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Time-resolved statistics of nonclassical light in Josephson photonics
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The interplay of the tunneling transfer of charges and the emission and absorption of light can be investigated in
a setup, where a voltage-biased Josephson junction is connected in series with a microwave cavity. We focus here
on the emission processes of photons and analyze the underlying time-dependent statistics using the second-order
correlation function g(2)(τ ) and the waiting-time distribution w(τ ). Both observables highlight the crossover from
a coherent light source to a single-photon source. Due to the nonlinearity of the Josephson junction, tunneling
Cooper pairs can create a great variety of nonclassical states of light even at weak driving. Analytical results
for the weak driving as well as the classical regime are complemented by a numerical treatment for the full
nonlinear case. We also address the question of possible relations between g(2)(τ ) and w(τ ) as well as the specific
information which is provided by each of them.
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I. INTRODUCTION

New possibilities offered by sources of nonconventional
light are of interest for a wide range of applications. These
range from secure quantum communication or teleportation
to measurement, starting as early as the laser with more
recent proposals exploiting squeezing properties for enhanced
sensitivity and to tackle noise limitations [1]. On the other
hand, superconducting circuit quantum electrodynamics de-
vices have demonstrated the ability to create on demand any
arbitrary state of light in a microwave stripline cavity, as
shown by mapping out the Wigner densities of Fock states
and their superposition, and of cat states in a multishot
creation and read-out cycle [2]. Here, we will discuss a setup
combining these ideas in exploiting a superconducting device
as a continuous source of microwave light with interesting
quantum-statistical properties.

Over the last years, a variety of different experimental
realizations [3–8] and theoretical investigations [8–18] have
been dedicated to the continuous emission of photons into a
cavity mode by the Cooper-pair (CP) current across a dc-biased
Josephson junction (JJ). A microwave resonator connected in
series to the junction hereby works as a well-defined electro-
magnetic environment absorbing the energy provided by the
bias to each tunneling CP by creating photons. The nonlinearity
of the JJ translates into a complex photon creation process
stretching from suppression or enhancement of higher cavity
excitations to multiphoton resonances. The excited photons
finally leak from the resonator so that their mean emission
rate and spectrum can be measured [6]. Employing high-Q
superconducting resonators, far-from-equilibrium states [3,7],
with high-photon occupations can be achieved; this can be
used as a basis for analyzing the quantum-classical crossover
and to investigate nonlinear effects [12–14], such as number
squeezing. Highly attractive in this class of systems is the
feature that measuring the emitted microwave radiation can
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indirectly yield information about the CP current and its
fluctuations and vice versa [6]. Generally speaking, these
hybrid circuits combine observational tools, methods, and
phenomena known from the fields of quantum optics and
charge transfer physics (Josephson photonics). Ultimate goals
are to design sources for the on-demand production of single
photons and highly nonclassical multiphoton states (entangled
photons) in the microwave up to the low-frequency terahertz
regime.

In this paper, we concentrate on the bright (photonic) side
of this setup and study the time-resolved statistics of photonic
emission events by means of the second-order correlation
function g(2)(τ ) and the waiting-time distribution w(τ ). Both
functions are well-known tools from quantum optics [19,20]
to study correlations of photonic emission events but have
recently also been addressed to electron statistics in transport
systems [21–26], where relations to other common statistical
properties of electronic transport, e.g., full counting statistics
or the noise spectrum, have been discussed [21,24].

To model the circuit of a voltage-biased JJ in series with
a resonator, we employ effective Hamiltonians derived in
Refs. [12,13] to describe the system close to the one- and
two-photon resonances. In conjunction with a master equation
of Lindblad form modeling the impact of the environment
on the system, most importantly the photon leakage, we can
then study photonic correlations via the two time-dependent
observables g(2)(τ ) and w(τ ). While the full nonlinear quantum
case requires generally numerical calculations, analytical
expressions can be obtained in the weak-driving regime as well
as in the classical limiting case on the basis of a perturbation
treatment.

Crucially, the inherent nonlinearity of the JJ enters the
effective Hamiltonians as a nonlinear driving term, not as a
nonlinear potential. The impact of nonlinearities is thus not
only determined by the strength of driving given by the Joseph-
son energy EJ , but more importantly by tunneling matrix
elements of the drive Hamiltonian between resonator states.
These depend on a dimensionless parameter κ characterizing
the importance of charge quantization of the CP current by the
ratio of the total charging energy to the energy of a resonator
photon. In consequence, the JJ-resonator system can reduce
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to a number of simpler systems, from a driven harmonic
oscillator or a parametric amplifier, when the CP current
becomes classical (κ → 0) to a two- or few-level system for
special values of κ .

We will investigate how the crossover between these special
cases is reflected in the statistics of emitted light, changing
from a coherent light source to a single-photon source, where
g(2)(τ = 0) = 0. Additionally, we examine possible relations
between g(2)(τ ) and w(τ ) and use the specific physical
information which is provided by each of them to reveal to
what extent the system features a renewal property. This is
found to be the case for the harmonic-oscillator limit (κ → 0
or weak driving) as well as the two-level system.

The paper is organized as follows. In Sec. II, we present our
theoretical model and introduce the observables for studying
correlations, the second-order correlation function g(2)(τ ) and
waiting-time distribution w(τ ). Section III discusses various
aspects of the time-dependent statistics of photon emission
events by means of these two observables close to the
one-photon resonance (Sec. III A) and later in (Sec. III C)
for the two-photon resonance. Relations between g(2)(τ ) and
w(τ ) and renewal properties of the system are considered
in Sec. III B. Finally, Sec. IV contains the conclusions
and an outlook addressing the open questions for further
research.

II. MODEL

In the following, we briefly discuss our modeling of the
JJ-resonator circuit, i.e., we introduce the model Hamiltonian
and a quantum master equation in Lindblad form describing
the impact of the environment. On the basis of the master equa-
tion, we can calculate arbitrary time-independent correlation
functions, for instance, the second-order correlation function
g(2)(τ ) and the waiting-time distribution w(τ ), introduced in
the last part of this section.

A. Hamiltonian

The Hamiltonian of a voltage-biased JJ-resonator circuit

H = q2

2C
+

(
�

2e

)2 1

2L
φ2 − EJ cos (η) − 2eVeffN (1)

is constituted from its two subunits: the resonator described as
harmonic oscillator with mass m = (�/2e)2C and frequency
ω0 = 1/

√
LC and a JJ with Josephson energy EJ and phase

η across the junction [13]. These two parts are coupled
dynamically by means of an effective voltage Veff = V − Vres,
where V represents the external voltage and Vres the voltage
drop at the resonator. Here, the number operator N counts
the number of CPs which have transferred across the JJ.
Both charge operator q and resonator phase φ as well as
number operator N and junction phase η represent sets
of conjugate variables, i.e., [q,φ] = −2ie and [N,η] = −i,
respectively.

Applying a gauge transformation on this Hamiltonian (1),
mapping it to a frame rotating with the (ac-)Josephson
frequency ωJ = 2eV/�, and performing a rotating-wave

approximation1 finally yields [12,13]

H (p) = ��n − (−i)pE∗
J

2
: [(a†)p + (−1)pap]

Jp(
√

4κn)

np/2
:

(2)

close to the p-photon resonance, � = ω0 − ωJ/p ≈ 0. Nor-
mal ordering is indicated by colons. The Bessel function Jp

of the first kind is a function of the photonic number operator
n = a†a, where a and a† represent the conventional bosonic
ladder operators of the resonator. The dimensionless parameter
κ = EC/�ω0 = �/2mω0 is a scale related to the granularity of
charges in the circuit via its total charging energy EC = 2e2/C,
while E∗

J = EJ exp (−κ/2) is a renormalized Josephson en-
ergy [27]. Note that experimentally EJ is easily tunable using
a superconducting quantum interference device (SQUID) con-
figuration for the JJ, from its maximum value down to the low
percentage range. The parameter κ is basically fixed by design
and tunable in situ only to a limited extent, e.g., by accessing
different resonator modes. First experiments found κ ∼ 0.1,
while new setups based on highly inductive metamaterials
consisting of SQUID arrays [28] may already reach κ ∼ O(1).

In case that we consider the regimes of weak Josephson
couplings going along with a low-photon occupation in the
resonator or κ � 1 such that κ〈n〉st � 1, the Bessel function
can be linearized using Jp(x) 
 xp/(p! 2p). In lowest order,
i.e., Jp(

√
4κn)/np/2 ≈ κp/2/p!, this then leads to H

(p)
0 =

��n − [(−i)pκp/2E∗
J /(p! 2)][(a†)p + (−1)pap], which real-

izes special cases of systems which are of particular interest
in the following discussion.

For p = 1, we obtain the Hamiltonian of a driven harmonic
oscillator

H
(1)
0 = ��n + i

√
κE∗

J

2
(a† − a), (3)

with the driving term inducing coherent states. For p = 2, one
has a parametric amplifier [29]

H
(2)
0 = ��n + κE∗

J

4
[(a†)2 + a2] , (4)

where the exponentiated driving term takes the form of a
squeezing operator. For p > 2, the driving source generates
multiphoton processes in the resonator and thus nonlinear
optical phenomena.

As we will discuss in detail in the following, the full
Hamiltonian H (p) also allows to engineer N -level systems
by restricting the possible number of photon excitations in
the resonator through a proper choice of the κ parameter. For
example, for p = 1 fixing κ = 2 leads to a vanishing transition
matrix element Tm,m+1 = 〈m | H (1) | m + 1〉 for m = 1.2 That

1The rotating-wave approximation corresponds to the perfect cavity
limit (Q → ∞). The relevance of non-RWA terms is discussed in
Ref. [14]. Note also (see discussion in Ref. [16]) that the phase
operators exp (±iη) can be reduced to simple phase factors under
experimentally relevant conditions.

2Rewriting the normal-ordered Bessel function, the
transition matrix elements can be expressed as Tm,m+1 ∝
〈m | exp [i

√
κ(a† + a)] | m + 1〉 reflecting the connection to

Franck-Condon physics.
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means the driving JJ cannot cause transitions between the
neighboring excited states 1 and 2 of the resonator and we
obtain an effective two-level system since all inaccessible
higher levels can be ignored (at zero temperature).

B. Quantum master equation

The dynamics of the reduced density operator of the system
at zero temperature is described by a master equation in
Lindblad form [29]

dρ

dt
= Lρ = − i

�
[H (p),ρ] + γ

2
(2aρa† − nρ − ρn), (5)

which can be written in terms of the Liouvillian L. According
to the experimental realization [6], the dissipator captures the
effect of high-frequency modes of the electromagnetic envi-
ronment acting as a dissipative heat bath on the circuit which
leads to photon leakage from the resonator. The corresponding
rate γ , the inverse of the photon lifetime in the resonator, is
often expressed as a quality factor Q = ω0/γ . Experimental
observations [6] and theoretical considerations [13] show that
additional low-frequency voltage noise affecting the JJ is weak
and can be neglected for all observables considered here.

In the following, we employ a decomposition L = L0 + J

of the time evolution of the system [21,30,31] into two parts,
one describing the emission of a photon from the resonator in
terms of a jump operator J defined by its action on the reduced
density operator:

Jρ = γ aρa†. (6)

The remaining part L0 captures the dissipative, theoretically,
but deterministic system dynamics while no photon emission
events occur.

C. Observables for studying correlations

Two observables will be used in the following to investigate
the time-independent statistics of photon emission events.
Their formal definition within the master-equation formalism
is based on the Liouvillian decomposition L = L0 + J.

The second-order correlation function

g(2)(τ ) = 〈JeLτJ〉st

〈J〉2
st

(7)

is a measure of correlations between two system jumps and
thus two photon emission events separated by a time τ [19,24].
The notation 〈. . . 〉st indicates here that the system is in steady
state before the first jump, i.e., 〈O〉st = Tr{Oρst} with Lρst =
0. For the time-independent problem here this also implies
dependence on the time gap τ only (and not individually on
the two jump times). The time evolution in-between the jumps
is governed by the full Liouvillian L allowing for additional
jumps.

The waiting-time distribution

w(τ ) = 〈JeL0τJ〉st

〈J〉st
(8)

is the probability distribution for a delay τ between two
subsequent system jumps and thus two subsequent photon
emission events [20,21]. Now, the time evolution is determined

by L0 = L − J excluding any photon emission events during
the time delay τ .

The waiting-time distribution according to Eqs. (8) and (6)
is sometimes referred to as a reduced form of a “full”
waiting-time distribution. The jump operator J is based upon
ladder operators a(†), which in the current context should
be understood as a sum of many “elementary transitions”∑

n

√
n + 1 |n〉 〈n + 1|, with each transition connecting only

two states in Fock space. J is thus a sum over several
elementary jump processes, defined as resulting in a certain
fixed density matrix state, and so can not resolve the nature of
the transition completely [21]. This reflects that from the fact
that a photon leaking from the cavity is detected, no conclusion
can be drawn as to which particular transition took place.

Experimental observation of both g(2)(τ ) and w(τ ) is, of
course, well established in quantum optics. In the microwave
regime, correlation function measurements have been per-
formed by the use of linear detectors [32–34] and some
progress has already been made for the setup considered
here [18].

III. RESULTS

A. g(2)(τ ) and w(τ ) at the one-photon resonance

This first part of the results section focuses on the physics
at the fundamental resonance, where the voltage applied to the
JJ is tuned such that the energy of a CP tunneling across the
junction equals the energy of one photon at the resonator and
hence each tunneling CP excites one photon.

1. From the harmonic oscillator to the two-level system

Following, we will present results for the g(2)(τ ) and the
w(τ ) functions from the numerical solution of the Lindblad
master equation (5) and discuss various analytical approxi-
mations in certain regimes. Before, however, we will shortly
recapitulate what to expect for the special cases where the
system Hamiltonian reduces to a driven harmonic oscillator
and to a driven two-level system.

For the harmonic oscillator it is well known and easily
shown using the Lindblad master equation that in the (detuned)
driven damped case its stationary solution is a coherent
state |α〉 = exp (−|α|2/2)

∑∞
q=0 αq |q〉 /

√
q! with amplitude

α fulfilling classical equations of motion

0
st= α̇ = −

(γ

2
+ i�

)
α +

√
κE∗

J

2�
. (9)

The corresponding density matrix reflects the defining prop-
erty of the coherent state and is an eigenstate of the jump
operator J [Eq. (6)] for any α. For α fulfilling the steady-state
equation of motion (9) it is also an eigenstate of L to eigenvalue
0 and thus also an eigenstate of L0. The time propagation from
t to t + τ under L or L0 then follows directly and yields

g
(2)
HO(τ ) = 1, (10)

wHO(τ ) = γ 〈n〉ste
−γ 〈n〉stτ . (11)

Both functions clearly display the Poissonian nature of the
photon emission events being statistically independent. In
contrast to g(2)(τ ), the waiting-time distribution w(τ ) depends
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on a mean decay rate γ 〈n〉st = (
√

κE∗
J /�γ )2γ /(1 + 4�2/γ 2)

and thus is a function of the driving strength
√

κE∗
J /�γ as well

as the detuning �. In the following, we will generally use the
stationary mean photon occupation

n0 = κ

(
E∗

J

�γ

)2

(12)

of the harmonic oscillator in case of resonance as a reference
measure of the driving strength even in the nonharmonic
regimes.

For a two-level system, the g(2)(τ ) and w(τ ) functions can
also be straightforwardly calculated, as the time propagation
under L or L0 can be easily explicitly solved for the two-level
Hilbert space. This leads to damped Rabi oscillations, e.g., on
resonance � = 0 [20,35],

g
(2)
TLS(τ ) =1−e− 3

4 γ τ

[
cosh (μ1γ τ )+ 3

4μ1
sinh (μ1γ τ )

]
,

wTLS(τ ) = γ

μ2
2

n0e
−γ τ/2 sinh2

(μ2

2
γ τ

)
(13)

with μ1 =
√

(1/4)2 − n0 and μ2 = √
1/4 − n0.

These results for the special cases of a harmonic oscillator
and a two-level system, shown in the middle panel of Fig. 1,
will in the following serve as a starting point to understand
deviations from and the crossover between those special cases.
The crossover is essentially governed by the two parameters κ

and n0. While the former effectively changes the level structure
by determining the relative size (and phase) of the driving
matrix elements, the latter corresponds to the driving strength
and decides how much of the nonlinearity of the system can
actually be explored.

Both the g(2)(τ ) and the w(τ ) correlation function can
be expressed as an expectation value of J with respect
to a modified density operator ρ̃(τ ) = �(τ )Jρst with �(τ )
being the respective time-evolution operator. g(2)(τ ) and w(τ )
can thus explicitly be calculated by means of a numerical
implementation of the time evolution of the reduced density
operator ρ governed by L and L0, respectively.

Numerical results are displayed in the left and right panels
of Fig. 1, setting � = 0 for simplicity. While Fig. 1(a) shows
how the g(2)(τ ) changes with κ for a fixed small driving
strength n0 = 0.2, Fig. 1(d) pictures the w(τ ) function for
fixed κ = 1.5 and increasing driving strength.

We easily recognize the two special cases of the harmonic
oscillator and the two-level system additionally labeled by the
respective pictogram in the plot of g(2)(τ ). Due to the weak
driving and the corresponding small 〈n〉st, only the lowest
states are occupied and the system is close to equilibrium.
g(2)(τ ) approaches here its long-time limit of 1 very soon
featuring only small damped oscillations around this value.
Since the w(τ ) function represents a normalized probability
distribution, it will vanish in the long-time limit. As in
the harmonic-oscillator case (11), w(τ ) includes exponential
decay terms with rates ∼γ n0. In the limit of strong driving, this
exponential decay, however, is superimposed by oscillations
with frequency ∼γ

√
n0. For weak driving, the short-time

behavior of both g(2)(τ ) and w(τ ) is governed by a time scale
∼γ −1.

More features of the full numerical results will be explained
by the analytical solution in the weak-driving limit (see
Sec. IIIA2), where we will also discuss Fig. 1(a) further. As a
preliminary conclusion, we can state that our system realizes
a harmonic oscillator for κ = 0 and a two-level system for
κ = 2. For arbitrary values of κ , correlations for the weakly
driven system are similar to the harmonic case after some
initial short-time deviations, while for stronger driving features
resembling the two-level system appear. To understand the
physical information contained in the two correlation functions
in more detail, we now turn to analytical results providing exact
expressions for various contributing terms and time scales.

2. Approximations for weak-driving and semiclassical limits

For the numerical results above, g(2)(τ ) and w(τ ) are found
by calculating the time evolution over a time τ of the stationary
density matrix after a jump occurred at time t = 0 under the
action of the Liouvillian L [or L0 respectively for w(τ )].
For analytical results, we similarly consider the action of the
adjoint Liouvillian L† or L

†
0 on system operators. Making use

of the quantum regression theorem [35], this yields a linear
system of first-order differential equations to determine g(2)(τ )
or w(τ ). However, in general, these systems will not close but
produce a hierarchy of higher-order operator expressions.

A closed system of equations will appear either if the
number of system states is limited or if higher-order ex-
pressions drop out due to an (approximate) factorization into
low-order terms. The number of states will thereby be limited
if transitions to higher states are forbidden due to vanishing
matrix elements of the driving Hamiltonian (as discussed
above in the two-level case) or small as in the limit of weak
driving n0 → 0. In contrast, higher-order expressions do not
appear in the harmonic-oscillator case or will approximately
drop out in the semiclassical regime (n0  1, κ → 0).

In the regime of weak driving n0 � 1, we can approximately
consider a three-level system and thus neglect all operator
contributions (a†)

m
an with m > 2 or n > 2 to find a closed

system of differential equations. Solving this system then
yields for the second-order correlation function the analytical
expression

g(2)(τ ) = 1 + κ2

4
e−γ τ − κ cos (�τ )e−γ τ/2, (14)

with small next-order correction terms of order n0.
Considering for the moment the resonant case � = 0, the

correlation takes the simple form g(2)(τ ) = (1 − κe−γ τ/2/2)2

so that one observes complete antibunching at times γ τ =
2 ln(κ/2) for κ � 2. This is indeed found in the numerical data
of Fig. 2 for extremely weak driving, while this feature tends to
be absent for somewhat larger driving [see Fig. 1(a)]. As has
already been discussed elsewhere [14], in the weak-driving
limit g(2)(τ = 0) is directly linked to the occupation of the
second excited state P2 and, hence, to the probability that the
resonator gets excited by a second CP tunneling event before
it has relaxed to its ground state. This occupation can be found
by a simple rate-equation description resulting in

g(2)(0) ≈ 2P2

P 2
1

≈ 1

2

∣∣∣∣T1,2

T0,1

∣∣∣∣
2

=
(

1 − κ

2

)2

, (15)

054508-4



TIME-RESOLVED STATISTICS OF NONCLASSICAL . . . PHYSICAL REVIEW B 92, 054508 (2015)

0

0.4

0.8

1.2

1.6

0 2 4 6 8

g
(2

)

γτ

(a)

κ = 0.0
κ = 0.5
κ = 2.0
κ = 3.0
κ = 4.2

0

1

2

g
(2

)

(b)

arb. n0
n0 = 0.2
n0 = 1.0

n0 = 20.0

0

0.4

0.8

0 3 6 9

w
/γ

γτ

(c) n0 = 0.2
n0 = 0.2
n0 = 1.0

n0 = 20.0

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

w
/γ

γτ

(d)
n0 = 0.3
n0 = 1.0

n0 = 16.0
n0 = 81.0

FIG. 1. (Color online) (a) The second-order correlation function g(2)(τ ) for weak driving n0 = 0.2. The parameter κ allows to tune the
system from a harmonic oscillator (κ = 0) to a two-level system (κ = 2). (b) The second-order correlation function g(2)(τ ), and (c) the
normalized waiting-time distribution w(τ ) for the special cases of a harmonic oscillator (red lines) and a two-level system (blue lines). The
two-level system is characterized by damped Rabi oscillations, the harmonic oscillator by a constant value [for g(2)(τ )], and an exponential
decay with the decay rate γ n0 [for w(τ )]. The long-time behavior of w(τ ) for the two-level system in the weak-driving regime is given by that
of the harmonic oscillator. (d) The normalized waiting-time distribution w(τ ) at κ = 1.5 for various driving strengths n0. In the strong-driving
limit, it shows approximately the behavior of an exponential decay similar to the harmonic case, however, superimposed by oscillations.

where in this regime of Coulomb blockade a P (E)-type
calculation [36] links the golden-rule excitation rates to the
absolute values of the transition matrix elements of the driving
Hamiltonian [6]. Antibunching g(2)(0) < 1 observed in the
range of 0 < κ < 4 is thus the effect of the suppression of
higher-order excitations due to the nonlinearity of the system
[as reflected in the normal-ordered Bessel function in Eq. (2)]
on the few-photon level.

While the antibunching g(2)(0) < 1, an indicator of the
quantized, nonclassical nature of the cavity’s electromagnetic
field can be derived from an incoherent P (E) description, it
turns out that the dynamical features in g(2)(τ ) can not be
gained such, but only in a full quantum-mechanical picture
of coherent excitations. In particular, the short-time behavior
g(2)(τ ) ≶ g(2)(0) for κ ≷ 2 can be traced back to the relative
phase of certain transition matrix elements.

0
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0.8

1.2

0 2 4 6 8 10

g
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γτ

κ = 0.0
κ = 0.5
κ = 2.0
κ = 3.0
κ = 4.2

FIG. 2. (Color online) The second-order correlation function
g(2)(τ ) in the numerical weak-driving/few-photon limit n0 =
(
√

κE∗
J /�γ )2 → 0, where it approaches the analytical result given

by Eq. (14), for various values of κ (with κ = 0 corresponding
to the harmonic oscillator and κ = 2 to a two-level system). The
nonlinearity for finite κ becomes apparent in suppressed (enhanced)
transitions to the second-excited state for κ < 4 (κ > 4), resulting in
g(2)(0) = (1 − κ/2)2. Compare to Fig. 1(a) for the effects of stronger
driving (see main text).

Contrasting Fig. 2 to Fig. 1(a) highlights the effects of
somewhat stronger driving: (i) the suppression (enhancement)
of g(2)(0) for κ < 4 (κ > 4) is reduced (enlarged) as higher
oscillator states contribute, while g(2)(0) ≡ 0 for κ = 2 for any
driving strength, (ii) the dip occurring in g(2)(τ ) after a short
time (for κ � 2) is reduced with g(2)(τ ) > 0 for all times, and
(iii) oscillations with g(2)(τ ) > g(2)(∞) = 1 develop.

Employing the corresponding approximation scheme for
the weak-driving regime, the waiting-time distribution in
leading order (and again for � = 0) is calculated

w(τ )

γ n0
= e−γ n0τ + κ2

4
e−γ τ − κe−γ τ/2 (16)

with small next-order correction terms of order n0. Comparing
to Eq. (14), the close relation between g(2)(τ ) and w(τ ) for
weak driving is apparent.

Apart from their different normalization, we observe that
the second and third terms of both expressions with the decay
rates γ and γ /2 [and thus the short-time behavior of g(2)(τ ) and
w(τ )] coincide. This happens since the underlying systems of
differential equations based on L and L0 differ in higher-order
operator expressions which do not contribute in leading order
in n0 to these two terms (but show solely an effect on the first
term). Nonetheless, for long times w(τ ) finally shows a slow
exponential decay on a time scale 1/(γ n0), while g(2)(τ ) → 1
in this limit.

Notably, the time scale (γ /2)−1 which impacts the time-
dependent behavior of both g(2)(τ ) and w(τ ) in the strongly
overdamped case can be traced back to the decay rate of
coherences, i.e., off-diagonal entries of the density matrix.
This, in turn, means, that in contrast to g(2)(τ = 0) (15) the time
dependence of the correlation functions can not be properly
described within a P (E)-like rate-equation approach even
in the weak-driving limit. This also highlights the profound
difference of the photonic two-level case in comparison to the
case of correlation functions of (spinless) electrons transported
through a single site, where coherences do not matter [21,24].
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In the semiclassical regime, the operators a(†) can be
replaced by α(∗) + δa(†), with δa(†) describing quantum fluctu-
ations around the classical solution of the complex oscillation
amplitude α(∗) = 〈a(†)〉. In the semiclassical regime, fluctua-
tions will then be small compared to the mean amplitude and
operator contributions beyond linear order can be neglected.
Such a semiclassical approach proved to be very fruitful
in calculating stationary expectation values revealing, for
instance, bifurcations between different solutions [12,16].

In principle, one can proceed similarly here and calculate
g(2)(τ ) and w(τ ) in the semiclassical limit. It turns out, how-
ever, that in the regime where the semiclassical approximation
is valid, the resulting behavior of both functions is hardly
distinguishable from that of a harmonic oscillator: g(2) is
basically 1 [Eq. (10)] with tiny corrections of order 1/|α|2 and
w(τ ) is dominated by a strong exponential decay [Eq. (11)] due
to a large 〈n〉st, which completely obscures small (quantum)
corrections occurring in the long-time limit.

3. Effective N-level systems

Above, we explained how for the special value of κ = 2
the system is reduced to a two-level system. Analyzing the
roots of higher transition matrix elements between neighboring
states reveals the occurrence of other few-level systems for
specific choices of κ . (See Ref. [37], where N -level systems are
realized by dynamically blocking transitions with an additional
external drive.) For example, the conditions T2,3 = 0 valid for
κ = 3 ± √

3 and T3,4 = 0 valid for κ ≈ 0.94, 3.31, or 7.76
lead to effective three- and four-level systems, respectively.

Note that the vanishing of transition matrix element
Tm,m+1 ∝ 〈m | : J1(

√
4κn)/

√
n : | m〉 corresponds to zeros of

the Bessel function J1 for large m. Due to normal ordering,
however, for small m the roots are shifted, e.g., for m = 1
we have 〈1 | J1(

√
4κn)/

√
n | 1〉 = J1(

√
4κ) = 0 for κ = 3.67

without the normal ordering instead of κ = 2.
Figure 3 displays the second-order correlation function as

a contour plot in the regime of very strong driving (n0 = 182)
for κ ∈ [0,4]. We immediately recognize the prominent Rabi
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FIG. 3. (Color online) The second-order correlation function
g(2)(τ ) for strong driving n0 = 182. At special values of κ (dotted
lines) certain transition matrix elements vanish, reducing the number
of involved cavity states. This yields pronounced (damped) oscil-
lations in g(2)(τ ) in a certain κ interval around these values. Lines
below κ = 2 can be traced back to the first zero at 3.83 of the Bessel
function J1, e.g., T2,3 ∝ 〈2 | : J1(

√
4κn)/

√
n : | 2〉 = 0 for κ = 1.27,

the line at κ = 3.31 to the second zero.
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FIG. 4. (Color online) The second-order correlation function
g(2)(τ ) as a function of detuning � at κ = 1 for weak driving
n0 = 0.2. Oscillations with frequency f ≈ �/2π are observable with
an amplitude, which increases with increasing detuning. Compare to
the analytical result given by Eq. (14) for the effects occurring in the
weak-driving limit n0 = (

√
κE∗

J /�γ )2 → 0.

oscillations in the case of a two-level system [see Fig. 1(b)].
However, also N -level systems feature Rabi-type oscillations
indicating those special values of κ where higher transitions
are suppressed. The amplitude as well as the frequency of these
oscillations decrease with an increasing number of remaining
levels. Notably, the Josephson-driven resonator setup thus
allows by properly adjusting the κ parameter to turn the
harmonic oscillator into a highly nonlinear N -level system. If
κ could be varied in situ (for example by an external magnetic
flux in case of a SQUID array), one could even switch from N

to N ′ level systems on short-time scales.

4. Detuning from the one-photon resonance

We drop now the restriction of � = 0 to study the effect
of detuning on the system. Considering the special case of
a harmonic oscillator, the analytical results for both g(2)(τ )
[Eq. (10)] and w(τ ) [Eq. (11)] are still valid without limitations
but it should be noted that 〈n〉st is modified by a factor of
1/[1 + 4(�/γ )2], thus leading to a much slower decay for
high detuning. Leaving this special case and going to higher
κ , the g(2) and w(τ ) functions are both superimposed by
oscillations. In the regime of weak driving, the behavior of
g(2)(τ ) is directly given by Eq. (14) revealing oscillations with
frequency ω = � and high amplitudes for strong detuning,
whereas g(2)(0) remains unchanged. The numerical results of
g(2)(τ ) for somewhat stronger driving (n0 = 0.2) in Fig. 4 show
small differences to the analytical results, only. Note that the
far off-resonant two-level system also shows Rabi oscillations
with frequency � for strong driving.

B. Relations between g(2)(τ ) and w(τ )

In order to investigate the statistics of the photon emission
events in various regimes of our system, we have so far
discretionarily elected to discuss at times the second-order
correlation function g(2)(τ ) or the waiting-time distribution
w(τ ). Obviously, this immediately throws up the question to
what extent the information provided by g(2)(τ ) and w(τ ) differ
or complement each other.

Apparently, both tools oftentimes provide very similar
information and are closely linked. Consider, for instance,
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that their definition [Eqs. (7) and (8)] directly yields the
equal-time relation w(0) = γ 〈n〉stg

(2)(0), and that we have
observed similar Rabi-type oscillations in both functions,
when certain transitions between excited neighboring states
are suppressed.

In general, however, there is no one-to-one correspondence
between g(2)(τ ) and w(τ ). In the limit where each relaxation
process resets the system to a known state, a situation described
in this context by renewal theory, such an equivalence exists
though. To see that, one works with characteristic second-order
Fano factors (see following) for the respective quantities.

1. Renewal theory

A Poissonian process, where events are occurring indepen-
dently, can alternatively be considered as characterized by the
fact that after each event the probability for the subsequent
event is given by an identical, independent exponential proba-
bility distribution. Renewal theory generalizes this to so-called
renewal processes characterized by an identical, independent,
but otherwise arbitrary probability distribution [38]. Hence,
each event resets the system to the very same state and thus
renews it.

For such a renewal process, the two functions g(2)(τ )
and w(τ ) can be directly related (in Laplace space) [24],
and thus provide identical information. From that relation a
somewhat simpler comparison restricted to low-order mo-
ments follows [22,23,25]. Indicating the relative strength of
second-order fluctuations, a single, dimensionless number, the
Fano factor is used.

The standard Fano factor F FCS, characterizing the statistics
of the photon flux Iph leaking from the cavity, can in the spirit
of full counting statistics (FCS) be defined from the statistic
of the number of photons leaked during an accumulation time
NT = ∫ T

0 dτIph(τ ) as

F FCS =
〈
N2

T

〉 − 〈NT 〉2

〈NT 〉

∣∣∣∣∣
T →∞

. (17)

Following Ref. [19] it can also be gained from g(2)(τ ),

F FCS = 1 + 2〈Iph〉
∫ ∞

0
dτ [g(2)(τ ) − 1]

= S(ω = 0)

2〈Iph〉 , (18)

where the second line highlights an alternative access to this
quantity via the zero-frequency noise S(ω = 0) of the photon
current.

An alternative Fano-type factor F WTD can be defined from
the first two cumulants of the waiting-time distribution

F WTD = 〈τ 2〉 − 〈τ 〉2

〈τ 〉2
. (19)

Then, for any renewal process F FCS = F WTD holds with
F FCS = 1 = F WTD for the Poissonian case.3 For our JJ-

3Note that the stationary occupation of the cavity can be charac-
terized by yet another type of Fano factor, (〈n2〉st − 〈n〉2

st)/〈n〉st (see
Ref. [12]).

resonator system it is obvious that in the two-level case κ = 2,
the system is reset to the very same state, namely |0〉〈0|, by
any jump process and, hence, the photon emission process
constitutes a renewal process.

For the harmonic oscillator, realized for κ → 0 or in the
weak-driving limit, the jump operator acting on an arbitrary
system density matrix does not actually reset the system to
a single state. It does so, however, for any density matrix
appearing during the time evolutions within the definitions
[Eqs. (7) and (8)] of g(2)(τ ) and w(τ ) since the time-evolutions
start from the stationary state of the harmonic oscillator, an
eigenstate of J and of both L and L0. Thus, for our purposes
the harmonic oscillator behaves as a single-reset system and
undergoes a renewal process.

2. JJ-resonator system and its renewal character

In order to capture the system’s deviations from renewal
character, the two different definitions of Fano factors F FCS

and F WTD are compared in Fig. 5. If the two Fano factors
differ, g(2)(τ ) and w(τ ) are not directly linked and provide,
in principle, different information about the system. In case
of a renewal process, the difference vanishes, which can be
observed in Fig. 5(a) in a small region around the special
cases of κ = 0 and 2 for arbitrary driving strength. It also
holds true for arbitrary κ in the regime of weak driving,
where the dynamics of the system is hardly influenced by
the nonlinearities of the Bessel function. Strong discrepancies
from a renewal character appear in the classical regime at
small but finite κ and strong driving n0. The shape of that
feature, visible in Fig. 5(a), reflects that nonlinearities appear
once the argument of the Bessel function becomes of order 1,√

4κn ∼ 1.
The two cross sections at n0 = 0.5 and 4.0 in Fig. 5(b)

showcase two facts. First, we observe, that there may be
additional parameter values with F FCS = F WTD while renewal
theory is not expected to be valid. Indeed, for these values,
one can check that the full time dependence of g(2)(τ ) and
w(τ ) does not give identical information, but differences
only become apparent in higher moments. Second, note that
the sub-Poissonian distribution of emitted photons in the
long-time limit with F FCS < 1 for κ � 4 does not correspond
to antibunched photons since, in fact, g(2)(0) > g(2)(τ ) at all
times for these values of κ (and weak to moderate driving)
[see Figs. 1(a) and 2].

Furthermore, we observe F FCS > 1 for strong driving,
e.g., choosing n0 = 182, at κ = 3 − √

3 corresponding to
an effective three-level system, although we clearly expect
here an antibunching behavior since g(2)(0) < g(2)(τ ) at all
times (see also Fig. 3). These findings are in line with recent
results [24,39–41] emphasizing that Eq. (18) does not in
general imply a one-to-one correspondence of sub-/super-
Poissonian FCS and short-time (anti)/bunching.

C. g(2) and w(τ ) at the two-photon resonance

So far, only small detuning around the resonance condition
ωJ = ω0 for one-photon processes has been investigated.
Tuning the bias voltage, other than this fundamental resonance
can be accessed. In particular, we now turn to the simplest
higher-order creation processes, the two-photon process with

054508-7



DAMBACH, KUBALA, GRAMICH, AND ANKERHOLD PHYSICAL REVIEW B 92, 054508 (2015)

0
0

0.5 1 1.5 2 2.5 3 3.5 4
κ

2

4

6
n

0

0

1

2

3

4

F
W

T
D
/F

F
C

S
−

1(a)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

F

κ

n0 = 4.0

n0 = 0.5

(b)n0 = 4.0

n0 = 0.5

(b)n0 = 4.0

n0 = 0.5

(b)

WTD
FCS

FIG. 5. (Color online) In case that renewal theory applies to the system, g(2)(τ ) and w(τ ) provide identical information and the two Fano
factors deduced from them are identical: F FCS = F WTD. The measure |F WTD/F FCS − 1| (a) highlights the deviations of the system from renewal
theory, which vanish at κ = 0 (harmonic oscillator), κ = 2 (two-level system), and n0 � 1 (weak-driving regime, where nonlinearities are
not crucial). The dotted lines refer to two cross sections (b) at weak and strong driving, revealing sub-Poissonian distributions of emitted
photons.

resonance condition 2ω0 ≈ ωJ. We start our considerations on
the basis of the Hamiltonian given in Eq. (2) with p = 2, which
is in a frame rotating with ωJ/2 and within a rotating-wave
approximation. For most of the following, we consider the
regime of weak driving and consequently small occupation
〈n〉st, where the Hamiltonian simplifies to that of the parametric
amplifier H

(2)
0 in Eq. (4).

In this weak-driving regime, incoherent CP transport across
the JJ can be observed, i.e., the events of CP tunneling
processes are statistically independent and follow a Poissonian
probability distribution. This is based on the fact that photon
relaxation at the resonator occurs sufficiently fast compared to
CP tunneling. Therefore, we always observe a pair of photons
followed by a long waiting time until the next emission event
occurs.

By elementary considerations following this picture, the
two different Fano factors F FCS �= F WTD are found to differ
since renewal theory does not hold. The observation that for
well-separated bunches of p particles the Fano factor gives the
bunch size F FCS = p is well known (see, e.g., Refs. [42–45]).
Formally, one may argue that in the long-time limit, the
number of photons NT = ∫ T

0 dτ Iph(τ ) is well approximated
by a coarse graining over typical time scales of the bunch by
Iph(τ ) ≈ pICP(τ ), where the CP (number) current ICP captures
the underlying (Poissonian) statistics of the bunches. The
Fano factor then immediately follows from Eq. (17), F FCS =
p2

p
F FCS

CP = p with corrections determined by the separation
of the typical time scales of the bunch length and the time
between bunches.

The first and second moments of the waiting-time distribu-
tion, and hence F WTD, are found averaging over the equally
probable cases that the first or the second photon of a bunch
(for p = 2) is observed at t = 0. This gives 〈τph〉 = [O(γ −1) +
〈τCP〉]/2 and 〈τ 2

ph〉 = [O(γ −1) + 〈τ 2
CP〉]/2 = 4〈τph〉2 with

corrections on the order of the bunch length γ −1, resulting
in F WTD = 3 (for general p, one similarly finds F WTD =
2p − 1).

Going beyond these preliminary considerations, analytical
expressions for the full time dependence of g(2)(τ ) and w(τ )

can again be found in the weak-driving limit (restricted to the
resonant case ω0 = ωJ/2 again).

The instantaneous limit

g(2)(0) = 1

2n
2ph
0

+ 2 (20)

with next correction terms of the order of the stationary mean
occupation number n

2ph
0 = (κE∗

J /�γ )2/2 (in leading order),
which again measures the driving strength, has been exten-
sively discussed elsewhere [11,13,14]. We want to emphasize
that the 1/2n

2ph
0 divergence of photonic correlations in the

weak-driving limit due to the two-photon creation process
can again be understood on the basis of excitation and decay
rates for double and single occupancies of the cavity, while
the time dependence of g(2)(τ ) can not be gained correctly in
this simple manner. Note also that depending on the quality
factor of the cavity, two-photon processes may dominate the
photonic correlations even around the fundamental resonance,
where they compete with the resonant single-photon processes
[14].

The waiting-time distribution, shown in Fig. 6, takes the
form

w(τ )

γ
= 1

2
e−γ τ + n

2ph
0

4
e−n

2ph
0 γ τ/2 + 13n

2ph
0

4
e−2γ τ (21)

with both coefficients and decay rates in leading order in n
2ph
0 .

The expectation value 〈τ 〉 for the waiting time is dominated by
the first and the second contributions, while the third one does
hardly contribute for weak driving when n

2ph
0 � 1. Physically,

the first contribution, describing the case that the first photon
of a bunch is observed at τ = 0, determines the waiting time
for the second photon within the same bunch. Instead, the
second contribution is related to the waiting time for the
next bunch to arrive, when the second photon was observed
initially.

Using the analytical results of g(2)(τ ) and w(τ ) in conjunc-
tion with Eqs. (18) and (19) results in F FCS = 2 + 7n

2ph
0 /2 and

F WTD = 3 + 3n
2ph
0 confirming our above considerations.
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FIG. 6. (Color online) The waiting-time distribution (solid line)
w(τ ) for the two-photon resonance in the special case of a para-
metric amplifier, κ = 0.001, n

2ph
0 = 0.02 � 1, which approximately

coincides with the analytical result given by Eq. (21). The short-
and long-time decays are indicated by the analytical results (dashed
lines), corresponding to the probability of detecting the first or second
photon of an emitted pair.

IV. CONCLUSIONS AND OUTLOOK

We have analyzed the time-resolved statistics of photon
emission events of an electromagnetic oscillator coupled
to a voltage-biased Josephson junction by means of the
second-order correlation function g(2)(τ ) and the waiting-
time distribution w(τ ). Starting from a time-independent
Hamiltonian in rotating-wave approximation and the quantum
master equation in Lindblad form, we have obtained numerical
results as well as analytical expressions on the basis of pertur-
bative approaches in the weak-driving and the semiclassical
regimes. The photonic statistics are basically governed by
the parameters EJ/�γ measuring the driving strength and κ

describing the impact of charge quantization and determining
magnitude and phase of the transition matrix elements of the
drive.

Changing parameters allows the realization of various
simple systems and thus the observation of the photon statistics
of a driven harmonic oscillator, a two-level system or a
parametric amplifier, all within the voltage-biased JJ-resonator
compound. Increasing the impedance and hence κ , either by
design or in situ by use of highly inductive metamaterials,
the crossover from the harmonic oscillator (κ → 0) to the
two-level system (κ = 2) can be studied. For other special
values of κ , further N -level systems can be implemented,

exhibiting for instance Rabi-type oscillations in g(2)(τ ) and
w(τ ) for strong driving.

While the scenarios above occur at the fundamental
resonance where each tunneling Cooper pair creates one
photon, higher resonances can be accessed when the volt-
age bias provides the energy necessary to create several
photons. Then, for example, at the two-photon resonance,
parametric-amplifier physics can be investigated in the κ → 0
limit.

Photon statistics will show highly characteristic signatures
in these different scenarios: most dramatically, single-photon
creation and complete antibunching are observed for the
two-level system, photon-pair creation, and bunching for the
parametric amplifier. To further study the full time-resolved
photon statistics, we explored the second-order correlation
function g(2)(τ ), the waiting-time distribution w(τ ), and Fano-
type factors extracted from them. The rich variety of strongly
correlated and nonclassical states of light, observable even for
weak driving, all stem in essence from the inherent nonlinearity
of the Josephson junction appearing as a normal-ordered
Bessel function in the effective RWA Hamiltonian.

Extending our study to several modes within one or several
cavities will be of particular interest for further research. If the
energy of a CP transfer equals the sum of the energies of two
photons, entangled photon pairs can be created. The statistics
of these photon pairs have so far only been investigated by
means of the second-order correlation function and Fano
factor [15,16], however, not by means of the waiting-time
distribution.

Furthermore, a system consisting of JJ and resonator makes
it generally possible to observe both photonic and current
statistics (Josephson photonics). Of course, the dynamics of
the charge transfer processes can indirectly be investigated
by observing the created light. However, it would be natural
to also directly consider the waiting-time distribution for
subsequent charge transfer processes at the JJ or even a mixed
waiting-time distribution relating CP transport statistics to
photonic emission events.
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086805 (2011).
[23] M. Albert, G. Haack, C. Flindt, and M. Büttiker, Phys. Rev. Lett.
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