at a given total
energy in the reciprocal space calculated using both a 2 × 2
effective Hamiltonian [Fig. 2(b)] and a full 14 × 14 band k · p
treatment [Fig. 2(c)] involving odd-potential coupling terms P ′
and �′ [30–32]. These calculations are based on the multiband
transfer matrix technique [23,24,33]. We have checked that
transport asymmetry also arises for a tunnel junction where
a thin tunneling barrier is inserted between the two magnetic
layers. Tailoring more complicated structures which involve
resonant tunneling effects allows one to obtain much higher
transmission (a fraction of unity) while keeping the same
magnitude for A [34].

We can calculate the transmitted current, J[t,η] =
Jξ [	II (z)] + J−ξ [	II (z)], originating from incident waves of
equal amplitude with opposite k‖. To the lowest order in γ , we
find

Jy,z[t,η] = 4(γcw)1/2

�
(1 + η)1/2T (t,η)[A(t,η)t ŷ + ẑ]. (10)

Thus, the asymmetrical transmission gives rise to a transverse
momentum and then to a tunneling surface current (per unit
length) jy = Jy × �mfp (�mfp is the electron mean-free path)
which leads to an anomalous tunnel Hall effect (THE) under
the steady-state regime. This effect could be experimentally
investigated at a scale where the thickness of the channel
collecting the current is comparable to �mfp, i.e., not exceeding
a few nm [35]. The ratio of the (surface) transverse to
the longitudinal current j

y
[t,η]/Jz[t,η] = tA(t,η)�mfp then

defines the THE length in the spirit of a recent work dealing
with the IEE phenomenon [9,10]. To gain some numerical
insight, an incident beam in region I with a given angular
dispersion with respect to the z axis gives rise, after angular
averaging at a fixed given energy [36], to a THE length tA�mfp

of the order of �mfp for a beam deviation as large as 45◦ [34].
What happens for the valence bands simply described

within the 6-band Luttinger k · p effective Hamiltonian [37]?
The results are shown in Fig. 3; we have checked that the
14-band model provides similar data with P ′ = 0 and �′ = 0,
surprisingly showing that the absence of inversion symmetry is
not a key feature in the valence band. The lower curve displays
the asymmetry A vs hole energy E in the case of a 3-nm-thick
tunnel barrier. The energy range covers the valence spin
subbands, namely, starting from the highest energy, the up-spin
heavy (light) hole band HH↑ (LH↑), the down-spin light
(heavy) hole band LH↓ (HH↓), and the up (down) spin split-off
band SO↑(SO↓). We refer to points (1) to (6) marked by
vertical arrows in the following discussion. Here, the energy of
the HH↑[HH↓] maximum corresponds to 0.15 eV[−0.15 eV],
the energy origin being taken at the top of the valence band
of the nonmagnetic material, and is indicated by point (1)
[(4)]. Correspondingly, one observes an almost fully negative
transmission asymmetry in this energy range for predominant
majority up-spin injection as far as HH↓ does not contribute
to the current. At more negative energy [E < −0.15 eV: point
(4)], a sign change ofA occurs at the onset of HH↓ (in the upper
left inset, see the step in the transmission coefficient, which
reaches almost +50%); A remains positive after crossing SO↑
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FIG. 3. (Color) Bottom: Transmission asymmetry A vs total
energy E for a magnetic tunnel junction in the AP state. The
parameters are 2w = 0.3 eV, parallel wave vector ξ = 0.2 nm−1,
barrier thickness d = 3 nm, and barrier height 0.6 eV. The energy
zero corresponds to the nonmagnetic upper-valence-band maximum.
Upper left inset: Transmission T calculated in the AP state; upper
right inset: asymmetry A without tunnel barrier (d = 0; black)
compared to the case of the tunnel junction (dotted red).

[point (5)] before turning negative again once crossing SO↓
[point (6)]. Note thatA changes sign two times at characteristic
energy points corresponding to a sign change of the injected
particle spin. We have performed similar calculation for a
simple contact (d = 0; right upper inset in Fig. 3, black curve).
Remarkably, A, although smaller, keeps the same trends as for
the 3-nm tunnel junction, except for a change of sign, showing
a subtle dependence of the exchange coupling on the barrier
thickness. Without tunnel junctions, A abruptly disappears as
soon as SO↓ contributes to tunneling (circle region) i.e., when
evanescent states disappear. In the case of tunnel junction, A,
although small, subsists in this energy range and this should
be related to the evanescent character of the wave function in
the barrier.

To gain physical insight in the case of the valence bands,
let us start from a semiconductor toy model with conduction
and valence states described by Kane’s S, X, Y , and Z real

cubic harmonics (no SOI) [38]. Assume that the exchange-split
semiconductors are separated by a barrier involving SOI,
hereafter introduced as a perturbation. Then, the relevant
wave functions in the barrier are respectively associated
with the wave vectors ξ ŷ ± iλKẑ = K(t ŷ ± iλ̂z) to the
left (+) and right (−). To second order, k · p perturbation
shows that only the Y and Z valence wave functions become
coupled through the conduction state, leading to two energy
subsets with eigenstates ∓iλY + tZ (no energy change)
and tY ± iλZ with an energy shift in the gap equal to
(λ2 − t2)(KP )2/EG, with P 2 = |(2γc/�)〈S|p̂z|Z〉|2. In the
AP state, (−iλY + tZ) ↑ to the left [resp. (tY + iλZ) ↑]
and (iλY + tZ) ↓ to the right [resp. (tY − iλZ) ↓] belong
to the same energy shell, resulting in efficient matching at
particular incidence t . These eigenstates are carrying orbital
momentum along x, namely 〈Lx〉 proportional to −λt , whereas
〈Ly〉 = 〈Lz〉 = 0. Branching L · S SOI into the barrier lifts
the energy degeneracy between states of same spin associated
with ±t and affects the matching conditions so that asymmetry
arises. These effects can be seen as chirality phenomena for
scattering, analogous to magnetic circular dichroism for the
optical absorption in ferromagnets. It makes understandable
why the association of propagating and evanescent wave vector
components may enhance spinorbitronic effects.

We have presented theoretical evidence for large in-
terfacial scattering asymmetry of carriers vs incidence in
semiconducting exchange steps and tunnel barriers. The effect
appears to be robust. Direct experimental investigations can
probably be performed through angle-resolved photoemission
spectroscopy. After averaging over incoming states, a current
perpendicular to the barrier is significantly deflected upon
tunneling resulting in tunnel Hall effects and paving the
way to original functionalities. Preliminary results indicate
that the tunneling asymmetry in the valence band may play
an important role in the analysis of tunneling anisotropy
magnetoresistance data [34].
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n =∑
n′ tn,n′ Ĵψ+
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