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Ab initio theory of magnetic-field-induced odd-frequency two-band superconductivity in MgB2
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We develop the anisotropic Eliashberg framework for superconductivity in the presence of an applied magnetic
field. Using as input the ab initio calculated electron and phonon band structures and electron-phonon coupling,
we solve self-consistently the anisotropic Eliashberg equations for the archetypal superconductor MgB2. We find
two self-consistent solutions, time-even two-band superconductivity, as well as unconventional time-odd s-wave
spin triplet two-band superconductivity emerging with applied field. We provide the full momentum, frequency,
and spin-resolved dependence and magnetic field-temperature phase diagrams of the time-even and time-odd su-
perconducting pair amplitudes and predict fingerprints of this novel odd-frequency state in tunneling experiments.
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I. INTRODUCTION

The pair amplitude of the two electrons forming the Cooper
pair in a superconductor has to obey the Pauli exclusion prin-
ciple, which implies that the two-particle amplitude has to be
antisymmetric under particle exchange. It is generally assumed
that the pair amplitude is symmetric, or even, with respect to
the time-argument difference of the two electrons, which leads
to the standard classification of Cooper pair wave functions
in terms of the remaining symmetry under spatial and spin
rotation [1]. It was, however, pointed out by Berezinskii [2] that
the antisymmetry of the pair amplitude can be fulfilled equally
well when it is odd in time or frequency. Such type of su-
perconductivity cannot be described within Bardeen-Cooper-
Schrieffer theory. After odd-frequency superconductivity was
first proposed for 3He [2], it has since then been proposed
for several materials, including disordered Fermi liquids [3],
high-Tc compounds [4], heavy fermions [5], and hydrates [6].
Odd-frequency superconductivity was also predicted to occur
at superconductor to ferromagnet or to normal metal interfaces
where the spatial symmetry is broken [7–12]. However, in
spite of active research and the important ramifications for our
understanding of superconductivity, unequivocal observation
of this exotic superconducting state remains elusive [13].

Remarkably, it was not until recently that the stability of
bulk odd-frequency superconductivity was theoretically estab-
lished [14,15], thus opening up a window to its experimental
detection. Among all potential states, odd-frequency s-wave
spin triplet (OST) superconductivity [2] appears as the most
robust since it can endure pair breaking by static nonmagnetic
impurities [4]. However, in a bulk material, the OST state
cannot prevail over the even-frequency counterpart unless
an extremely strongly coupled and retarded electron-phonon
interaction is at play [16]. Until a material that fulfills these
conditions is found, alternatively, one could look for special
cases in which odd-frequency pairing could be possible
[17–19]. As pointed out by Matsumoto et al. [18], a plausible
situation arises when an even frequency s-wave spin singlet
(ESS) superconductor is placed in an external magnetic field,
since the breaking of time-reversal symmetry is then expected
to induce an OST component. However, despite this model
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proposal, the existence of time-odd superconductivity in real
materials could thus far not be proven on the basis of a fully
microscopic ab initio theory.

In this work, we report ab initio predictions of magnetic-
field induced odd-frequency superconductivity in the two-band
superconductor MgB2. We develop the anisotropic Eliashberg
framework of superconductivity with the inclusion of an
external magnetic field, which allows for computing both
time-even and time-odd superconductivity as self-consistent
solutions. Taking as input the ab initio calculated electron
and phonon band structure, as well as the momentum and
frequency-resolved electron-phonon coupling, we solve self-
consistently the Eliashberg equations for varying temperature
and magnetic field values. Our calculations unambiguously
show the existence of field-induced two-band OST supercon-
ductivity in MgB2.

II. METHODOLOGY

To treat superconductivity in a magnetic field, we start from
the microscopic Hamiltonian describing electrons, phonons,
the electron-phonon interaction [20], and include the magnetic
field as Zeeman interaction (see Appendix A). The matrix self-
energy �̂(k,ωn), depending on momentum k and Matsubara
frequency ωn, contains the electron-phonon mass renormal-
ization term, a term that renormalizes the magnetic field, and
an even- and an odd-frequency gap function, �e(o)(k,ωn). A
diagrammatic expansion in the Migdal limit leads to four
coupled equations for these four quantities, which are solved
self-consistently in reciprocal space with ab initio input (see
Appendices A and B).

The two-band superconductor MgB2 (Tc = 39 K) [21,22]
is an ideal candidate to study magnetic field induced OST
superconductivity. MgB2 is described thoroughly by ab initio
methods [23]. Its Fermi surface consists of sheets with primar-
ily π or σ orbital character [24]. High frequency in-plane boron
modes lead to an enhanced, very anisotropic electron-phonon
coupling that mediates the pairing [25,26]. Near the center of
the Brillouin zone, the electron-phonon coupling well exceeds
λq ≈ 2 [26]. Thus, for some regions in momentum space,
the electron-phonon interaction in MgB2 becomes strongly
coupled and moderately retarded, therefore the possibility
for odd-frequency pairing is enhanced. Due to the inherent
anisotropy, superconductivity in MgB2 is characterized by a
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FIG. 1. (Color online) Ab initio computed temperature and magnetic field dependence of superconductivity in MgB2. (a) H -T phase
diagram of the even-frequency superconducting component. Dashed (solid) lines denote second (first) order transitions. (b) H -T phase diagram
for the odd-frequency superconductivity. The insets show the Matsubara frequency dependence of each component for several magnetic
field values. The two-gap structure, characteristic of superconductivity in MgB2, can also be discerned. The colorbar value “max” (“min”)
corresponds to 7 meV (0 meV) and 0.3 meV (0 meV) for even- and odd-frequency superconductivity, respectively. (c) Band-resolved magnetic
field dependence of the even and odd pairing amplitudes at low temperature. The lines correspond to the maximum values in Matsubara space
of the momentum averaged superconducting pairing fields on each band, i.e., the peaks of the insets in (a) and (b). Note that the OST pairing
amplitude is an order of magnitude smaller than the respective ESS one.

very anisotropic s-wave, two-gap structure (�π = 2.8 meV
and �σ = 7 meV) [27], which can be explained with
unprecedented precision by the fully anisotropic Eliashberg
theory [28,29]. Our ab initio results for zero field completely
confirm the previous calculations, which supports the accuracy
of our self-consistent solutions for finite magnetic fields (see
Appendix C).

III. RESULTS

In Fig. 1, we show the calculated magnetic field–
temperature phase diagram for the ESS and OST supercon-
ducting components. For H > 0, the OST superconductivity
appears and coexists with the ESS component in the same
H -T regime where the latter is nonzero. The H -T dependence
of the ESS superconductivity follows that of a Pauli limited
superconductor; it goes to zero monotonously via a second-
order phase transition with temperature, except for a very
narrow region near the upper critical field (Hp), where the
transition becomes first order. The transition to the normal state
with the field changes from first to second order above T ≈ 26
K. Our solutions provide the first ab initio prediction for the
paramagnetic limiting field of MgB2 (see, e.g., Ref. [30]),
when orbital effects are neglected. We find Hp = 119 T, which
is significantly less than previous estimations (140 T) [31].
Notably, MgB2 is a type II superconductor in which a vortex
state yields an orbitally limited upper-critical field. However,
as has been shown for MgB2 thin films, the upper critical
field can be greatly enhanced towards the Pauli limit when the
field is applied in-plane and may well reach Hc2 ≈ 70 T [32].
Also, new thin films with greatly enhanced lower critical
fields (Hc1 > 40 T) have recently become available [33]. For
such films, the calculated phase diagrams in Fig. 1 should
be valid up to 40 T. Since the here-computed odd-frequency
superconductivity depends only on the applied field, it should
be finite in the vortex state, as well. At low temperatures,
the two ESS superconducting gaps remain almost constant

up to Hπ ≈ 39 T, as shown in Fig. 1(c). This is the lowest
field strength needed to overcome the binding energy of the
Cooper pairs originating from the π band. Increasing the field
further, leads to partial destruction of the latter gap and the
concomitant decrease of the σ gap, due to the strong interband
electron-phonon coupling in MgB2.

The OST component behaves similar to the ESS as concerns
the order of the transitions to the normal state and its
temperature evolution. However, it exhibits a distinctively
different magnetic field dependence; it follows a re-entrant
behavior with the field, as is shown in Fig. 1(b). The trend
becomes clearer at higher temperature where the re-entrance
peak moves away from Hp. From Fig. 1(c), one can observe
that there exists, up to H ≈ 39 T, a linear dependence of
OST state on the magnetic field irrespective of the band
index. Notably, the OST superconductivity also has a two-gap
structure but the pairing is much weaker than the respective
ESS component. In the absence of the magnetic field, the OST
component is zero.

Next, we examine the Fermi surface momentum depen-
dence of the superconducting gaps, presented in Fig. 2. In
the Eliashberg framework, the gap is frequency dependent
and in general complex [cf. Figs. 2(c) and 2(f)]. Its real part
�′

e(o)(k,ω) for the ESS (OST) superconductivity is related
to the measurable gap edge, whereas the imaginary part
�′′

e(o)(k,ω) corresponds to the damping of quasiparticle ex-
citations by decay with phonon emission. The gap edge in the
anisotropic, zero-field case is given by �′(k,ωk) = ωk [28].
However, here the applied magnetic field lifts the degeneracy
between spin σ = ↑,↓ quasiparticles, providing the Zeeman
splitting. As a consequence, external probes see a supercon-
ducting gap edge that is effectively split in two. Moreover,
the presence of the OST superconductivity further modifies
the gap edge. The relevant expressions can be found from the
poles in the system’s Green’s functions at the Fermi level,

ωk,σ = −σ H̃
′
(k,ωk,σ ) + �′

e(k,ωk,σ ) + σ�′
o(k,ωk,σ ), (1)

054516-2



AB INITIO THEORY OF MAGNETIC-FIELD- . . . PHYSICAL REVIEW B 92, 054516 (2015)

−200 −100 0 100 200
−0.5

0

0.5

ω (meV)

0 0.5
ω (meV)

T=4.2 K, H=40 T

−200 −100 0 100 200
−10

−5

0

5

10

ω (meV)

pa
iri

ng
 a

m
pl

. (
m

eV
)

pa
iri

ng
 a

m
pl

. (
m

eV
)

Γ
M

Γ

M

Γ

(a) (b)

(d) (e)

(f)

(c)

FIG. 2. (Color online) Computed momentum and frequency dependence of superconductivity in MgB2 at T = 4.2 K and H = 40 T.
(a) The Fermi surface of MgB2 in the conventional Brillouin zone colored by the values of the even-frequency superconducting gap edge
�e

↓(k) for spin-↓ quasiparticles. The distribution of the gap edge values is shown in the inset below. (b) The difference between spin-↓
and spin-↑ even-frequency superconducting gap edges. (c) Typical frequency dependence of the real [�′

e(k0,ω) ≡ �′
e(ω)] and imaginary

[�′′
e (k0,ω) ≡ �′′

e (ω)] part of the ESS pairing amplitude at a given point k0 on the Fermi surface. (d) and (e) Same as in (a) and (b), but for
the odd-frequency superconducting gap edge. (f) Same as in (c), but for the real [�′

o(ω)] and imaginary [�′′
o(ω)] parts of the OST pairing

amplitude. Near ω = 0, �′
o(ω) increases linearly with frequency, whereas �′′

o(ω) is almost constant. The latter is finite at ω = 0 as shown in the
inset.

where H̃
′
(k,ωk) is the renormalized magnetic field term that

includes self-energy contributions (see Appendix A). In the
above, the OST spins are perpendicular to H . We define an
effective k-dependent gap edge as �

e(o)
↑(↓)(k) = �′

e(o)(k,ωk,↑(↓)).

The distribution of gap edge values is denoted as �
e(o)
↑(↓) (see

insets of Fig. 2).
Since the real part of the OST order parameter �o(k,ωk)

vanishes at ω = 0 [see Fig. 2(f)], the gap edge of a pure odd-
frequency superconductor should be zero. However, due to
the presence of the ESS superconductivity and the magnetic
field, this is finite in our case. In Fig. 2(a), we show the full
momentum dependence of the spin-↓ ESS gap edge over the
Fermi surface of MgB2. The 3D tubular networks are due to the
π bands, while the almost two-dimensional cylinders are due
to the σ bands [24]. The two-gap structure is similar to the zero-
field case [28] but the momentum anisotropy differs. For the
π bands, we find gap values between 1.8–3.5 meV, which are
close to the zero-field values, while for the σ bands, we find gap
values between 5.6–8 meV and thus an enhanced anisotropy.
Figure 2(b) shows the difference between the spin-split gap

edges of the ESS component. Remarkably, the splitting is more
efficient for the σ bands where the gap edge is larger.

As shown in Fig. 2(d), the OST gap edge is very anisotropic
and at H = 40 T it is two orders of magnitude smaller than the
respective ESS component. Comparing Figs. 2(d) and 2(b),
we find that �o

↓(k) is proportional to the difference of the ESS
gap edges for the two spin components. This finding directly
evidences that the OST superfluid density is proportional to
the number density of spin flipped carriers that participate in
the ESS Cooper pairs. Therefore the OST is subordinate to the
ESS state.

IV. PREDICTIONS FOR EXPERIMENTAL DETECTION

From the spectral function of our system, we have derived
the quasiparticle density of states (DOS) in the superconduct-
ing state, N (ω) = ∑

σ Nσ (ω). This quantity is proportional
to the differential conductance measured in tunneling exper-
iments [29]. Here, we study a normal metal/insulator/MgB2
junction. An experimental setup with an in-plane field and
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FIG. 3. (Color online) Predicted dependence of single-particle tunneling spectra on the magnetic field. (a) Low-temperature supercon-
ducting density of states of MgB2 for several values of the external magnetic field. (b) Comparison between tunneling spectra when the
odd-frequency pairing is included in the Eliashberg calculation and when it is not (black lines). As the field increases, the odd-frequency gap
induces a shift in the tunneling peaks of the order of 0.1 meV. This shift is pronounced for the superconducting gap over the σ bands. (c) In the
absence of external bias, we predict a nonzero signal in the tunneling spectra that is proportional to the imaginary part of the OST gap. This has
a distinct magnetic field dependence, the detection of which will serve as a definite proof for the existence of odd-frequency superconductivity
in MgB2.

carriers injected along the field would minimize the orbital
effects and would therefore best compare with our reported
results. The spin-resolved quasiparticle DOS reads

Nσ (ω)

NF

= 1

2
Re〈|ω + σ H̃(k,ω)|[(ω + σ H̃(k,ω))2

− (�e(k,ω) + σ�o(k,ω))2]−
1
2 〉k, (2)

where NF is the DOS at the Fermi level in the normal state
and 〈. . .〉k denotes Fermi surface averaging. Using our self-
consistent data in Eq. (2), we calculate the magnetic field
evolution of the tunneling spectra at low temperature, shown
in Fig. 3(a). For H = 0, we find two peaks around 3 and
7 meV that signal the quasiparticle excitations above the π and
the σ gaps, respectively [28,29]. We also obtain the recently
observed fine momentum structure of the latter gap [29]. As
the field increases, the peaks begin to split due to the spin
degeneracy lifting. This is clearly visible already at 10 T for
the π peak, while at 20 T, the splitting in both peaks should be
very clearly resolved. The gap starts to close around 39 T where
the magnetic field strength is comparable to the minimum gap
edge value on the π bands.

The odd-frequency component is finite for finite field and
increases linearly with ω in the low frequency regime [cf.
Fig. 2(f)]. Thus one would generally expect the OST gap
to manifest as a shift of the tunneling peaks for finite ω, to
higher (lower) ω due to destructive (constructive) interference
with the dominant ESS gap. However, due to the smallness of

the OST gap, these effects are practically washed out by the
dominant ESS component except for two regions. The first one
is for fields near 39 T, just before the π gap begins to close.
There, the OST gap reduces the magnetic field threshold of
the zero energy peak by 0.5 T. The second is at frequencies
near the σ -band peak, where the OST component shifts the
peak to the right. For 40 T, the calculated peak shift is around
100 μeV and increases with the field as seen in Fig. 3(b).

We now focus on the zero bias regime, ω = 0. This case is
of special interest, since all lifetime effects coming from the
electron-phonon and the Zeeman interaction are absent. The
real part of the induced OST gap is also zero [Fig. 2(f)] but the
situation differs from that in a pure OST superconductor since
here the ESS component provides a robust gap at the Fermi
level. Hence no low-lying excitations should be expected at
low temperatures and small, comparing to the π gap, magnetic
fields. This is certainly true for H = 0 [Fig. 2(a)]. However,
when the field is turned on, the imaginary part of the OST
component �′′

o(k,0) becomes finite [Fig. 2(f)]. This term stems
from damping processes of the quasiparticle excitations caused
by the magnetic field. It contributes an additional lifetime
broadening to the quasiparticles and remarkably enforces a
nonzero result in Eq. (2) even at ω = 0. If the OST is not
included in the theory, the latter is ideally zero. Therefore a
zero-bias signal in the single-particle tunneling appears due to
the induced OST superconducting component. The predicted
signal has a distinct magnetic field dependence, as is shown in
Fig. 3(c), which stands out from any zero-bias noise signal. The
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same should hold even in the presence of vortices, since these
contribute a completely different field dependence [34,35].
This zero-bias plateau is even more pronounced for T < 4.2 K
where the OST state is more favored [Fig. 1(b)]. Thus we
propose that a measurement of the zero-bias tunneling under
magnetic fields less than ∼39 T and at low temperatures would
serve as definite proof for the identification of odd-frequency
superconductivity in MgB2 and in any superconductor that
supports this kind of state.

V. CONCLUSIONS

Our precise quantitative ab initio calculations predict
the existence of odd-frequency superconductivity in MgB2,
provide an in-depth insight into the microscopic nature of this
exotic state, and pave the way for its ultimate experimental
detection. Furthermore, our approach initiates a novel ab initio
“roadmap” for the search of exotic magnetic-field-induced
phenomena (for example, Refs. [36,37]) relevant for both bulk
and interface physics [10,12,38].
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APPENDIX A: ELIASHBERG THEORY
FOR FIELD-INDUCED ODD-FREQUENCY

SUPERCONDUCTIVITY

We start with the most general microscopic Hamiltonian de-
scribing electrons, phonons, and electron-phonon and Zeeman
interactions in a metal,

H =
∑

k

ξk	
†
kρ̂3σ̂0	k +

∑
q,ν

�ωqν

(
b†qνbqν + 1

2

)

+
∑
q,ν

∑
k,k′

gν
quqν	

†
k′ ρ̂3σ̂0	k

+ 1

2

∑
k,k′,q

	
†
k′ ρ̂3σ̂0	k′Vk′−k	

†
kρ̂3σ̂0	k

+μBh
∑

k

	
†
kρ̂3σ̂3	k, (A1)

compactly written using the following spinor:

	
†
k = 1√

2
(c†k↑,c

†
k↓,c−k↑,c−k↓) (A2)

acting on the Pauli basis spanned by ρ̂i ⊗ σ̂j , with i,j =
0,1,2,3. In the above, ξk is the electron dispersion, which
in our case is calculated ab initio and h is an external
magnetic field, ωqν , gν

q are the branch-resolved phonon
frequencies and electron-phonon coupling matrix elements,
also calculated ab initio. As usual, the second quantized
displacement operator for the phonons is denoted as uqν , and ck

(c†k) are electron and bqν (b†qν) phonon annihilation (creation)
operators, respectively.

The full matrix Green’s function follows from the Dyson
equation

Ĝ(k,n) = [
Ĝ−1

0 (k,n) − �̂(k,n)
]−1

, (A3)

with the free matrix propagator

Ĝ0(k,n) = (iωnρ̂0σ̂0 − ξkρ̂3σ̂0 − μBhρ̂3σ̂3)−1, (A4)

where ωn = (2n + 1)πkBT are fermionic Matsubara fre-
quencies. The self-energy is calculated by a diagrammatic
expansion in the Migdal limit:

�̂(k,n) = T
∑
k′,n′

1

NF

[λ(k,k′; n,n) − μ∗]ρ̂3σ̂0Ĝ(k′,n′)ρ̂3σ̂0,

(A5)

where the momentum-dependent electron-phonon coupling is

λ(k,k′; n,n′) =
∫ ∞

0
d�α2F (k,k′; �)

2�

(ωn − ωn′)2 + �2
,

(A6)

with the momentum-dependent Eliashberg function

α2F (k,k′; �) = NF

∑
ν

∣∣gν
k,k′

∣∣2
δ(� − ωk,k′ν). (A7)

Both quantities in (A6) and (A7) were calculated ab initio
using density functional perturbation theory. With NF we
denote the DOS at the Fermi level and μ∗ is the Anderson-
Morel Coulomb pseudopotential.

The matrix self-energy in our studied case has the form

�̂(k,n) = (1 − Z(k,n))iωnρ̂0σ̂0 + χ (k,n)ρ̂3σ̂0

+�h(k,n)ρ̂3σ̂3 + φe (k,n)ρ̂2σ̂2 + iφo(k,n)ρ̂1σ̂1.

(A8)

Here, Z(k,n) is the mass renormalization function, �h(k,n)
is the self-energy that renormalizes the magnetic field and
φe (k,n), iφo(k,n) describe anisotropic s-wave even-frequency
spin singlet and odd-frequency spin triplet superconducting
pairing, respectively [18]. In what follows, we omit the electron
dispersion self-energy, χ (k,n), since this cancels out when we
integrate over energy. We have taken the magnetic field and the
d vector of the odd-frequency spin triplet superconductivity
to lie along the z axis. We note that in our calculations the
effect of the external magnetic field is included as a first-order
perturbation of the electronic energy dispersions calculated ab
initio at zero field. In this sense, the external magnetic field is
not included self-consistently, but since the Zeeman splittings
are, even for fields of up to 100 T, only of the order of a few
meVs, the non-self-consistency is not expected to play any
role.

After integrating over energy, we are left with the following
system of four coupled self-consistent Eliashberg equations
that depend on momentum and Matsubara frequency:

Z(k,n) = 1 + 1

2ωn

πT
∑
n′,±

〈
λ(k,k′; n,n′)

ωn′ ± iH̃(k′,n′)
D(k′,n′)

〉
k′
,

(A9)
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FIG. 4. (Color online) Ab initio calculated electron-phonon properties of MgB2. (a) Computed phonon density of states. (b) Momentum-
integrated Eliashberg function. (c) Phonon dispersion relations along high-symmetry lines. The radius of the symbols is proportional to the
strength of the electron-phonon coupling for each phonon mode, λqν .

�h(k,n) = 1

2
πT

∑
n′,±

〈
λ(k,k′; n,n′)

H̃(k′,n′) ∓ iωn′

D(k′,n′)

〉
k′
,

(A10)

Z(k,n)�e(k,n) = 1

2
πT

∑
n′,±

〈
[λ(k,k′; n,n′) − μ∗]

× �e(k′,n′) ∓ i�o(k′,n′)
D(k′,n′)

〉
k′
, (A11)

Z(k,n)�o(k,n) = 1

2
πT

∑
n′,±

〈
[λ(k,k′; n,n′) − μ∗]

× �o(k′,n′) ± i�e(k′,n′)
D(k′,n′)

〉
k′
, (A12)

with

D(k′,n′) = [(ωn′ ± iH̃(k′,n′))2

+ ( − �e(k′,n′) ± i�o(k′,n′))2]
1
2 . (A13)

In the above, 〈· · · 〉k = ∑
k

δ(ξk )
NF

denotes a Fermi sur-

face average, H(k′,n′) = �h(k′,n′) + μBh, and H̃(k′,n′) =
H(k′,n′)/Z(k′,n′).

The quasiparticle density of states that is proportional to
single-particle tunneling measurements, is

Ns(ω) ∝
∑

k

A(k,ω) ≈ NF

〈∫ ∞

−∞
dξAk(ξ,ω)

〉
k

F

(A14)

with the spectral function

A(k,ω) = − 1

4π
ImTr[ĜR(k,ω)], (A15)

where ĜR(k,ω) is the retarded Green’s function obtained after
analytic continuation of Eq. (A3).

APPENDIX B: PHONON AND ELECTRON-PHONON
COUPLING CALCULATIONS

The ground-state properties of MgB2 are calculated using
density functional theory (DFT) in the local-density approx-
imation (LDA) as implemented in the code ABINIT [39].
The electron-ionic core interaction on the valence electrons in

the systems has been represented by the projector-augmented
wave potentials (PAW) [40], and the wave functions are
expanded in plane waves with an energy cutoff at 24 Hartree
and a cutoff for the double grid of 32 Hartree.

The calculated lattice parameters for the MgB2 hexagonal
structure (P 6/mmm) are a = 3.038 Å and c = 3.462 Å. The
electron-phonon coupling is computed as response function
within the density-functional perturbation theory. We use
a 24 × 24 × 24 k-point grid in the Brillouin zone for the
self-consistent calculations and a 12 × 12 × 6 grid for the
Fermi surface properties. Our results for the phonon DOS, the
Eliashberg function, and the phonon frequency dispersions are
shown in Fig. 4.

APPENDIX C: NUMERICAL SOLUTION OF THE
ELIASHBERG EQUATIONS

The coupled equations (A9)–(A12), supplemented by the
electron and phonon band structure and the electron-phonon
coupling, calculated by first principles, were solved self-
consistently in Matsubara space and the converged solutions
were then analytically continued to real frequencies. In
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FIG. 5. (Color online) Calculated momentum and temperature
dependence of superconductivity in MgB2 at zero field. (a) The Fermi
surface of MgB2 in the conventional Brillouin zone colored by the
values of the even-frequency superconducting gap edge [Re �k(ω) =
ω] at T = 4.2 K and H = 0 T. The distribution of the gap edge
values is shown in the inset below. (b) Temperature dependence of
the even-frequency superconducting gap edges, momentum-averaged
over the σ and π Fermi surface sheets.
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order to ensure a good accuracy for both the ESS and the
OST gaps, we imposed a strict convergence criterion of
xn−xn−1

xn
< 10−8 and allowed up to 4000 iteration cycles. In

all the calculations presented here, we set μ∗(ωc) = 0.16 for
the Coulomb pseudopotential with a cut-off frequency ωc =
0.5 eV. With these parameters we obtain Tc = 39.8 K for
H = 0.

For completeness, we mention that the same calculations
with μ∗(ωc) = 0.165 give Tc = 39.1 K. We have also checked
that ωc is sufficiently large and that results do not change by in-
creasing this cutoff. The analytic continuation was performed
numerically by employing the high-accuracy Padé scheme
based on symbolic computation of Beach, Gooding, and
Marsiglio [41] with a chosen precision of 250 decimal digits.

Our results for zero magnetic field are in excellent agree-
ment with experiments and the theory reported previously [28],
as can be seen in Fig. 5. For completeness, we also report
here the frequency dependence of the analytically continued
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FIG. 6. (Color online) Calculated frequency dependence of su-
perconductivity in MgB2 at T = 4.2 K and zero field. Real (black)
and imaginary (red) parts of the even-frequency superconducting pair
amplitude �(k,ω) at several Fermi surface points.

superconducting pair amplitude (Fig. 6), which is also in good
agreement with previous work [42].
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