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Interplay between effective mass anisotropy and Pauli paramagnetic effects in a multiband
superconductor: Application to Sr2RuO4
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We investigate the mixed state properties in a type II multiband superconductor with uniaxial anisotropy
under the Pauli paramagnetic effects. Eilenberger theory extended to a multiband superconductor is utilized to
describe the detailed vortex lattice properties, such as the flux line form factors, the vortex lattice anisotropy, and
magnetic torques. We apply this theory to Sr2RuO4 to analyze those physical quantities obtained experimentally,
focusing on the interplay between the strong two-dimensional anisotropy and the Pauli paramagnetic effects.
This study allows us to understand the origin of the disparity between the vortex lattice anisotropy (∼60) and
the Hc2 anisotropy (∼20). Among the three bands—γ with the effective mass anisotropy ∼180, α with ∼120,
and β with ∼60—the last one is found to be the major band, responsible for various magnetic responses while
the minor γ band plays an important role in the vortex formation. Namely, in a field orientation slightly tilted
away from the two-dimensional basal plane those two bands cooperatively form the optimal vortex anisotropy
which exceeds that given by the effective mass formula with infinite anisotropy. This is observed by small-angle
neutron scattering experiments on Sr2RuO4. The pairing symmetry of Sr2RuO4 realized is either spin singlet or
spin triplet with the d-vector strongly locked in the basal plane. The gap structure is that the major β band has a
full gap and the minor γ band has a dx2−y2 -like gap.
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I. INTRODUCTION

It is now widely recognized that multiband superconductors
are omnipresent [1]. This recognition may be triggered by
MgB2 [2], where there exist two distinctive bands: the 3D
π band and 2D-like σ band [3]. They play different roles in
forming superconductivity, in particular in magnetic properties
under an applied field, such as symmetry of vortex lattices [4]
or the form factors probed by small-angle neutron scattering
(SANS) experiments [5]. To understand its detailed magnetic
response, a two-band model is indispensable. In fact different
dimensionality of the band structures between the π band
and σ band gives rise to rotation of the triangular vortex
lattice under varying field [4]. The form factors of SANS
experiments clearly demonstrate a gradual change of the two
components of the π band and σ band as the field varies [5].
It is also true for other materials among unconventional and
conventional superconductors where multiband description is
essential, such as heavy-fermion superconductors [6,7] and
iron pnictides [8,9].

We have been seeing that the Pauli paramagnetic effect
(PPE) is important when combined with this multiband effect
in certain superconductors, which give rise to a variety of un-
expected phenomena. Typical examples are the oldest heavy-
fermion superconductors CeCu2Si2 [6] and UBe13 [7] and also
KFe2As2 [8,9], which necessitate the multiband description in
fully understanding of their vortex properties. Those include
the hidden first-order transition phenomenon [10] and the
disparity [9] between the vortex lattice anisotropy and Fermi
velocity anisotropy as discussed later.

Here we study the interplay between PPE and multiband
effects in a uniaxial anisotropic superconductor in which each
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band has a different uniaxial anisotropy: For the case of two
bands which we consider in this paper we can envisage two
possible situations as schematically illustrated in Fig. 1. Let
us consider the first case shown in Figs. 1(a) and 1(b). In the
absence of PPE the two orbital-limited upper critical fields
H orb

c2,γ and H orb
c2,β cross at A in the H versus � plane (� is the

angle from the ab plane), each of which is characterized by
the effective mass anisotropy �i for two bands i = γ and
β, assuming �γ > �β . As indicated in Fig. 1(a) the four
divided regions are characterized by each �i . In particular,
along Hc2(�) the characteristic anisotropy of the total system
is switched at the intersecting point A from �γ to �β as �

increases. When traversing at a higher H , the anisotropy �γ

for the γ band is sensed only.
Now let us switch on PPE; then both orbital-limited H orb

c2 (�)
are suppressed towards lower fields, especially �γ if we
assume that the superconducting gaps for the two bands such
that 	β > 	γ . This is because the Pauli-limited fields H

β
p >

H
γ
p . The resulting phase diagram is shown in Fig. 1(b). As seen

from it the crossing point A is removed and three regions are
now occupied by �β while the �γ region is hidden deep inside
at lower fields and finite �’s. In particular, along Hc2(�) the
�β region persists all the way from � = 0◦ to � = 90◦. Thus
the higher field scan is sensing only the �β anisotropy while
a lower field scan is sensing �β → �γ → �β as � increases.
This nontrivial anisotropy evolution is caused by the interplay
between the effective mass anisotropy � and PPE.

Other possible phase diagrams are depicted in Figs. 1(c)
and 1(d) where 	β < 	γ is assumed, keeping �γ > �β . The
γ (β) band with 	γ (	β) is now major (minor). In the absence
of PPE shown in Fig. 1(c) the two orbital-limited H orb

c2 (�)
curves are not crossed; thus the higher (lower) field region is
occupied by �γ (�β). In the presence of PPE those curves are
both suppressed downwards. Thus the two regions (�γ and
�β) are simply shifted downwards, keeping its phase diagram
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FIG. 1. (Color online) Schematic phase diagrams in the H versus
� plane. The β band major scenario without PPE (a) and with PPE
(b). The γ band major scenario without PPE (c) and with PPE (d).
The effective mass anisotropy is assumed to be �γ > �β .

topologically unchanged. Note that H
β
p < H

γ
p . Therefore, a

higher (lower) field scan is exclusively sensing the �γ (�β)
anisotropy of the total system as � increases.

The purpose of this paper is to investigate the physics of
Sr2RuO4 through the studies of the mixed state properties in
this multiband superconductor where the interplay between
the effective mass (or Fermi velocity) anisotropy and PPE
is important in understanding of the vortex lattice state in
H vs � plane. This superconductor is known to have strong
two-dimensional uniaxial anisotropies for the three bands [11],
the γ band (�γ

∼= 180), the α band (�α
∼= 120), and the β band

(�β
∼= 60). Given the density of states (DOS) NFi at the Fermi

level (NFγ = 0.53, NFα = 0.10, and NFβ = 0.37 of the total
DOS), the α band is neglected in this paper for simplicity. In
the following we consider a two-band model: the γ band with
NFγ = 0.53 and the β band with NFβ = 0.47.

In Sr2RuO4 there are several outstanding unsolved issues:
(1) Which band is the major band for superconductivity, the γ

band or the β band? 	β > 	γ or 	β < 	γ ?
(2) Can the PPE resolve the observed disparity between the vor-
tex lattice anisotropy [12] 60 and the Hc2 anisotropy [11] 20?

The first issue (1) has been extensively debated, in particular
in connection with the pairing mechanism of this material to
stabilize the chiral p-wave state [13–17]. We approach this
issue from a different view point by analyzing the mixed state
vortex states. The second issue (2) has been investigated by
us [18,19] based on the single-band picture. In this paper we
revisit it based on a more realistic two-band model, which is
able to allow us to study issue (1).

We base our computations on the quasiclassical
theory [20–22]. The original single-band theory is extended
to various multiband cases, including MgB2 [23,24] and iron
pnictides [25–27]. The applicability of the quasiclassical

theory [20–22] is given in general by the condition kFξ � 1
with kF the Fermi wave number and ξ the coherence length
under the assumption that the normal state properties are
described by a Fermi liquid theory. For Sr2RuO4 the three

bands α, β, and γ are kF = 0.304, 0.622, and 0.753 (Å
−1

),
respectively. The in-plane and c axis coherence lengths ξ are
660 and 33 (Å), respectively [11]. Thus for any combinations
kFξ � 1 is well satisfied. We also notice that the lattice
constants a = 3.862 Å and c = 12.722 Å are short enough
compared with those coherence lengths; thus Sr2RuO4 is
a three-dimensional normal metal. Moreover, most physical
quantities, including various transport coefficients and ther-
modynamic properties, can be consistently and coherently
described by a Fermi liquid theory as explained in detail by
Mackenzie and Maeno [11]. Therefore we can quite safely
apply the quasiclassical theory to Sr2RuO4.

By self-consistently solving microscopic quasiclassical
Eilenberger equation with two bands, we calculate a variety of
the physical quantities relevant to available experiments, such
as the form factors probed by SANS experiments [12,28],
magnetic torques [29], and the vortex lattice anisotropy �VL,
which differs generally from the effective mass anisotropy �i

mentioned above.
The arrangement of this paper is as follows: After intro-

ducing Eilenberger theory extended to multibands [24] with
PPE in Sec. II, which was done in our previous paper [10], we
construct a model system for considering Sr2RuO4 by fixing
the several model parameters in Sec. III. Here we compare the
two scenarios—one is the β major and the other γ in equal
footing—finding that the former is better than the latter relative
to the existing experiments. Then we come to the main theme of
the present paper in Sec. IV: computations and analyses of the
form factors and vortex lattice anisotropies as a function of the
angle � compared with the data of SANS experiments [9,12].
In Sec. V we examine the magnetic torques which are also
measured recently by Kittaka et al. [29]. The final section,
Sec. VI, is devoted to discussion and conclusion. This paper
is an extension of our previous work based on a single-band
model [19,30,31] and is also closely related to our two-band
model calculations [10,24].

II. QUASICLASSICAL THEORY INCLUDING
PPE FOR TWO BANDS

We start with the free energy F in the quasiclassical
theory [20–22] extended to the two-band case [23–27], which
is given by

F =
∫

d r
{ |B(r)|2

8π
− χn

2
|B(r)|2 + �i,j	

∗
j (r)(V̂ −1)i,j	i(r)

−πkBT NF0�|ωn|<ωc
�j

NFj

NF0
〈I (ωn,kj ,r)〉kj

}
(1)

with χn = 2μ2
BNF0, NF0 = �jNFj , and

I (ωn,kj ,r) = 	(kj ,r)f †(ωn,kj ,r) + 	∗(kj ,r)f (ωn,kj ,r) + [gj − sgn(ωn)]

{
1

fj

[
ωn + iμBB + �

2
vFj ·

(
	∇ − i

2π

φ0
A
)]

fj

+ 1

f
†
j

[
ωn + iμBB − �

2
vFj ·

(
	∇ + i

2π

φ0
A
)]

f
†
j

}
. (2)
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The flux quantum φ0 = hc
2|e| . vFj is the Fermi velocity at

kj of the band j . The Fermi surface average 〈· · · 〉kj
is

normalized within each band as 〈1〉kj
= 1. Here we introduced

the interaction matrix Vij with 2 × 2 for two bands, where Vjj

is the pairing interaction on the j band and Vij = Vji for i �= j

is the Cooper pair transfer between the i and j bands. gj =
g(ωn,kj ,r), fj = f (ωn,kj ,r), and f

†
j = f †(ωn,kj ,r) are the

quasiclassical Green’s functions for the j band. 	j (kj ,r) =
	j (r)φj (kj ) is the pair potential and φj (kj ) describes the gap
symmetry of the j band in reciprocal space, which allows us to
choose the gap form depending on each band as will be done
in the following. The vector potential A(r) and the internal
field B(r) are related to B(r) = ∇ × A = B̄ + b(r) with B̄
uniform field.

By following the same procedure by Eilenberger [20], the
functional derivatives with respect to fj = f (ωn,kj ,r) and
f

†
j = f †(ωn,kj ,r) yield the so-called Eilenberger equation

extended to the two band case:

{ωn + iμB(r) + vFj · [∇ + i A(r)]}fj = 	j (kj ,r)gj ,
(3)

{ωn + iμB(r) − vFj · [∇ − i A(r)]}f †
j = 	∗

j (kj ,r)gj .

This form is understandable because the fourth term in the
free energy Eq. (1), which includes the Green’s functions, is
separable in the band index; thus the resultant equation of the
functional derivative should be separable for each band. The
stationary conditions of Eq. (1) with respect to the functionals
	∗

j (r) and the vector potential A(r) give rise to a complete set
of the self-consistent equations extended to the two-band case,
which are given below: Eqs. (4) and (5). This complete set of
the self-consistent equations coincides and is consistent with
those obtained previously [23,24].

The electronic state is calculated by solving the Eilenberger
equation Eq. (3) in the clean limit [32], including the Pauli
paramagnetic effect (PPE) due to the Zeeman term μB(r) [33],
where μ = μBB0/πkBTc is a renormalized Bohr magneton
related to the so-called Maki parameter αM = 1.76μ. The qua-
siclassical Green’s functions g(kj ,r,ωn + iμB), f (kj ,r,ωn +
iμB), and f †(kj ,r,ωn + iμB) with the band index j depend
on the direction of the Fermi momentum kj for each band,
the center-of-mass coordinate r for the Cooper pair, and
Matsubara frequency ωn = (2n + 1)πkBT with n ∈ Z. They
are calculated in a unit cell of the triangle vortex lattice.

The unit of Fermi velocity vF0 is defined by NF0v
2
F0 ≡

NF1v
2
F1 + NF2v

2
F2, where the density of states (DOS) in the

normal state at each Fermi surface is defined by NF0 ≡ NF1 +
NF2. Throughout this paper, temperatures, energies, lengths,
and magnetic fields are, respectively, measured in units of
the transition temperature Tc, πkBTc, ξ0 = �vF0/2πkBTc, and
B0 = φ0/2πξ 2

0 . We calculate the spatial structure of g in a
fully self-consistent way.

The pairing potential 	j (r) is calculated by the gap
equation

	j (r) = T
∑

0<ωn�ωc

∑
l=1,2

VjlNFl〈(fl + f
†∗
l )φl(kl)〉kl

, (4)

which is coupled via the interaction matrix V̂ . We use
the energy cutoff ωc = 20kBTc. The vector potential is also

self-consistently determined by

∇ × ∇ × A = ∇ × Mpara − T

κ2

∑
|ωn|�ωc

∑
j=1,2

NFj 〈vj Im[gj ]〉kj
,

(5)

which includes the contribution of the paramagnetic moment
Mpara = (0,0,Mpara) with

Mpara = M0

⎛
⎝B(r)

B̄
− T

μB̄

∑
|ωn|<ωc

∑
j=1,2

NFj 〈Im[gj ]〉kj

⎞
⎠. (6)

Here B̄ is the averaged flux density mentioned above, the
normal state paramagnetic moment M0 = (μ/κ)2B̄, and κ =
B0/πkBTc

√
8πNF0. The Ginzburg-Landau (GL) parameter

κGL is the ratio of the penetration depth to coherence length
for B̄ ‖ c. Using Doria-Gubernatis-Rainer scaling [34], we
obtain the relation [32] of B̄ and the external field H . The total
magnetization Mtotal = B̄ − H including both the diamagnetic
and the paramagnetic contributions is derived.

We solve Eq. (3) with iωn → E + iη for the electronic
state. The local density of states (LDOS) is given by
Nj (r,E) = Nj,↑(r,E) + Nj,↓(r,E), where

Nj,σ (r,E) = NFj 〈Re[g(kj ,r,ωn + iσμB)|iωn→E+iη]〉kj
,

(7)

with σ = 1 (−1) for up (down) spin component. We typically
use the smearing factor η = 0.01. The DOS is obtained by
the spatial average of the LDOS as N (E) = ∑

j Nj (E) =∑
j 〈Nj,↑(r,E) + Nj,↓(r,E)〉r .
We consider a simplified model of a two-band system

with a larger superconducting gap band (band 1) and a
smaller gap band (band 2). As a model of the Fermi
surfaces, we use two quasi-two-dimensional Fermi surfaces
with rippled cylinder shapes. The Fermi velocity is as-
sumed to be vj = (vj,a,vj,b,vj,c) ∝ (cos φ, sin φ,ṽj,z sin kj,c)
at kj = (kj,a,kj,b,kj,c) ∝ (kj cos φ,kj sin φ,vj,c) on the Fermi
surfaces [35]. We consider a case ṽj,z = 1/�j , to produce
large anisotropy ratio of the coherence lengths,

�j = ξj,c/ξj,b ∼ 〈
v2

j,c

〉1/2
kj

/〈
v2

j,b

〉1/2
kj

(8)

with j = 1,2, where 〈· · · 〉kj
indicates an average over the

Fermi surface on each band. The magnetic field orientation
is tilted by θ ≡ 90◦ − � from the c axis towards the ab

plane. Since we set the z axis to the vortex line direction,
the coordinate r = (x,y,z) for the vortex structure is related
to the crystal coordinate (a,b,c) as (x,y,z) = (a,b cos θ +
c sin θ,c cos θ − b sin θ ).

We set unit vectors of the vortex lattice as

u1 = c(α/2,−
√

3/2), u2 = c(α/2,
√

3/2) (9)

with c2 = 2φ0/(
√

3αB̄) and the vortex lattice anisotropy
is defined by �VL = α/

√
3. The anisotropic ratio �j (θ ) ≡

ξj,y/ξj,x ∼ 〈v2
j,y〉1/2

kj
/〈v2

j,x〉1/2
kj

, which comes from the Fermi
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velocity anisotropy,

�j (θ ) = 1√
cos2 θ + �−2

j sin2 θ

(10)

with j = 1 and 2.
To discuss B̄ dependence of the internal field distribution

B(r) = ∇ × A, we consider flux line lattice (FLL) form
factor F(qh,k) = (Fx(h,k),Fy(h,k),Fz(h,k)), which is obtained
by Fourier transformation of the internal field distribution
as B(r) = ∑

h,k F(qh,k) exp(iqh,k · r) with the wave vector
qh,k = hq1 + kq2. h and k are integers. The unit vectors
in reciprocal space are given by q1 = (2π/c)(1/α,−1/

√
3)

and q2 = (2π/c)(1/α,1/
√

3). The z component |Fz(h,k)|2 from
Bz(r) gives the intensity of conventional non-spin-flip SANS.
The transverse component, |Ftr(h,k)|2 = |Fx(h,k)|2 + |Fy(h,k)|2,
is accessible by spin-flip SANS experiments [12,36].

III. MODEL CONSTRUCTION AND PHYSICS FOR H ‖ c

A. Specific heat and Hc2 anisotropy ratio

In order to determine the model parameters appropriate
for Sr2RuO4, we start out to fix the gap magnitudes 	γ (T )
and 	β(T ) and their nodal structures. We first analyze the
electronic specific heat data C(T )/T at zero field [37] by
solving self-consistently the Eilenberger equation Eq. (3)
for the uniform system without using the phenomenological
so-called α model [38]. Here we have assumed that the
minor component is induced only by the Cooper pair transfer
coupling V12. The direct attractive coupling among the minor
component is vanishing; V22 = 0.

As seen from Fig. 2 the C(T )/T data are equally well
explained either by
(A) the γ scenario with 	γ (0)/	β(0) = 1.7 at T = 0 where
both bands have line nodes, in agreement with other au-
thors [14], or
(B) the β scenario with 	β(0)/	γ (0) = 2.5 where the β band
has a full gap and the γ band line nodes.

T/Tc

C(T)

Experiment

Single band

0
0

1.0

2.0

1.0

FIG. 2. (Color online) The specific heat data (open symbols) [37]
analysis by the β-major scenario (bold line) with 	β (0)/	γ (0) = 2.5
where the line node (full) gap is on the γ (β) band and by the γ -major
scenario (dotted line) with 	γ (0)/	β (0) = 1.7, where both bands
contain the line nodes. For comparison, the standard BCS case with
the full gap is also shown (thin line).

T/Tc0 1.0
20

60

Experiment

Hc2, ab
Hc2, c

FIG. 3. (Color online) The upper critical field ratio Hc2,ab(T )/
Hc2,c(T ) for the two directions (H ‖ ab and H ‖ c). The two cases for
the β (filled triangles) and γ scenarios (filled squares) are compared
with the experimental data (open symbols) [39]. This shows that the
β scenario is superior to the γ scenario.

It is apparent that the linear T behavior of C(T )/T at lower
T indicates that the nodal gap is necessary somewhere: for the
γ scenario in both bands and for the β scenario only in the γ

band. This nodal structure difference between them is decisive
for the two scenarios as will be seen shortly.

According to Kittaka et al. [39], the upper critical field
ratio Hc2,ab(T )/Hc2,c(T ) for the two directions (H ‖ ab and
H ‖ c) is T dependent, implying that PPE becomes stronger
as the field applied to the ab plane increases. Here we calculate
Hc2,ab(T )/Hc2,c(T ) for both scenarios and depict the results
in Fig. 3. Since near Tc the intrinsic effective mass anisotropy
governs its tending limit (T → Tc), Hc2,ab/Hc2,c → 180 (60)
for the γ (β) scenario. The experimental data [39] shown
support the β scenario within the experimental accuracy where
there is no indication of the ratio with tending to 180. This is
one of the most clear signatures for the β-major scenario. By
adjusting the μ parameters for both scenarios the best fittings
are accomplished in μ = 0.04 (0.02) for the β (γ ) scenario.
From now on we use those values in the following calculations.

In order to further distinguish between the two scenarios, we
take up the experimental data [37] of the field dependence of
C(H )/T for H ‖ c at the available lowest temperature T = 60
mK, which best mimics the zero-energy density of states N (H )
at T = 0 in the theoretical calculation. In Fig. 4 we compare
the experimental data with the theoretical values as a function
of the field applied parallel to the c axis. As seen from it,
the γ scenario overestimates the data while the β scenario
underestimates it. If taking into account the finite-T effect
in the experimental data, the theoretical curves should move
up when considering thermal excitations, resulting in further
departure of the γ -major curve while the β-major curve comes
closer to the data. We also note from Fig. 4 that too many low-
energy excitations are released at lower fields in the γ scenario
because the nodal gap exists in the minor band, causing the
overestimate. This fact, which has been unnoticed so far, is
quite fatal for the γ scenario.

Thus it is clear from those two criteria that the β scenario
is far better than the γ scenario. The best fitting also yields the
κGL value for H ‖ c, that is, κGL = 2.7, whose value is used in

054505-4



INTERPLAY BETWEEN EFFECTIVE MASS ANISOTROPY . . . PHYSICAL REVIEW B 92, 054505 (2015)

Experiment

H/Hc2, c

C(H)

N(H)

0

1.0

0 1.0

FIG. 4. (Color online) The comparison of the experimental data
(open symbols) [37] of the specific heat at T = 60 mK as a function
of H (‖ c) with the theoretical results (filled symbols) for the β and γ

scenarios (T = 0.1Tc). This shows too many low-energy excitations
released at lower fields in the γ scenario because the nodal gap exists
in the minor band.

the following computations. But we should keep in mind that
this low κGL value delicately depends on the particular sample
used. This quantity is known to be sample dependent.

B. Form factors for H ‖ c

The form factors of the longitudinal components Fz(10) and
Fz(11), which are measured by SANS experiments [40] for
H ‖ c, are compared with the two scenarios whose magnitudes
are multiplied by a factor of 1.7 for the β scenario and
3.5 for the γ scenario. This is partly because the actual
κGL = 2.7 determined by C(H )/T fitting previously might be
different from the SANS experiment (in fact Hc2,c = 58 mT
and κGL = 2.0 differ from Hc2,c = 75 mT and κGL = 2.3 in
the best samples [11]). Since the form factor magnitudes are
sensitive to the κGL value (∝κ−2

GL), it is permissible to adjust it
to fit with data. As seen from Fig. 5 the field dependencies of
Fz(10) and Fz(11) are far better explained by the β scenario than
by the γ scenario.

(a) Fz (10)/Hc2, c

Experiment

H/Hc2, c

0.01

0.02

0.03

0.01

0.02

0
0 1.0 0 1.0

0

Experiment

H/Hc2, c

(b) Fz (11)/Hc2, c

FIG. 5. (Color online) The longitudinal form factors Fz(10) and
Fz(11) as a function of H (‖ c). The experimental data (open sym-
bols) [40] are compared with the two scenarios. The theoretical results
(filled symbols) are multiplied by a factor 1.7 (3.5) for the β (γ ) case
(T = 0.1Tc). This shows that the β scenario is superior to the γ

scenario.

(a) Fz (10)/Hc2, c

H/Hc2,c

0.004

0.008

0.012

0
0 1.0

Total

0.003

0.006

0 1.0
0

H/Hc2,c

(b) Fz (11)/Hc2, c

Total

FIG. 6. (Color online) The longitudinal form factors Fz(10) and
Fz(11) are decomposed into the the β band contribution and γ band
contribution in the case of the β scenario (T = 0.1Tc).

In Fig. 6 we decompose the longitudinal form factors
Fz(10) and Fz(11) into the two contributions of the β band
and γ band in the case of the β scenario. It is seen that the
minor γ contribution amounts to ∼10% of the total at this
temperature T = 0.1Tc for both Fz(10) and Fz(11). Thus in order
to understand the field dependence of the form factors, the
multiband effect is essential, which further becomes clear later.
We note in passing that, as mentioned in the Introduction on
MgB2, Cubitt et al. [5] discovered the additional contribution
of the minor π band to the main σ band contribution at
lower H . This general trend here supports their discovery
(see Fig. 2 in Ref. [5]). Note that the relative weight of the
main β contribution and minor γ contribution depends on
temperature, field, and field orientation �. Generally as T and
H decrease, the minor γ contribution increases because the
two order parameters are more competitive there.

C. Phase diagrams in H vs �

Since we have determined the gap ratios for each scenario,
it is possible to establish the phase diagrams on the H vs �

plane. For H ‖ c the two orbital-limited Hi
c2,c ratio (i = β,γ )

with the obvious notations is written as

H
β

c2,c

H
γ

c2,c

= ξ 2
γ,c

ξ 2
β,c

=
(

	β

	γ

)2(
vγ,c

vβ,c

)2

. (11)

It is known [11] that the Fermi velocity ratio vγ,c/vβ,c =
0.5. Thus H

β

c2,c/H
γ

c2,c = 2.52 × 0.52 ∼ 1.6 for the β scenario

while H
β

c2,c/H
γ

c2,c = 1.7−2 × 0.52 ∼ 0.1 for the γ scenario,
those corresponding to Fig. 1(a) and Fig. 1(c) at � = 90◦,
respectively. On the other hand, at � = 0◦

H
γ

c2,ab

H
β

c2,ab

= �γ H
γ

c2,c

�βH
β

c2,c

= 3 × H
γ

c2,c

H
β

c2,c

. (12)

This yields H
β

c2,ab/H
γ

c2,ab = 3/1.6 ∼ 1.9 for the β scenario

while H
β

c2,ab/H
γ

c2,ab = 3/0.1 ∼ 30 for the γ scenario, thus
giving rise to the situations depicted in Fig. 1(a) and Fig. 1(c) at
� = 0◦, respectively. Note that the crossing point A of the two
orbital-limited Hc2’s in Fig. 1(a) is located at around �A ∼ 1◦.
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0 8.0

1.0
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0

(b) Ftr (11) [a.u.]

0.7T
0.5T

2.0B0

0.25T
0.15T

0.5B0

(a) Ftr (11) [a.u.]

FIG. 7. (Color online) The transverse form factors Ftr(11) of the
SANS data (open symbols) [12,28] at H = 0.7 T and H = 0.5 T are
compared with the theoretical results (filled symbols) for B = 2.0 (a)
and the data at H = 0.25 T and 0.15 T with B = 0.5 (T = 0.5Tc) (b).

IV. FORM FACTORS AND VORTEX
LATTICE ANISOTROPY

A. Form factors

The form factors FF are a sensitive and useful probe
measured by SANS in order to detect the field distribution in
the vortex state. The SANS experiments [12,28] on Sr2RuO4

are performed. They find the transverse components of FF
as a function of � near the ab plane. Here we obtain FF by
evaluating the field distribution via a self-consistent solution
of Eq. (3).

It is seen from Figs. 7(a) and 7(b) that the angle �

dependencies of the transverse component of FF for two
fields B = 2.0 (high field) and B = 0.5 (low field) exhibit
a different characteristic: The high-field data show a simple
monotonic decrease after taking a maximum towards � = �c

at which the superconducting-normal state transition takes
place. The monotonic transverse FF curve is similar to that
of the single-band case shown in previous papers [19,31].
This high-field scan (B = 2.0) corresponds to the horizontal
scanning path in Fig. 1(b) where only the �β region is sensed.
The maximum position �FF

max = 0.9◦ coincides with those of
the single-band result [19] with � = 60. The overall features
of the experimental data for H = 0.5 T and 0.7 T are well
reproduced as seen from Fig. 7(a) except for a few data points
at higher angles.

On the other hand, for the low-field result (B = 0.5) shown
in Fig. 7(b), it is seen that the theoretical FF curve coincides
with the maximum angle of the experimental data at H =
0.15 T and 0.25 T. However, it deviates from those data after
that. The experimental data tend to vanish at around �c ∼ 6◦,
which is far from the known �c ∼ 30◦ (18◦) at H = 0.15
(0.25) T, which should be ultimate vanishing angle for FF
amplitude. We will discuss this discrepancy shortly. Here we
just point out that those low-field data correspond to the low-
field scanning paths in Fig. 1(b) where the crossover of the
regions �β → �γ → �β is sensing with increasing �.

We decompose the FF contributions from the major β band
and the minor γ band for the transverse components Ftr(10)

(a) and Ftr(11) (b) and the longitudinal components Fz(10) (c)
and Fz(10) (d) as shown in Fig. 8 for the high field and Fig. 9
for the low field. The relative weight of the minor component
in this transverse FF is around 10% of the total FF and its
peak contribution coincides with the maximum position �max

Ftr (10)/Hc2, c

0.6

1.2

1.8

0
0 8.0

Total

x10-4
(a) 

0.4

0.8

0 8.0
0

Ftr (11)/Hc2, c

Total

x10-2
(b)

Fz (10)/Hc2, c

2.0

4.0

0
0 8.0

Total

x10-4
(c) 

2.0

4.0

0 8.0
0

Fz (11)/Hc2, cx10-4
(d)

Total

FIG. 8. (Color online) The decomposition of the transverse com-
ponents of the form factors Ftr(10) (a) and Ftr(11) (b) at high field B =
2.0 (T = 0.5Tc). The decomposition of the longitudinal components
of the form factors Fz(10) (c) and Fz(11) (d) at high field B = 2.0
(T = 0.5Tc).

Ftr (10)/Hc2, c

0.4

0.8

0
0 35.0

x10-3
(a) 

0.6

1.2

0 35.0
0

Ftr (11)/Hc2, cx10-2
(b)

Total

Total

Fz (10)/Hc2, c

0.6

1.2

0
0 35.0

x10-3
(c) 

0.6

1.2

0 35.0
0

Fz (11)/Hc2, cx10-3
(d)

Total Total

FIG. 9. (Color online) The decomposition of the transverse com-
ponents of the form factors Ftr(10) (a) and Ftr(11) (b) at low field B = 0.5
(T = 0.5Tc). The decomposition of the longitudinal components
of the form factors Fz(10) (c) and Fz(11) (d) at low field B = 0.5
(T = 0.5Tc).
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0.5B0 (multi)
2.0B0 (multi)

1.5B0 (single)
3.0B0 (single)
4.5B0 (single)

F t
r (

11
) [

a.
u.

]

1.00

1.0

0

FIG. 10. (Color online) The comparison of the transverse form
factors Ftr(11) with the single-band results (open symbols) [19] for
B = 1.5, 3.0, and 4.5 and the present multiband results (filled
symbols) depicted in Fig. 7 for B = 2.0 and 0.5. The vertical scale
is adjusted so that the slopes of these curves near �c coincide with
each other. It is clear that the low-field theoretical result (B = 0.5)
behaves differently, exhibiting a bimodal structure.

for both B = 2.0 (high field) and B = 0.5 (low field) data.
As for the longitudinal components of Fz(10) and Fz(10), it is
reasonable to see that the maximum angle �max is shifted
to a higher angle than Ftr(11). This is because when Hc2(�c)
is approached the “effective” field virtually increases because
the decreasing 	(�) means decreasing Hp and hence enhances
PPE, thus pushing up the longitudinal FF |Fz| .

In order to clearly see the different angle dependencies
Ftr(11)(�) for the two cases and to understand the discrepancy
of the low-field data mentioned above shown in Fig. 7(b), we
replot those theoretical results normalized by �c in Fig. 10 and
compare those with the corresponding single-band results [19],
where we have adjusted the vertical scale so that the slopes of
these curves near �c coincide with each other. It is now seen
clearly that

(1) The high-field result B = 2.0 belongs to the single-band
universality curve. This is because the high-field scanning path
is sensing only the �β region in Fig. 1(b). This is virtually
the same as in the single-band case—namely, after taking the
maximum the FF curve simply goes to vanish at �c.

(2) The low-field result B = 0.5 behaves differently from
those single-band universality curves and exhibits a “bimodal”
� dependence where the FF peak is additionally enhanced.
Thus the curve just after taking the maximum tends to vanish
earlier than at �c which is the ultimate vanishing angle.

Let us come back to understand the low-field FF data
shown in Fig. 7(b). The bimodal Ftr(11)(�) structure at the
low field is shown in Fig. 9(b) where the slope just after
the maximum differs from the slope at higher angles as �

increases. This crossover angle �cross ∼ 4◦–5◦. This low-field
scan corresponds to the low-field scanning path in Fig. 1(b),
where the crossover of the regions �β → �γ → �β is sensing
with increasing �. In particular, the central peak � region
(1.0◦ < � < 4.0◦) in the bimodal structure corresponds to the
middle �γ region in this crossover. This theoretical curve is

2.0B0
0.50T

80

0
60 .0

0.5B0
0.25T (I)
0.25T (II)

80

0
6.00

(a () b)

FIG. 11. (Color online) The comparison of the experimental data
(open symbols) [12,28] for �VL(�) for H = 0.5 T with the high-field
results of B = 2.0 (filled symbols) (a) and H = 0.25 T with the
low-field results of B = 0.5 (filled symbols) (b) (T = 0.5Tc). The
curves are drawn by the effective mass formula Eq. (10) with � = 60
(dotted line) and � = ∞ (dashed line).

compared with the SANS data [28] at H = 0.25 T in Fig. 7(b).
Although the present experimental data do not exhibit this
bimodal FF structure, the existing data are understood as
coming only from the middle �γ region among the bimodal
structure because the extrapolated vanishing angle �c ∼ 7◦.
This critical angle is too small compared with �c = 18◦ which
must be the ultimate vanishing angle of the FF intensity. Thus
we interpret this so that the existing FF data are coming
for the peak �γ region of the bimodal FF distribution. This
interpretation is strengthened later when analyzing the vortex
lattice anisotropy �VL.

B. Vortex lattice anisotropy �VL

Figure 11 shows the results of the vortex lattice anisotropy
�VL compared with the SANS experiments [28] where for
a given B and � the self-consistent solutions of Eq. (3) are
optimized for varying �VL as shown in Fig. 12 to seek the
free energy minimum where the free energy form is given by
Eq. (1). In general the optimized �VL is that given neither

F/|Fopt.|

-1.000

-0.999

15.0 55.0

FIG. 12. (Color online) The free energy curves for various angles
� as a function of �VL for B = 2.0 (filled symbols) and B = 0.5 (open
symbols) in order to emphasize that our computations are performed
accurately enough to resolve the subtle differences of the �VL values.
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by the effective mass anisotropies �β(�) with �β = 60 nor
�γ (�) with �γ = 180 alone given by Eq. (10). This is obvious
because those two anisotropies are coupled and competed by
the multiband effect.

The higher field results in Fig. 11 (a) follow rather well those
given by the above formula of Eq. (10) for �β(�) for the higher
angles � > 3◦. We note that at � = 0◦, �VL(0◦) = 70 corre-
sponds precisely to the anisotropy H

β

c2(0◦)/Hβ

c2(90◦) for T =
0.5Tc. Between the angle 1◦ < � < 3◦, the theoretical results
deviate upwards; that is, �VL(�) > �β(�). The high-field scan
in Fig. 1(b) is barely touching the �γ region whose anisotropy
can be certainly larger than �β = 60 because �γ = 180.

The low-field theoretical results shown in Fig. 11(b)
follow the �β(�) curve for 0◦ � � < 1◦ and remarkably
exceed the � → ∞ curve in 1◦ < � < 5◦. This window in
� corresponding to the �γ region appears because there the
�γ = 180 anisotropy further modifies the �VL value upwards,
simultaneously enhancing the transverse FF. We point out
a theoretical fact that as �VL(�) increases, Ftr(�) becomes
larger. We anticipate that the results at lower temperatures than
the present one at T = 0.5Tc would improve the quantitative
fittings of �VL and simultaneously Ftr(�). Note that �VL(� =
0◦) = 52 corresponds to the single-band anisotropy for the β

band at lower fields [19]. The H = 0.25 T data nicely fit our
theoretical result. The important point here is that not only
the experimental data exceed the � → ∞ line, but also there
exists a wider window 1◦ < � < 5◦ where the experimental
data deviate from the single-band �β(�) curve.

We demonstrate in Fig. 12 that the optimal �VL is
determined careful enough, which can be larger than the
corresponding � → ∞ case in Eq. (10). For example, for
our B = 0.5 case at � = 2◦ our �VL = 32 while �VL = 29 for
� = ∞ and �VL = 28 for �β = 60. Thus it can be said that
the multiband effect helps enhancing �VL beyond � = ∞.

C. Order parameters, free energy, and magnetization

We illustrate the � dependencies of several physical
quantities of interest which are the basis of the form factors and

F/F0

30 5.0

0

-0.04

-0.02

2.0B0
0.5B0

FIG. 13. (Color online) The angle dependencies of the free en-
ergy for B = 2.0 (filled symbols) and B = 0.5 (open symbols),
showing a smooth change of the second-order transition at �c, where
�c = 7.78◦ and �c = 33.96◦, respectively.

0 35.0

0.6

0.3

0

FIG. 14. (Color online) The angle dependencies of the order
parameter amplitudes 	β (�) and 	γ (�) at the center of the vortex
unit cell for B = 2.0 (filled symbols) and B = 0.5 (open symbols).

magnetic torque calculations as shown shortly. The free energy
F (�) is shown in Fig. 13, from which we will evaluate the
magnetic torques. Since the transition at �c is of second order
at those fields and temperature (T = 0.5Tc), F (�) becomes
zero smoothly at the transition point �c .

As seen from Fig. 14, the two order parameters—the major
	β(�) and minor 	γ (�)—start decreasing from � = 0◦
towards �c as a function of �. The two curves change smoothly
in parallel because the minor component 	γ (�) is induced by
the major one 	β(�) through the Cooper pair transfer V12 in
the absence of V22. In this case we expect no hidden first-order
transition phenomena [10], where there is an abrupt change of
the two order parameters inside the superconducting state.

In Fig. 15 the total paramagnetic susceptibility χt(�) and
decomposed χβ(�) and χγ (�) are displayed as a function
of �. Since we assume the density of states NFγ = 43% and
NFβ = 57% of the total DOS, the corresponding paramagnetic
values χγ (�) > χβ(�) as expected. We also point out that the
base paramagnetic moment value at � = 0◦ is large because

1.0

0 0 35.0

FIG. 15. (Color online) The angle dependencies of the paramag-
netic susceptibility χt(�) for B = 2.0 (filled symbols) and B = 0.5
(open symbols), which are decomposed into χβ (�) and χγ (�).
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the calculations are done at rather high temperature T = 0.5Tc.
Needless to say, at T → 0, χt should vanish at � = 0◦.
As � increases χt(�) becomes larger because the system is
approaching the transition point at �c where the normal value
χN must be recovered; that is, χt(�c) = χN .

V. MAGNETIC TORQUES

Magnetic torque τ (�) defined by τ (�) = ∂F (�)/∂�

provides several important pieces of information on a uni-
axial anisotropic superconductor. We can know the intrinsic
anisotropy of a system by the peak position of the torque curve
τ (�). This can be easily performed by using a phenomenolog-
ical theory based on London theory [41] for single-band super-
conductors. In our previous papers [19,31] we examine the ap-
plicability of this approach and propose a modification to this.
Extending these single-band Eilenberger calculations, here we
show the results of the torque curves τ (�) for the present
two-band model and use those to analyze the data on Sr2RuO4,
where the torque curves have been measured recently [29].

We first display our results for the torque curves in Fig. 16
where our results for B = 2.0 and B = 0.5 are compared with
the experimental data for H = 0.5 T (former) and H = 0.2
T (latter). It is seen from Fig. 16(a) at the high field B =
2.0 that the fitting is done well, such as the peak position
and the �c value. Since the high-field result is sensing only
on the �β region, it is reasonable that the theoretical curve
nicely explains the experimental data at H = 0.5 T and the
peak position �

torque
peak = 1.5◦ coincides with the single-band

result [19]. This peak position �
torque
peak also coincides with �FF

peak

of the form factor (B = 2.0). Thus the four values �
torque
peak and

�FF
peak both for theory and experiment are coinciding with each

other, leading us to firmly conclude that in high fields the
system is virtually in the single-band-like �β region.

On the other hand, the low-field result (B = 0.5) shown in
Fig. 16(b) explains the experimental torque curves for H = 0.2
T, but the peak positions differ slightly from each other. We
also notice here that the theoretical �

torque
peak �= �FF

peak and �FF
peak

(∼4◦) agrees with the experimental data as shown before.
It is interesting to compare our torque curves with those for

the single-band case, which are displayed in Fig. 17. It is seen
that the two torque curves nicely correspond to the single-band
curves, which is in contrast with the FF case shown in Fig. 10,

1.0

0
0 8.0

1.0

0 10.0
0

0.2T
0.5B0

0.5T
2.0B0

FIG. 16. (Color online) The angle dependencies of the torques
(filled symbols) for B = 2.0 together with the experimental data
(open symbols) [29] of H = 0.5 T (a) and B = 0.5 with the data
of H = 0.2 T (b).

0.5B0 (multi)
2.0B0 (multi)

1.5B0 (single)
3.0B0 (single)
4.5B0 (single)

1.0

0
10 .0

FIG. 17. (Color online) The torque curves as a function of � for
B = 2.0 and B = 0.5 at T = 0.5Tc. These are compared with the
single-band results [19] for B = 1.5, 3.0, and 4.5. The vertical scale
is adjusted so that the slopes of these curves near �c coincide with
each other.

where the low-field curve markedly deviates from the single-
band case. This means that the magnetic torque is a rather
insensitive probe to see the subtle but important multiband
effect. In other words, the form factor measurement is sensitive
enough to distinguish the multiband effect from the single-
band effect. This is because the torque τ (�) = ∂F (�)/∂�

comes from the total free energy F (�) while the FF is probing
the particular Fourier component of the spatially modulated
magnetic field in the mixed state selectively. Thus it is natural
to expect that the FF measurement is more sensitive than the
torque measurement in picking up the multiband effect.

VI. DISCUSSION

A. Single band vs multiband

In order to describe the transverse components of FF and
�VL data [28] near the ab plane, which is the main theme
of the paper, we have done the calculations based on both
scenarios, first focusing on the H ‖ c physics to fix the
model parameters. Here we critically examine those scenarios
comparatively. It is obvious that the multiband scenario is
superior to the single-band scenario [19] because the former
includes the latter as a limiting case. A question is how
effectively the single-band scenario can describe those data or
how the multiband description is inevitable for the Sr2RuO4

physics. As already demonstrated and also shown in Fig. 18,
the overall features of those data can be reproduced by the
single-band model with �β = 60 in the higher fields above
H > 0.5 T in the H vs � plane, where there is a little trace of
the existence of the γ band with �γ = 180 [see Fig. 18(a)]. In
this sense the single-band picture is enough for this region.
In contrast, however, it is necessary to retain the γ band
contribution in addition to the major β band contribution
in the low-field region below 0.5 T [see Fig. 18(b)]. The
former contribution is hidden and not explicit where the
crossover occurs around � = 1.5◦ as indicated in Fig. 18(b).
This is necessary and indispensable to take it into account
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Hc2/Hc2, c (60)

Hc2
0.5B0

(a) (b)

Hc2, c

FIG. 18. (Color online) The comparison of the �VL with the
single-band cases �VL(60) and �VL(180) and also with the Hc2

anisotropy Hc2(�)/Hc2,c. (a) High-field case 2.0 where the three
data �VL, �VL(60), and Hc2/Hc2,c coincide with each other, and
(b) low-field case 0.5 where the lower (high) angle region corresponds
to the β (γ ) band anisotropy. The vertical dashed line at around
� = 1.5◦ denotes its boundary. The dotted (dashed) curves indicate
the angle dependence of the effective mass formula Eq. (10) for
� = 60 (� = ∞).

for explaining the FF and �VL data [28]. This is a part of
the reasons why our single-band theory [19] is successful to
understand the mixed state properties of the present strongly
uniaxial anisotropic superconductor. Moreover, depending on
the physical quantities of interest, the multiband effect is not
so apparent even in the low-field region. Namely, the torque
curves are quite insensitive to the presence of the minor band
and all the theoretical torque curves collapse into a universal
curve by appropriate scaling as discussed before (see Fig. 17).

B. β main scenario vs γ main scenario

The question on which band the gap is large is much dis-
cussed in connection with the pairing mechanism to stabilize
the chiral p-wave state by many authors [13–17]. Here we take
a different view to consider this question through the analysis
of the FF, �VL, and torques. If the γ band is major, this survives
in the high field region of the H vs � plane over the minor
β band (see Figs. 1(c) and 1(d)). Then the SANS experiment
should detect it, manifesting itself in �VL; that is, �VL → 180
as � → 0. However, both high-field and low-field data shown
in Fig. 11 indicate �VL ∼ 60 or so, which is direct evidence
that the β band with �β = 60 is major. This conclusion is also
supported by the Hc2 ratio Hc2,ab(T )/Hc2,c(T ) → 60 when
T → Tc [39] because near Tc this ratio directly reflects the
intrinsic Fermi velocity anisotropy [42], or the coherent length
anisotropy. Thus those experimental data obviously reveal that
the β band is major with certainty.

C. Cooper pair tunneling V12 vs direct attraction
V22 : Hidden first order

In general, for the two-band scenario containing the three
pairing parameters, V11 (V22) is the attractive interaction for
the major (minor) band, and V12 = V21 is the Cooper pair
tunneling term or proximity-induced term. Here we set V22 = 0
in this paper because there is no or little indication for V22 �= 0,
which causes the so-called hidden first order phenomena [10].
Namely at H ∗ inside Hc2 certain physical quantities exhibit a
sudden change as a function of H , such as the Sommerfeld

coefficient γ (H ) or the magnetization curve as observed
in CeCu2Si2 [6], UBe13 [7], and KFe2As2 [8]. This means
that V22 ∼ 0 in Sr2RuO4 and the minor γ band pairing is
exclusively induced by the major γ band through V12.

D. Expected low-T behaviors

Because of several technical reasons our main computations
have been done at relatively high T , namely T = 0.5Tc, which
are nevertheless successful in capturing the characteristic
features in the FF, �VL, and torques in a qualitative level. To
understand those data in a quantitative level it is necessary
to go into lower T which is demanding computationally.
Here we anticipate possible outcomes if performing it. As
shown in Fig. 7 we have mentioned that the low-field FF
(B = 0.5) differs from that in B = 2.0, which belongs to
the single-band universality class. The FF in low angle �

is enormously enhanced by the assistance from the minor
band which amounts almost 10% even at T = 0.5Tc. In low-T
calculation this enhancement of the FF should increase and
the FF angle dependence becomes more similar to the data
shown in Fig. 7(b). This expectation is reasonable because
at lower T the induced paramagnetic moments are confined
in the vortex core, making more contrast in the spatial field
distribution and thus enhancing the FF amplitude. See also
Fig. 15 where the paramagnetic susceptibility or paramagnetic
moments of the minor γ band are almost exhausted at � = 0
to its normal value, meaning that is not confined in the core.
Thus, the paramagnetic moments are spreading out the whole
space uniformly.

E. Other multiband superconductors with PPE

We can deepen our understandings of the present material
by comparing similar multiband superconductors, CeCu2Si2
[6], UBe13 [7], and KFe2As2 [8]. The first two are heavy-
fermion materials known to have multiband with all full
gaps belonging to the spin singlet category, where Hc2 is
strongly suppressed and the hidden first order like anomalies
at H ∗ exist. Thus as mentioned V22 is indispensable for those
systems. According to the recent SANS experiment [9] the
typical multiband Fe pnictide KFe2As2 is similar to Sr2RuO4

in the point that the vortex anisotropy �VL observed differs
from the Hc2 anisotropy. This can be also explained by PPE.
Thus the present theoretical framework, which is quite general,
might be able to explain those systems.

F. Gap structure: Vertical line node vs horizontal line node

We have assigned the nodal structure that the dominant β

band is a full gap while the minor γ is vertical line nodes,
in order to reproduce the square vortex lattice oriented to the
(110) direction observed for H ‖ c which dominates the whole
space measured in the H vs T phase [40]. The gap (or near)
nodes should be in this direction in reciprocal space [43],
implying a dx2−y2 -like nodal structure, contrary to the claim
by Deguchi et al. [37], who measure the specific heat by
rotating the field direction and see the fourfold oscillation
patterns whose minima are located for the (100) direction.
They conclude that the γ band has a dxy-like nodal structure.
However, this assignment is difficult for explaining the square
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vortex lattice orientated along the (110) direction for H ‖ c,
even if we take into account the in-plane Fermi velocity
anisotropy in the β and α bands whose minima are oriented
along the (100) direction [44], thus preferring the square lattice
oriented along the (100) direction as discussed previously [45].
Thus the best way to avoid this difficulty is to simply consider
that the γ band nodal structure is dx2−y2 -like. The specific heat
oscillation experiment done above 120 mK is still too high to
see the sign changing of the oscillation pattern because the γ

band is minor where the expected sign-changing temperature
theoretically [35] and experimentally [46] usually located at
0.1Tc ∼ 150 mK must be lowered.

This kind of the band-dependent nodal structure differs
from the idea based on the symmetry-protected nodal structure
where all plural bands are governed by the same gap symmetry.
From this point of view, it is possible that the dx2−y2 nodal
structure may not be truly sign-changing symmetry, but rather
an extended s-wave type with the anisotropic gap whose
minima are along the (110) direction.

Some authors [47] assert that the horizontal line nodes
are compatible with a chiral triplet state (px + ipy) cos pz.
From the present point of view, the Sommerfeld coefficient
γ (H ) behavior for H ‖ c may not be consistent with this,
which gives a too larger γ (H ) at low-field region than the
experimental data [37] shown in Fig. 4. In this connection
we should mention that no one succeeded in explaining the
γ (H ) behavior [37] for H ‖ ab. In particular, it is viewed
that the initial rise of H ‖ ab is often assigned to the α + β

DOS because the plateau of γ (H ) for this midfield region
H ∼ 0.4–0.5 T seems to correspond to α + β DOS (43% of
the total), which was taken as supporting evidence of the γ

major scenario. Since we cannot accept this view anymore, a
full understudying of the γ (H ) behavior for H ‖ ab remains
a mystery.

G. Perspectives—Future experiments: Knight shift and FFLO

There remain certainly important experiments to further the
research front of this interesting material: NMR experiments
have been extensively done [11], showing the absence of any
change of the Knight shift [48] below Tc. This is interpreted as
a freely rotatable d-vector in a spin triplet pairing, keeping it
always perpendicular to an external field which is as small
as ∼mT, a big mystery because according to the recent
ARPES [49] and RIXS [50] the spin-orbit coupling which
locks the d-vector to the crystalline lattice is on the order of
200 mV. The recent magnetization experiment [29] is directly
able to detect the spin susceptibility change at the first-order
transition Hc2,ab, which amounts to a ∼10% drop compared
with the normal value. This is in sharp contrast with the Knight
shift experiment by NMR which calls for reexamination of
NMR experiments.

Here we propose the T1 measurement to detect the FFLO
state [51,52] expected to exist along Hc2,ab below T �

0.8 K, where the first-order transition is observed. Recently
anomalous T −1

1 enhancement is observed [53] when entering
the FFLO state due to the appearance of the zero-energy state at
the domain walls where the FFLO order parameter is π -shifted.
There is a good chance to observe it if the second phase
below Hc2,ab really exists, which we believe so. A necessary
condition is that T2 is short enough so that the spin-lattice
relaxation T1 process is dominated through those zero energy
states as in the κ- (BEDT-TTF)2Cu (NCS)2 case [53]. In this
connection we mention a recent μSR experiment [54] that
probes the peculiar vortex morphology at low fields of H ‖ c

and related theory based on hidden criticality associated with
multibandness [55–57].

VII. SUMMARY AND CONCLUSION

Based on the microscopic Eilenberger theory extended to a
multiband case, we have studied the mixed state properties of
a uniaxial anisotropic type II superconductor, focusing on the
interplay between the Pauli paramagnetic effect and multiband
effect. A two-band model calculation is set up and applied to
Sr2RuO4. We have succeeded in reproducing the data of both
the form factors of SANS experiments [12,28] and magnetic
torque experiment [29]. That leads us to the conclusion that
to understand the physics in Sr2RuO4 it is indispensable to
consider both the Pauli paramagnetic effect and multiband
effect simultaneously, which conspire to give rise to a variety of
mysteries associated with the pairing symmetry determination
in this material.

As agreed with the previous identification based on the
single-band analysis [19], the pairing symmetry in Sr2RuO4

is either singlet, which is most likely, or triplet with the
d-vector locked in the ab plane, which is less likely. The
β (γ ) band is major (minor) with the mass anisotropy 60
(180). Namely, the β (γ ) band has a larger (smaller) gap.
The gap structure is a full gap in the β band while in the γ

band it is dx2−y2 -like. This simple picture was difficult to reach
because of the extreme two-dimensionality of this material,
which prevents conventional experimental access. Now the
dedicated and refined experimental tools [12,29,58,59] which
are able to align the magnetic field direction accurately to
within 1◦ enable us to uncover the physics of Sr2RuO4.
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and F. M. Peeters, Phys. Rev. Lett. 108, 207002 (2012).

[56] M. Silaev and E. Babaev, Phys. Rev. B 84, 094515 (2011).
[57] M. Silaev and E. Babaev, Phys. Rev. B 85, 134514 (2012).
[58] S. Yonezawa, T. Kajikawa, and Y. Maeno, Phys. Rev. Lett. 110,

077003 (2013).
[59] S. Yonezawa, T. Kajikawa, and Y. Maeno, J. Phys. Soc. Jpn. 83,

083706 (2014).

054505-12

http://dx.doi.org/10.1103/PhysRevLett.91.047002
http://dx.doi.org/10.1103/PhysRevLett.91.047002
http://dx.doi.org/10.1103/PhysRevLett.91.047002
http://dx.doi.org/10.1103/PhysRevLett.91.047002
http://dx.doi.org/10.1103/PhysRevLett.112.067002
http://dx.doi.org/10.1103/PhysRevLett.112.067002
http://dx.doi.org/10.1103/PhysRevLett.112.067002
http://dx.doi.org/10.1103/PhysRevLett.112.067002
http://dx.doi.org/10.1103/PhysRevLett.114.147002
http://dx.doi.org/10.1103/PhysRevLett.114.147002
http://dx.doi.org/10.1103/PhysRevLett.114.147002
http://dx.doi.org/10.1103/PhysRevLett.114.147002
http://dx.doi.org/10.7566/JPSJ.83.013704
http://dx.doi.org/10.7566/JPSJ.83.013704
http://dx.doi.org/10.7566/JPSJ.83.013704
http://dx.doi.org/10.7566/JPSJ.83.013704
http://dx.doi.org/10.1103/PhysRevB.92.020502
http://dx.doi.org/10.1103/PhysRevB.92.020502
http://dx.doi.org/10.1103/PhysRevB.92.020502
http://dx.doi.org/10.1103/PhysRevB.92.020502
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/PhysRevLett.111.087003
http://dx.doi.org/10.1103/PhysRevLett.111.087003
http://dx.doi.org/10.1103/PhysRevLett.111.087003
http://dx.doi.org/10.1103/PhysRevLett.111.087003
http://dx.doi.org/10.1103/PhysRevLett.87.057001
http://dx.doi.org/10.1103/PhysRevLett.87.057001
http://dx.doi.org/10.1103/PhysRevLett.87.057001
http://dx.doi.org/10.1103/PhysRevLett.87.057001
http://dx.doi.org/10.1143/JPSJ.69.3678
http://dx.doi.org/10.1143/JPSJ.69.3678
http://dx.doi.org/10.1143/JPSJ.69.3678
http://dx.doi.org/10.1143/JPSJ.69.3678
http://dx.doi.org/10.1143/JPSJ.71.404
http://dx.doi.org/10.1143/JPSJ.71.404
http://dx.doi.org/10.1143/JPSJ.71.404
http://dx.doi.org/10.1143/JPSJ.71.1993
http://dx.doi.org/10.1143/JPSJ.71.1993
http://dx.doi.org/10.1143/JPSJ.71.1993
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1103/PhysRevB.89.220510
http://dx.doi.org/10.1103/PhysRevB.89.220510
http://dx.doi.org/10.1103/PhysRevB.89.220510
http://dx.doi.org/10.1103/PhysRevB.89.220510
http://dx.doi.org/10.1103/PhysRevB.77.184515
http://dx.doi.org/10.1103/PhysRevB.77.184515
http://dx.doi.org/10.1103/PhysRevB.77.184515
http://dx.doi.org/10.1103/PhysRevB.77.184515
http://dx.doi.org/10.1103/PhysRevB.91.144513
http://dx.doi.org/10.1103/PhysRevB.91.144513
http://dx.doi.org/10.1103/PhysRevB.91.144513
http://dx.doi.org/10.1103/PhysRevB.91.144513
http://dx.doi.org/10.1007/BF01379803
http://dx.doi.org/10.1007/BF01379803
http://dx.doi.org/10.1007/BF01379803
http://dx.doi.org/10.1007/BF01379803
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.90.177002
http://dx.doi.org/10.1103/PhysRevLett.90.177002
http://dx.doi.org/10.1103/PhysRevLett.90.177002
http://dx.doi.org/10.1103/PhysRevLett.90.177002
http://dx.doi.org/10.1103/PhysRevB.70.144508
http://dx.doi.org/10.1103/PhysRevB.70.144508
http://dx.doi.org/10.1103/PhysRevB.70.144508
http://dx.doi.org/10.1103/PhysRevB.70.144508
http://dx.doi.org/10.1103/PhysRevB.81.174538
http://dx.doi.org/10.1103/PhysRevB.81.174538
http://dx.doi.org/10.1103/PhysRevB.81.174538
http://dx.doi.org/10.1103/PhysRevB.81.174538
http://dx.doi.org/10.1103/PhysRevB.82.014521
http://dx.doi.org/10.1103/PhysRevB.82.014521
http://dx.doi.org/10.1103/PhysRevB.82.014521
http://dx.doi.org/10.1103/PhysRevB.82.014521
http://dx.doi.org/10.1103/PhysRevB.83.134524
http://dx.doi.org/10.1103/PhysRevB.83.134524
http://dx.doi.org/10.1103/PhysRevB.83.134524
http://dx.doi.org/10.1103/PhysRevB.83.134524
http://dx.doi.org/10.1103/PhysRevB.90.220502
http://dx.doi.org/10.1103/PhysRevB.90.220502
http://dx.doi.org/10.1103/PhysRevB.90.220502
http://dx.doi.org/10.1103/PhysRevB.90.220502
http://dx.doi.org/10.1103/PhysRevB.87.224509
http://dx.doi.org/10.1103/PhysRevB.87.224509
http://dx.doi.org/10.1103/PhysRevB.87.224509
http://dx.doi.org/10.1103/PhysRevB.87.224509
http://dx.doi.org/10.1103/PhysRevB.90.144514
http://dx.doi.org/10.1103/PhysRevB.90.144514
http://dx.doi.org/10.1103/PhysRevB.90.144514
http://dx.doi.org/10.1103/PhysRevB.90.144514
http://dx.doi.org/10.1103/PhysRevB.59.8902
http://dx.doi.org/10.1103/PhysRevB.59.8902
http://dx.doi.org/10.1103/PhysRevB.59.8902
http://dx.doi.org/10.1103/PhysRevB.59.8902
http://dx.doi.org/10.1103/PhysRevB.59.184
http://dx.doi.org/10.1103/PhysRevB.59.184
http://dx.doi.org/10.1103/PhysRevB.59.184
http://dx.doi.org/10.1103/PhysRevB.76.064502
http://dx.doi.org/10.1103/PhysRevB.76.064502
http://dx.doi.org/10.1103/PhysRevB.76.064502
http://dx.doi.org/10.1103/PhysRevB.76.064502
http://dx.doi.org/10.1103/PhysRevB.41.6335
http://dx.doi.org/10.1103/PhysRevB.41.6335
http://dx.doi.org/10.1103/PhysRevB.41.6335
http://dx.doi.org/10.1103/PhysRevB.41.6335
http://dx.doi.org/10.1143/JPSJ.79.094709
http://dx.doi.org/10.1143/JPSJ.79.094709
http://dx.doi.org/10.1143/JPSJ.79.094709
http://dx.doi.org/10.1143/JPSJ.79.094709
http://dx.doi.org/10.1103/PhysRevB.64.174501
http://dx.doi.org/10.1103/PhysRevB.64.174501
http://dx.doi.org/10.1103/PhysRevB.64.174501
http://dx.doi.org/10.1103/PhysRevB.64.174501
http://dx.doi.org/10.1143/JPSJ.73.1313
http://dx.doi.org/10.1143/JPSJ.73.1313
http://dx.doi.org/10.1143/JPSJ.73.1313
http://dx.doi.org/10.1143/JPSJ.73.1313
http://dx.doi.org/10.1007/BF00654872
http://dx.doi.org/10.1007/BF00654872
http://dx.doi.org/10.1007/BF00654872
http://dx.doi.org/10.1007/BF00654872
http://dx.doi.org/10.1209/epl/i2001-00598-7
http://dx.doi.org/10.1209/epl/i2001-00598-7
http://dx.doi.org/10.1209/epl/i2001-00598-7
http://dx.doi.org/10.1209/epl/i2001-00598-7
http://dx.doi.org/10.1103/PhysRevB.80.174514
http://dx.doi.org/10.1103/PhysRevB.80.174514
http://dx.doi.org/10.1103/PhysRevB.80.174514
http://dx.doi.org/10.1103/PhysRevB.80.174514
http://dx.doi.org/10.1088/1742-6596/150/5/052112
http://dx.doi.org/10.1088/1742-6596/150/5/052112
http://dx.doi.org/10.1088/1742-6596/150/5/052112
http://dx.doi.org/10.1088/1742-6596/150/5/052112
http://dx.doi.org/10.1103/PhysRevLett.84.6094
http://dx.doi.org/10.1103/PhysRevLett.84.6094
http://dx.doi.org/10.1103/PhysRevLett.84.6094
http://dx.doi.org/10.1103/PhysRevLett.84.6094
http://dx.doi.org/10.1103/PhysRevLett.89.237005
http://dx.doi.org/10.1103/PhysRevLett.89.237005
http://dx.doi.org/10.1103/PhysRevLett.89.237005
http://dx.doi.org/10.1103/PhysRevLett.89.237005
http://dx.doi.org/10.1143/JPSJ.72.221
http://dx.doi.org/10.1143/JPSJ.72.221
http://dx.doi.org/10.1143/JPSJ.72.221
http://dx.doi.org/10.1143/JPSJ.72.221
http://dx.doi.org/10.1103/PhysRevLett.89.237004
http://dx.doi.org/10.1103/PhysRevLett.89.237004
http://dx.doi.org/10.1103/PhysRevLett.89.237004
http://dx.doi.org/10.1103/PhysRevLett.89.237004
http://dx.doi.org/10.1103/PhysRevB.52.1358
http://dx.doi.org/10.1103/PhysRevB.52.1358
http://dx.doi.org/10.1103/PhysRevB.52.1358
http://dx.doi.org/10.1103/PhysRevB.52.1358
http://dx.doi.org/10.1103/PhysRevB.59.7076
http://dx.doi.org/10.1103/PhysRevB.59.7076
http://dx.doi.org/10.1103/PhysRevB.59.7076
http://dx.doi.org/10.1103/PhysRevB.59.7076
http://dx.doi.org/10.1103/PhysRevLett.104.037002
http://dx.doi.org/10.1103/PhysRevLett.104.037002
http://dx.doi.org/10.1103/PhysRevLett.104.037002
http://dx.doi.org/10.1103/PhysRevLett.104.037002
http://dx.doi.org/10.1143/JPSJ.69.336
http://dx.doi.org/10.1143/JPSJ.69.336
http://dx.doi.org/10.1143/JPSJ.69.336
http://dx.doi.org/10.1143/JPSJ.69.336
http://dx.doi.org/10.1103/PhysRev.121.779
http://dx.doi.org/10.1103/PhysRev.121.779
http://dx.doi.org/10.1103/PhysRev.121.779
http://dx.doi.org/10.1103/PhysRev.121.779
http://dx.doi.org/10.1103/PhysRevLett.112.127002
http://dx.doi.org/10.1103/PhysRevLett.112.127002
http://dx.doi.org/10.1103/PhysRevLett.112.127002
http://dx.doi.org/10.1103/PhysRevLett.112.127002
http://dx.doi.org/10.1103/PhysRevB.91.155104
http://dx.doi.org/10.1103/PhysRevB.91.155104
http://dx.doi.org/10.1103/PhysRevB.91.155104
http://dx.doi.org/10.1103/PhysRevB.91.155104
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1038/nphys3121
http://dx.doi.org/10.1038/nphys3121
http://dx.doi.org/10.1038/nphys3121
http://dx.doi.org/10.1038/nphys3121
http://dx.doi.org/10.1103/PhysRevB.89.094504
http://dx.doi.org/10.1103/PhysRevB.89.094504
http://dx.doi.org/10.1103/PhysRevB.89.094504
http://dx.doi.org/10.1103/PhysRevB.89.094504
http://dx.doi.org/10.1103/PhysRevLett.108.207002
http://dx.doi.org/10.1103/PhysRevLett.108.207002
http://dx.doi.org/10.1103/PhysRevLett.108.207002
http://dx.doi.org/10.1103/PhysRevLett.108.207002
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/10.1103/PhysRevB.85.134514
http://dx.doi.org/10.1103/PhysRevB.85.134514
http://dx.doi.org/10.1103/PhysRevB.85.134514
http://dx.doi.org/10.1103/PhysRevB.85.134514
http://dx.doi.org/10.1103/PhysRevLett.110.077003
http://dx.doi.org/10.1103/PhysRevLett.110.077003
http://dx.doi.org/10.1103/PhysRevLett.110.077003
http://dx.doi.org/10.1103/PhysRevLett.110.077003
http://dx.doi.org/10.7566/JPSJ.83.083706
http://dx.doi.org/10.7566/JPSJ.83.083706
http://dx.doi.org/10.7566/JPSJ.83.083706
http://dx.doi.org/10.7566/JPSJ.83.083706



