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Flux-vector model of spin noise in superconducting circuits: Electron versus nuclear
spins and role of phase transition
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Superconducting quantum interference devices (SQUIDs) and other superconducting circuits are limited
by intrinsic flux noise with spectral density 1/f α with α < 1 whose origin is believed to be due to spin
impurities. Here, we present a theory of flux noise that takes into account the vectorial nature of the coupling
of spins to superconducting wires. We present explicit numerical calculations of the flux-noise power (spectral
density integrated over all frequencies) for electron impurities and lattice nuclear spins under several different
assumptions. The noise power is shown to be dominated by surface electron spins near the wire edges, with bulk
lattice nuclear spins contributing ∼5% of the noise power in aluminum and niobium wires. We consider the role
of electron spin phase transitions, showing that the spin-spin correlation length (describing, e.g., the average size
of ferromagnetic spin clusters) greatly impacts the scaling of flux noise with wire geometry. Remarkably, the
flux-noise power is exactly equal to zero when the spins are polarized along the flux-vector direction, forming
what we call a poloidal state. Flux noise is nonzero for other spin textures, but gets reduced in the presence
of correlated ferromagnetic fluctuations between the top and bottom wire surfaces, where the flux vectors are
antiparallel. This demonstrates that engineering spin textures and/or intersurface correlation provides a method
to reduce flux noise in superconducting devices.
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I. INTRODUCTION

Superconducting quantum interference devices (SQUIDs)
are among the most sensitive and useful magnetometers [1].
They are able to detect magnetic fields as low as 10−17 T [2],
and are currently used in a wide variety of applications.
Examples include outer space tests of general relativity,
detection of short-circuit faults in microchips, as well as
several applications in medicine, such as measuring regions of
brain activity in magneto-encephalography. However, this high
degree of sensitivity also causes the SQUIDs to be sensitive to
magnetic fluctuations intrinsic to its wires and interfaces.

The most sensitive SQUIDs show excess flux noise (in
addition to the Johnson-Nyquist white noise) of the order
of 1 μ�0/

√
Hz at a frequency of 1 Hz [�0 = h/(2|e|) is

the flux quantum]. This value has not changed in order of
magnitude since the first measurements of flux noise in the
1980’s [3,4]; only minor improvements are observed in modern
devices [5–10]. While the flux noise is sufficiently low for
several applications, it is still considered a barrier for the
use of the SQUID as a quantum bit (the flux qubit) in a
superconductor-based quantum computer architecture [11].
Flux noise induces dephasing and relaxation of flux qubits,
limiting their coherence times to less than 20 μs [12]. Flux
noise also degrades performance of other superconducting
(SC) qubits such as the transmon [13] and phase qubit [6].
The effort to reduce flux noise and increase qubit coherence
times has been a major source of motivation for research in
improving SC devices.

The flux threading a SQUID at low temperatures was shown
to follow the Curie susceptibility law (magnetic susceptibility
∝1/T ) [14], supporting the idea that the origin of flux
noise was due to the fluctuation of local magnetic moments
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(presumably spin impurities) near the superconducting wire
(Fig. 1) [15–19]. The identity of these local moments remains
unknown; some of the possibilities are illustrated in Fig. 2,
which depicts the longitudinal cross-section of a typical
Josephson junction. Candidates for the local moments include
a variety of spin species: dangling bonds [16], interface
states [18], adsorbed molecules [20], and nuclear spins of all
atoms forming the materials [21–24].

Recent theory and experiment [25] provided evidence
that low-temperature/low-frequency SQUID flux noise can
be explained by a spin diffusion model, with the spin
diffusion constant measured to be of the order of 10 μm2/s.
Interestingly, this value is right in the range of spin diffusion
constants measured for lattice nuclear spins due to their
mutual dipolar interaction [26]. The typical metals that form
superconducting wires (e.g., niobium, aluminum) all have
nonzero lattice nuclear spin, that are expected to contribute
to intrinsic flux noise up to frequencies of the order of 104 Hz
(the value of dipolar coupling between nearest-neighbor nuclei

FIG. 1. Section of a superconducting wire with a random distri-
bution of spin impurities. The wire is made of a superconducting
thin film of thickness b and lateral width W , with b � W . The
flux �i produced by a spin si located at position Ri is given by
�i = −F(Ri) · si , with flux vector F(Ri) parallel to the magnetic
field produced by the supercurrent at Ri .
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FIG. 2. (Color online) Longitudinal cross-section of a typical
Josephson junction [7,25] and expected location of the spin species
causing flux noise. The superconducting wire is made of niobium, the
insulator of partially oxidized aluminum (likely amorphous), and the
substrate of silicon-dioxide. Candidates for the spin species include
electron and nuclear spins. Amorphous interfaces are well known
sources of electron spin centers such as dangling bonds [16] and
interface states [18]. We also depict molecules adsorbed to the surface
that were shown to lead to electron traps [20]. All materials have
nonzero lattice nuclear spin that contribute to flux noise even in the
absence of defects (e.g., Nb has nuclear spin S = 9/2).

in the crystal lattice) [27]. Nuclear spin noise should be
present even in hypothetically “perfect” devices that contain
no electron spin centers.

Recent experiments [13,28] claimed the observation of flux
noise at frequencies several orders of magnitude above the
nuclear spin cutoff frequency (104 Hz). Therefore nuclear
spins alone can not explain the origin of flux noise in SC
devices.

Here we describe a theory for the excess flux detected by
SC circuits in the presence of localized magnetic moments,
and make explicit numerical predictions for the flux-noise
power (noise spectral density integrated over all frequencies)
originating from electron and nuclear spins uniformly dis-
tributed in the surface and bulk of the SC wires. Our main
assumption is that the superconducting condensate affects
the value of the spin’s magnetic moment only through local
screening described by the London equations. We consider
the impact of the formation of spin clusters (spatial spin-spin
correlation), which is typical of electron spin systems close
to a phase transition [29,30]. This allows the assessment of
the relative contributions of surface impurity electrons and
bulk lattice nuclear spins in a variety of regimes. We present
simple analytic expressions that allow direct comparisons to
flux-noise models and experiments.

As we shall demonstrate, flux-noise power depends cru-
cially on the vectorial nature of the coupling between SC circuit
to spins. This vectorial nature can be mapped out by measuring
flux noise as a function of the direction and magnitude of an
external magnetic field applied along the plane of the wires.

Previous calculations of flux noise due to localized spin [15]
were based on modeling the spin as a square loop of side
0.1 μm, the minimum feature size allowed by the finite
element software FASTHENRY [31]. More recently, extensive

numerical studies [25,32] showed that these calculations
greatly underestimated the value of the flux produced by spins
located at the wire surfaces, because they did not take account
of the singular nature of the spin’s dipole field. Indeed, analytic
expressions for the flux-noise power that take into account the
spin’s singular behavior are still absent from the literature.
Below we obtain these expressions and argue that they can be
applied to arbitrary circuits made of thin-film wires. We shall
show below that our expressions lead to much larger values
than previous ones [6], but are in close agreement with the
most recent numerical studies [32].

The article is organized as follows. Section II introduces
our flux-vector model and develops a general theory on how
flux noise depends on the flux vector and the formation of
spin clusters near a phase transition. Section III describes our
numerical dipole method to calculate the flux vector explicitly.
Section IV describes our numerical results and compares them
to FASTHENRY calculations. Section V describes numerical
results for the noise power due to electron spins distributed
in the surface of the wires, with and without spin clustering.
Section VI describes our results for spins distributed in the
bulk of the wire, with explicit calculations for lattice nuclear
spins in aluminum and niobium. Section VII discusses the
implications of our results for reducing flux noise and presents
our conclusions.

II. FLUX-VECTOR MODEL

A. General case

Consider an ensemble of localized spins labeled by i =
1, . . . ,N . Each spin is located at position Ri , and is described
by the spin-S operator si . This can describe electron or nuclear
spins, e.g., single-electron impurity centers (S = 1/2), many-
electron transition metal centers (S � 1/2), or nuclear spins
of lattice atoms such as aluminum (S = 5/2) or niobium (S =
9/2). We introduce the notion of the flux vector Fi ≡ F(Ri),
whose components Fiα describe the value of the flux for a spin
pointing along direction α = x,y,z. The total flux that the spin
produces on the wires forming a device is written as

� = −
∑

i

Fi · si . (1)

Note that the Fi are real vectors with dimensions of flux (si is
assumed dimensionless), and � is a scalar quantum operator
describing flux. The sign in Eq. (1) ensures Fi ‖ B(Ri), the
magnetic field produced by the SC’s current density at the
spin’s location Ri (see Sec. III below). Such a flux is directly
measured in a SQUID, but more generally will couple to any
superconducting circuit by producing a voltage V = −d�/dt .
The problem of flux noise in superconducting circuits is to
compute the thermal equilibrium noise spectral density:

S̃�(f ) =
∫ ∞

−∞
dt e2πif t 〈δ�(t)δ�(0)〉, (2)

where δ�(t) = �(t) − 〈�〉, with the angular brackets cor-
responding to thermal average 〈A〉 = Tr (ρT A), with ρT =
e−H/(kBT )/Z the thermal equilibrium density matrix, H
the spin Hamiltonian, and Z = Tr (e−H/(kBT )) the partition
function.

054502-2



FLUX-VECTOR MODEL OF SPIN NOISE IN . . . PHYSICAL REVIEW B 92, 054502 (2015)

We perform a spectral decomposition of Eq. (2) by formally
diagonalizing the spin Hamiltonian, H|α〉 = Eα|α〉:

S̃�(f ) =
∑
α,β

e− Eα
kB T

Z
|〈α|δ�(0)|β〉|2δ

(
f − Eβ − Eα

h

)
. (3)

Any mechanism that couples the spins to the lattice [16]
or to themselves [17,25,29] leads to finite frequency noise.
However, evaluating Eq. (3) for a large spin system is
a challenging task that requires a series of uncontrolled
approximations.

The mechanism of frequency dependence in Eq. (3) is
a subject of current research. In Ref. [25], the frequency
dependence of Eq. (3) was evaluated under the assumption
that the spins are in a paramagnetic phase with spin dynamics
governed by spin diffusion, leading to 1/f α noise with
exponent 0 < α < 1.5 dependent on frequency range and
device geometry. Reference [29] proposed a model based on
spin-clusters and nondiffusive dynamics driven by spin-spin
dipolar interaction. It was argued that the distribution of cluster
sizes gives rise to a large spread of spin-flip times and 1/f 0.85

noise over a broad frequency range, independent of device
geometry.

Here we shall focus our discussion on the total flux-noise
power,

〈(δ�)2〉 =
∫ ∞

−∞
S̃�(f )df

=
∑

i,j,α,β

FiαFjβ

(
1

2
〈{siα,sjβ}〉 − 〈siα〉〈sjβ〉

)
, (4)

where {A,B} = AB + BA denotes the anticommutator of two
operators. We note that Eq. (4) is independent on the particular
interaction mechanism driving spin dynamics; thus it allows
a model independent comparison of the role of F and the
contribution arising from different spin species. We take a
continuum limit by introducing the magnetization or spin
density

M(r) = −
∑

i

siδ(r − Ri) (5)

and defining the spin-spin spatial correlation function as

Cαβ(r,r ′) = 1
2 〈{Mα(r),Mβ(r ′)}〉 − 〈Mα(r)〉〈Mβ(r ′)〉. (6)

In the continuum limit, Eq. (4) becomes

〈(δ�)2〉 =
∫

ddr

∫
ddr ′∑

α,β

Fα(r)Cαβ(r,r ′)Fβ(r ′), (7)

with dimension d = 2 (surface) and d = 3 (bulk) to be
considered below.

The noise power Eq. (7) depends on the spin texture through
the spatial correlation function Cαβ(r,r ′). If the spin system
is close to a phase transition, the noise power will show
strong temperature dependence because of the formation of
spin clusters, which are described in general by deviations of
Cαβ(r,r ′) from a delta function δ(r − r ′). In addition, Eq. (7)
may be temperature dependent even in the absence of spin
clusters, as we show below.

B. Noise power without spatial correlation (independent spins)

There are many situations where the correlation function is
well approximated by a delta function, and the state of any spin
is independent of the others. These include high-temperature,
spin textures with zero correlation (e.g., spin glass), and when
all spins are fully polarized along one direction. Below we
consider each case in detail.

In the limit of high temperature, defined by kBT being much
larger than any energy scale affecting the spins, we may carry
out a 1/T expansion of Eq. (6) and retain only the leading order
contribution (zeroth power of 1/T , which is exact at T = ∞).
This leading order contribution has all different spin config-
urations occurring with equal probability, implying 〈siα〉 = 0
and 〈siαsjβ〉 = S(S+1)

3 δij δαβ . Further assuming that the spins
are uniformly distributed in space with density σd leads to

C
αβ

T =∞(r,r ′) = S(S + 1)

3
σdδ(r − r ′)δαβ (8)

and the high-temperature noise power

〈(δ�)2〉T =∞ = S(S + 1)

3
σd

∫
ddr|F(r)|2, (9)

which is formally exact at T = ∞. In the absence of an
external magnetic field, Eq. (9) is a good approximation for
nuclear spins down to μK temperatures (the energy scale for
nuclear-nuclear dipolar interaction between nearest-neighbor
nuclear spins).

If the spin system is in a phase that has approximately zero
spatial correlation (〈siαsjβ〉 ≈ 〈siα〉〈sjβ〉 for i = j ), and if they
are uniformly distributed in space, the correlation function may
be approximated by

Cαβ
unc.(r,r ′) = f αβ(r,T )σdδ(r − r ′), (10a)

f αβ(Ri ,T ) = [
1
2 〈{siα,siβ}〉 − 〈siα〉〈siβ〉], (10b)

leading to the uncorrelated spin noise power

〈(δ�)2〉unc. = σd

∫
ddr

∑
α,β

Fα(r)f αβ(r,T )Fβ(r). (11)

This expression is a good approximation in at least three
cases of interest: (1) at temperatures higher than the spin-
spin coupling J , but lower than the single-spin anisotropy
energy (which is nonzero for S > 1/2). Assuming that the
single-spin anisotropy is equal for all spins, the function
f αβ(r,T ) will depend only on the temperature and not on r ,
and will differ from δαβ signaling the presence of anisotropy.
(2) At all temperatures, when the spin-spin coupling alternates
in sign randomly, such as in a spin-glass. As a result, the
coarse-grained spin-spin correlation function will average
out to zero over the length scales of Fα(r), but the long
time averages 〈siα〉 will remain nonzero (nonergodicity). A
space-dependent function f αβ(r,T ) may be used to model
the lack of translation symmetry of the spin state. In the
simpler case of translation symmetry, a spin-diffusion model
with f αβ(T ) = S(S + 1)χ (T )/(3χ0)δαβ(Eq. (9) of Ref. [25])
was proposed to describe the frequency and temperature
dependence of the spin-glass noise. (3) When all spins are
polarized along the same direction, which occurs at low T in
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a ferromagnetic phase, or in the presence of a large external
magnetic field.

To illustrate case (1), consider a model spin Hamilto-
nian with easy-axis anisotropy along ê‖, Hani. = −K

∑
i s

2
i‖,

with si‖ = si · ê‖ and K > 0 the anisotropy energy. When
J � kBT � K , the spins will be equally distributed in the
±S eigenstates of si‖; after a simple calculation, we get
f ‖,‖ = 〈s2

i‖〉 = S2 and f ⊥1,⊥1 = f ⊥2,⊥2 = 〈s2
i⊥1〉 = S/2, with

all other correlations equal to zero, leading to

〈(δ�)2〉J�kBT �K ≈ σd

∫
ddr

[
S2F 2

‖ (r) + S

2
F 2

⊥(r)

]
. (12)

Depending on the direction of F(r), the noise power may get
reduced or increased in comparison to the high-T result (9).

More generally, the Hermitian matrix f αβ(r,T ) can be
diagonalized to find its eigenvectors f̂ γ and eigenvalues aγ =
〈(si · f̂ γ )2〉 − 〈(si · f̂ γ )〉2 � 0. We may establish a general in-
equality for uncorrelated noise by noting that the largest eigen-
value of f αβ is smaller than S(S + 1) (the eigenvalue of s2

i ):

〈(δ�)2〉unc. = σd

∫
ddr

∑
γ

aγ |F(r) · f̂ γ |2 � 3〈(δ�)2〉T =∞.

(13)

If S = 1/2 and the spin state has translation symmetry, aγ

will be equal to 1/4 for all γ , and the noise power is simply
equal to the T = ∞ result Eq. (9).

Finally, we consider case (3) in detail. At low T , the
spins may spontaneously polarize if the spin-spin interaction
is ferromagnetic (see Sec. II C); alternatively they can be
polarized with a strong external magnetic field. Measuring flux
noise in the presence of a strong B field is a quite challenging
experiment. For superconductivity to remain unaffected, the
external B field has to be applied along the plane of all
wire segments, with the magnetic length remaining larger
than the thin-film width b. Moreover, any modulation of the
critical current due to the presence of flux perpendicular to
the Josephson junctions will have to be accounted for. Despite
these challenges, we shall show that it is worth considering
this experiment because it would provide a mapping of F(r)
and the measurement of spin quantum number S.

When the Zeeman energy scale dominates, the spin Hamil-
tonian can be approximated by HZeeman = −∑i μi · B, with
μi = −gμs si . Here we use μs = μB for electron spins (μB is
the Bohr magneton), and μs = −μN for nuclear spins (μN is
the nuclear magneton), with g the g factor (g is quite close to
2 for most electron impurities but can be very different than
2 for nuclei). In this regime, the correlation between different
spins will be zero and the functions f αβ(r,T ) in Eq. (10b) can
be separated into two kinds, f‖(T ) and f⊥(T ):

f‖(B̃) = 〈(si · B̂)2〉 − 〈(si · B̂)〉2

= 1

4

{
1

sinh2 (B̃)
− (2S + 1)2

sinh2 [(2S + 1)B̃]

}
, (14a)

f⊥(B̃) = 〈(si · B̂⊥1)2〉 = 〈(si · B̂⊥2)2〉
= 1

4
coth(B̃){(2S + 1) coth[(2S + 1)B̃]

− coth(B̃)}, (14b)

where B̂ is the unit vector along the magnetic field, B̂⊥1,B̂⊥2

is a set of orthogonal unit vectors perpendicular to it, and
B̃ = gμsB/(2kBT ) measures the strength of the field. The
equilibrium spin polarization is given by

〈si〉 = − 1
2 {(2S + 1) coth[(2S + 1)B̃] − coth(B̃)}B̂. (15)

Plugging these expressions into Eq. (11) yields

〈(δ�)2〉High B ≈σd

∫
ddr[f⊥|F(r)|2−(f⊥ − f‖)|F(r)· B̂|2].

(16)

Since f⊥(B̃) > f‖(B̃) for all B̃, Eq. (16) shows that the noise
power gets reduced upon the application of an external B field.
In the limit B̃ � 1, all spins are polarized leading to

〈(δ�)2〉pol.‖B̂ = S

2
σd

∫
ddr[|F(r)|2 − |F(r) · B̂|2], (17)

which is quite different from the high-T result (9). Equa-
tion (17) is the exact noise power of a fully polarized
spin system, irrespective of whether the polarization occurs
because of application of a B field, or due to spontaneous
symmetry breaking, e.g., in a ferromagnetic ground state.
Thus, measurements of the dependence of noise as a function
of the direction and magnitude of the in-plane magnetic field,
or on the direction of the spin polarization, provide information
on the components of the flux vector F(r) and on the value of
the spin quantum number S.

As we show below, the direction of F(r) is poloidal along
the surface of the wire (Fig. 1), implying that spin polarization
along a single direction can never completely suppress flux
noise. Note how the residual noise arises due to the quantum
nature of the spins. For example, if the spins are polarized
along x̂, they have equal probability of pointing along any of
the four directions + ŷ,− ŷ, + ẑ,− ẑ. This uncertainty gives
rise to a quantum noise power proportional to F 2

iy + F 2
iz.

Finally, consider a spin-polarized state where each spin
located at Ri points parallel or antiparallel to Fi ; we call this
the poloidal state. The noise power produced by this state is
obtained by evaluating the average in Eq. (4) with a single
product state of N spins each pointing along ±Fi ; the result
is identical to Eq. (17) with B̂ → F̂(r), leading to

〈(δ�)2〉Poloidal = 0. (18)

Therefore engineering the poloidal spin texture enables com-
plete suppression of flux noise. We emphasize that this is an
exact result; it happens because in the poloidal state every spin
quantum fluctuation has to be perpendicular to Fi , producing
zero flux noise.

C. Noise power with spatial correlation
(ferromagnetic spin clusters)

The interaction between the spins may lead to nonzero
spatial correlation. To see the impact on flux-noise power,
consider the Heisenberg model with easy-axis anisotropy,

Hs-s = −1

2

∑
i,j

J (Ri − Rj )si · sj − K
∑

i

s2
i‖, (19)
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where K � 0 and si‖ = si · ê‖, with ê‖ the direction of the
anisotropy axis. We take the continuum limit with M(r) as in
Eq. (5), and expand Eq. (19) up to the second order in spatial
derivatives:

Hs-s ≈
∫

ddr

{
J̄ ξ d

0

2

[
−|M|2 + ξ 2

0

∑
α=x,y,z

|∇Mα|2
]

− K

σd

M2
‖

}
.

(20)

This expression is valid in the long-wavelength approximation,
when terms of order |∇2M|2 are negligible.

The exchange interaction is assumed to satisfy∫
ddrJ (r)xαxβ = 2ξd+2

0 J̄ δαβ, (21)

with parameters ξ0 and J̄ defined by

ξ 2
0 = 1

2

∫
ddrJ (r)x2

α∫
ddrJ (r)

, (22a)

J̄ = 1

ξd
0

∫
ddrJ (r). (22b)

Parameter ξ0 models the range of the exchange interaction,
while J̄ models its average strength. Many competing
interactions contribute to J (r), such as direct exchange
(always antiferromagnetic) and RKKY (ferromagnetic when
kF |Ri − Rj | � 1) [17,29,30]. We shall focus on the case 0 <

J̄ < ∞ and ξ0 < ∞, when the system is able to transition into
a ferromagnetic state with M ‖ ±ê‖. We shall also use Eq. (20)
with a space-dependent ê‖ = F̂(r) as a toy model that we call
the poloidal model. When K � J̄ σdξ

d
0 (ξ0/b)2 such a model

has the poloidal state M(r) ‖ ±F(r) as its T = 0 ground state.
We use mean-field theory [33]; this is done by subtracting

T times the single spin entropy from Eq. (20). The result is
that the system develops a ferromagnetic moment 〈M‖〉 = 0 at
the critical temperature

kBTc = S(S + 1)

3

(
σdξ

d
0 J̄ + 2K

)
, (23)

with correlation functions given by

C‖,‖(r,r ′) = kBT

J̄ ξd+2
0

∫
ddq

(2π )d
eiq·(r−r ′)ξ 2

‖
1 + (ξ‖q)2

, (24a)

C⊥α,⊥β (r,r ′) = kBT

J̄ ξd+2
0

∫
ddq

(2π )d
eiq·(r−r ′)ξ 2

⊥
1 + (ξ⊥q)2 δαβ, (24b)

where ⊥ α with α = 1,2 denote the two directions perpendic-
ular to ê‖ (the correlation function between ‖ and ⊥ α is zero).
There are two correlation length scales ξ‖ and ξ⊥:

ξ‖(T ) = ξ0

√
T ′

uT |T − Tc| , (25a)

ξ⊥(T > Tc) = ξ0

√
T ′

(T − T ′)
, (25b)

ξ⊥(T < Tc) = ξ0

√
σdξ

d
0 J̄

2K
, (25c)

where kBT ′ = [S(S + 1)/3]σdξ
d
0 J̄ and uT = 1 for T > Tc

and uT = 2 for T < Tc. The length scales ξ‖,ξ⊥ describe
the average size for spin clusters polarized along ê‖, and the
direction perpendicular to it, respectively. Note Tc > T ′, so
that only ξ‖ diverges at the transition. For d = 2, we get

C
‖,‖
d=2(r − r ′) = kBT

2πJ̄ ξ 4
0

K0

( |r − r ′|
ξ‖

)
, (26a)

C
⊥α,⊥β

d=2 (r − r ′) = kBT

2πJ̄ ξ 4
0

K0

( |r − r ′|
ξ⊥

)
δαβ, (26b)

where K0(x) is the modified Bessel function of the second
kind.

The noise power for surface spins (d = 2) in the presence
of correlations is obtained by plugging Eqs. (26a) and (26b)
into Eq. (7), leading to

〈(δ�)2〉corr.

〈(δ�)2〉T =∞
= T

uT |T − Tc|

∫
d2r

∫
d2r ′[F‖(r)F‖(r ′)K0

( |r−r ′|
ξ‖

)+ F⊥(r) · F⊥(r ′)K0
( |r−r ′|

ξ⊥

)]
2πξ 2

‖
∫

d2r|F(r)|2 , (27)

where we presented the correlated noise divided by the
T = ∞ uncorrelated noise [Eq. (9)] for convenience. Notably,
Eq. (27) depends on the model parameters only through
ξ‖, ξ⊥, and Tc. Once again, the vector nature of F(r) plays
an important role in determining noise power: correlated
noise tends to decrease (increase) when F(r) and F(r ′)
are antiparallel (parallel) for r,r ′ in different surfaces of
the wire (see, e.g., the top and bottom wire surfaces in
Fig. 1).

We remark that mean-field theory neglects critical fluctua-
tions and is not necessarily a good approximation for T close
to Tc. For d = 1,2 and K = 0 (or S = 1/2, when easy-axis
anisotropy is effectively zero), critical fluctuations reduce the
actual Tc of the Heisenberg model to zero [34]. For K > 0,

Tc is generally nonzero at d = 2, but can be substantially
reduced in comparison to the mean-field prediction (23).
However, mean-field theory is an excellent approximation
in the region T � Tc, when critical fluctuations play no
role. To see this, consider the T � Tc limit of Eqs. (25a)–
(26b): we get ξ‖,ξ⊥ ≈ ξ0

√
T ′/T → 0, and K0(|r − r ′|/ξ ) →

2πξ 2δ(r − r ′), leading to Cαβ(r − r ′) ≈ kBT ′/(J̄ ξ 2
0 )δ(r −

r ′)δαβ . Plugging kBT ′ = [S(S + 1)/3]σdξ
d
0 J̄ we see that this

is identical to the T = ∞ limit shown in Eq. (8).
Furthermore, mean-field theory neglects quantum fluc-

tuations; this is a problem for the T � Tc region, where
mean-field theory is exact only in the limit S → ∞. When
J (Ri − Rj ) > 0 for all i,j , the exact T = 0 state of the system
will have all spins fully polarized along either +ê‖ or −ê‖ (or
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an arbitrary direction for S = 1/2) leading to

C
‖,‖
T =0(r,r ′) = 0, (28a)

C
⊥α,⊥β

T =0 (r,r ′) = S

2
σdδ(r − r ′)δαβ. (28b)

Hence C⊥α,⊥α(r,r ′) remains nonzero when T → 0, signal-
ing the presence of quantum fluctuations. Plugging Eqs. (28a)
and (28b) into Eq. (7) we get the spin-polarized noise (17) with
B̂ = ê‖. While this result disagrees with mean-field theory,
we note that the ratio of Eq. (17) to Eq. (9) is proportional to
1/(S + 1). When S → ∞, this ratio goes to zero, in agreement
with the T → 0 limit of Eq. (27).

III. EVALUATION OF THE FLUX VECTOR:
THE NUMERICAL DIPOLE METHOD

When an electron travels across a closed path C inside the
SC wire, it is affected by a flux equal to �i = ∫

C Ai(r) · d l ,
where Ai(r) is the vector potential for the spin si located
at Ri . For an extended wire with SC current density JSC(r)
and total current ISC, the corresponding flux can be obtained
by representing the wire by a set of infinitesimally thin
closed paths C, and summing over all the paths with d l =
d3r JSC(r)/ISC, a weighting factor that represents the fraction
of current flowing through each path:

�i =
∫

d3r Ai(r) · JSC(r), (29)

where the integral is over the region where JSC = 0, i.e., the
volume of the wire. The numerical dipole method consists in
using the spin-dipole expression for Ai(r) [35],

Ai(r) = −gμsμ0

4π

si × (r − Ri)

|r − Ri |3
, (30)

together with an analytical approximation for JSC(r). Plug-
ging Eq. (30) into Eq. (29), we get �i = −F(Ri) · si with

F(R) = gμsμ0

4π

∫
d3r

(r − R) × JSC(r)

|r − R|3ISC
(31a)

= gμsμ0

4π
∇R ×

[∫
d3r

JSC(r)

ISC|r − R|
]
. (31b)

Note that we choose a sign convention so that F(R) points
along B(R), the magnetic field produced by JSC at R, and
that the direction of F can be found using the right-hand
rule with the thumb pointing towards JSC (Fig. 1). The
corresponding Zeeman energy of the spin system is given by
HZeeman = −ISC

∫
ddr F(r) · M(r). We remark that this same

result can be obtained from the flux-inductance theorem [36].
The current density JSC includes contributions from

external sources plus screening currents causing Meissner
effect. To find JSC, one usually has to integrate the London
equations numerically with the help of software packages such
as FASTHENRY [31]. However, there exists an important case
where JSC is known analytically: thin-film wires of width b �
λ, where λ is the SC penetration depth (λ = 0.05 − 0.1 μm
for most superconductors), and wire lateral width W that is

x

z

X= - W/2 X= + W/2

z= - b

z= 0

x

JSC 

(a) 

(b) 

FIG. 3. (a) Transverse cross section of the SQUID wire (see also
Fig. 1). The current density is shown pointing along the y direction.
(b) Magnitude of the superconductor current density as a function of
x [Eq. (33)].

large enough to satisfy

λ̃ ≡ λ2

bW
� 1 (32)

and ξSC � W , where ξSC is the superconductor coherence
length including the electron mean free path (this latter
condition ensures that the London equations with a single
length scale λ is a good approximation).

Below we present analytic results in terms of powers of the
small parameter λ̃. Neglecting terms that are first order in λ̃,
the SC wire current density can be written as [37,38]

JSC(r) = 2ISC

πbW
(

1 − γ
√

2λ̃
) ŷ

×
⎧⎨
⎩

1√
2λ̃

e− (1−λ̃−|u|)
2λ̃ for (1 − λ̃) < |u| � 1,

1√
1−u2 for |u| � (1 − λ̃),

(33)

where γ = 2(2 − e1/2)/π = 0.2236 is a numerical constant,
and the coordinate u = 2x/W runs along the lateral width of
the wire, as shown in Fig. 3. The numerical dipole method
consists in using Eq. (33) in Eq. (31b) to get an approximation
for the flux vector that neglects the feedback effect of the spins
on JSC. This feedback effect shall not be significant when the
spins are unpolarized. Later, we will confirm this expectation
by comparing our numerical dipole method to exact integration
of the London equations using FASTHENRY, and show that
nonzero spin polarization leads to an asymmetry on top of this
solution.

It is straightforward to integrate Eq. (31b) explicitly for the
infinitely long wire with coordinate axes shown in Fig. 3. For
a spin located at R = (X,0,Z),

Fx(X,Z) = −gμsμ0W

8π

∫ 1

−1
du

JSC(u)

ISC

× ln

[
(x − X)2 + Z2

(x − X)2 + (Z + b)2

]
, (34a)

Fy(X,Z) = 0, (34b)
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FIG. 4. (Color online) Comparison of the flux produced by each spin as a function of spin location calculated by FASTHENRY and the
numerical dipole method, for a superconducting wire of penetration depth λ = 0.07 μm, thickness b = 0.1 μm, and width W = 5.2 μm. The
coordinate x runs along the lateral width of the wire, with edges at x = ±2.6 μm.

Fz(X,Z) = gμsμ0W

4π

∫ 1

−1
du

JSC(u)

ISC

×
[

arctan

(
Z + b

x − X

)
− arctan

(
Z

x − X

)]
.

(34c)

We can integrate a few particular cases analytically;
neglecting terms that are first order in λ̃: (1) midsurface,
(X = 0,Z = 0):

Fx ≈ gμsμ0

πW

(
1 − γ b

W

√
2λ̃

1 − γ
√

2λ̃

)
, (35a)

Fz = 0. (35b)

This expression is a good approximation in the top sur-
face away from the wire edge. For electrons with g = 2,
and assuming

√
2λ̃ � 1, we get |Fmid−surface| ≈ ( 3.6μm

W
)n�0

(n�0 = 10−9�0).
(2) Midedge, (X = W

2 ,Z = − b
2 ):

Fx = 0, (36a)

Fz ≈− gμsμ0

π
√

bW (1 − γ
√

2λ̃)

⎡
⎣1 − γ

λ/b√
1 + 2

(
λ
5b

)2

⎤
⎦. (36b)

(3) Corner, (X = W
2 ,Z = 0):

Fx ≈ gμsμ0

π
√

2bW (1 − γ
√

2λ̃)

[
1 − tanh

(
1

2

√
λ

b

)]
, (37a)

Fz ≈ − gμsμ0

π
√

2bW (1 − γ
√

2λ̃)

⎡
⎣1 − γ√

2

(λ/b)√
1 + (

λ
5b

)2

⎤
⎦.

(37b)

Note how Fi close to the wire edge is sensitive to the ratio
λ/b. The midedge case, Eq. (36b), provides the maximum
|Fi | for a single-electron spin interacting with a thin-film

wire. When λ/b � 1, |Fedge| ≈ ( 3.6μm√
bW

)n�0. However, when
λ/b � 1 (ultrathin wires), the edge flux can be reduced by as
much as a factor of three.

At the edge, the associated local field produced by
the SQUID’s current on the spin is at most |Bloc| =
μ0ISC/(π

√
bW ). For typical ISC ∼ 1 mA and

√
bW ∼ 1 μm,

we get |Bloc| ∼ 4 G, which is not sufficient to polarize electron
spins even at the lowest temperatures achieved in the laboratory
(10 mK). In SQUIDs made of carbon nanotubes or other
nanostructures, the value of single-spin flux and the local field
can be much larger [39].

IV. NUMERICAL RESULTS AND COMPARISON TO
FINITE LOOP APPROXIMATION/FASTHENRY

We now present explicit numerical calculations of the
flux vector by numerical integration of Eqs. (34a)–(34c). In
order to validate our numerical dipole method, we performed
comparison calculations using the finite loop/FASTHENRY

method of Refs. [15,32]. We did this by designing a FASTHENRY

[31] input file that included a long SC wire representing the
SQUID, and a small square loop of side 0.1 μm representing
the spin. FASTHENRY has the advantage of integrating the
London equations exactly.

Figure 4(a) shows the computed �X ≡ Fx/2 (value of flux
for spin-1/2 pointing along x) for electron spins interacting
with a SC wire of penetration depth λ = 0.07 μm, thickness
b = 0.1 μm, and lateral width W = 5.2 μm. The flux is
plotted as a function of spin location X (along the lateral
width as in Fig. 3). Each curve was calculated for a different
spin-wire surface distance Z. Note how the numerical dipole
calculations are right on top of the FASTHENRY results for
Z � 0.25 μm. However, for Z = 0, the numerical dipole
results are 50% larger. Figure 4(b) shows the results for
�z ≡ Fz/2 (flux for spin-1/2 pointing along z, perpendicular
to the wire surface). Again, we see that both calculation
methods agree for Z � 0.25 μm. However, at Z = 0 (wire
surface) we find that the numerical dipole method gives a flux
that is six times larger than FASTHENRY.

Figure 5 shows the numerical dipole results for electron
spins inside the wire (negative Z). While the flux is quite
high at the wire surface, it decreases to zero inside the wire
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FIG. 5. (Color online) Flux produced by an electron spin impurity as a function of spin location inside the SC wire. All results used the
numerical dipole method, for a superconducting wire of penetration depth λ = 0.07 μm, thickness b = 0.1 μm, and width W = 5.2 μm. The
coordinate x runs along the lateral width of the wire, with edges at x = ±2.6 μm. Note how the flux is zero in the region inside the wire
(z = −b/2 and x away from the edges).

(Z = −b/2 and X away from the edges). This result is
particularly relevant for nuclear spins, as it shows that nuclei
inside the wire give a smaller contribution to flux noise (single
nuclear spin flux is ∼103 times smaller than the single electron
values shown in the figure).

It is important to note that all calculations presented here
assumed a SC wire of infinite length. As a result, the flux at
the wire edges (at x = ±W/2) are of identical magnitude, i.e.,
the flux is symmetric with respect to X = 0. Actual devices
will show some degree of asymmetry for the current densities
at the wire edges. For example, the SQUID is a closed SC
wire loop, so to satisfy the Meissner effect it produces higher
current density at the inside wire edge [32], thus minimizing
the value of magnetic field inside the wire. Modifying Eq. (33)
to include this asymmetry would lead to the same degree of
asymmetry in the calculated flux vectors.

Another source of asymmetry in JSC occurs due to spin
polarization in applied B fields. With B pointing along x̂,
the superconductor will generate a current difference δISC

between the top and bottom wire surfaces, in order to screen out
the magnetic moment generated by polarized spins. A simple
estimate is given by |δISC|Lb = |μB |N , with N ≈ 2σ2LW

the number of spins at the top+bottom surfaces. This leads
to |δISC| ∼ 2μBσ2W/b ∼ 10–1000 μA for b = 0.1 μm and
W = 1–100 μm.

While these asymmetries can be significant, they do not
seem to modify the noise power results shown in the next
section. This occurs because 〈(δ�)2〉 is an integral of |F|2 over
all wire surfaces; since the asymmetry increases the current in
one region and decreases it by the same amount in another,
the asymmetry cancels out in computations of the noise power
summed over all surfaces.

V. FLUX-NOISE POWER FOR SURFACE SPINS

We will now present results for flux-noise power in a single
wire with length L, width W , and thickness b. Our results can
be applied to devices that contain more wires by simply adding
the noise power contributed by each wire segment.

A. Without spatial correlation, no spin clusters

Here we focus our discussion in the T = ∞ noise power
with S = 1/2 [Eq. (9)]. We recall that this constitutes the exact
noise power for S = 1/2 in the absence of spatial correlation
and space inhomogeneity (see Sec. II B); and for S > 1/2 it
can be multiplied by 4S(S + 1) to yield an upper bound on the
uncorrelated noise at all temperatures [Eq. (13)].

Figures 6–8 show explicit calculations of |F|2 for electrons
located at the top and edge wire surfaces for a range of

FIG. 6. (Color online) Flux vector squared for the electron spin at the top and edge surfaces of the wire, for λ = 0.07 μm, b = 0.1 μm,
and W = 2,5,10 μm. The coordinate X runs along the lateral width of the top surface, while Z runs along the side surface. Note how the flux
is sharply peaked near the wire edges.
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FIG. 7. (Color online) Flux vector squared for electron spin at the top and edge surfaces of the wire, for λ = 0.07 μm, W = 2 μm, and
different wire thickness b. Note how the edge flux is quite sensitive to b.

parameters. Here, we see the extent to which the flux-
noise power is sharply peaked at X = ±W/2 for all wire
geometries.

The noise power due to surface electrons in a single wire
with length L is evaluated by assuming a uniform area density
of electrons σ2 and plugging S = 1/2 in Eq. (9):

〈�2〉TopSurf. = 1

4
σ2L

∫ W/2

−W/2
dX|F|2

≈
5

16π2 (gμsμ0)2
(

W
2b

)1/4( σ2L
W

)
(1 − γ

√
2λ̃)2

[
1 + 2

(
2b
W

)2]1/4

= 4.05
(

W
2b

)1/4[ σ2L(μm)
W

]
(n�0)2

(1 − γ
√

2λ̃)2
[
1 + 2

(
2b
W

)2]1/4 , (38)

where in the second line we approximated the exact result by
an analytic expression (good within 1% for 10−3 < 2b/W <

1), and in the third line we assumed gμs = 2μB . We find
that the top surface noise power is to a good approximation
independent of λ. The reason for this can be seen in Fig. 8(a),
where it is shown that |F|2 only depends on λ when X is
extremely close to ±W/2. (Note how the peak value increases
with decreasing λ, but the peak width remains small.) As a
result we find that the λ-dependent contribution to Eq. (38) is
always small.

The edge contribution is quite different. Figures 6(b)–8(b)
show that it is a good approximation to assume |F|2 constant
for all Z/b, with its value given by Eq. (36b) squared. Hence
we get

〈�2〉EdgeSurf. ≈ 1

4
σ2Lb|Fedge|2

= (gμsμ0)2

4π2

(
σ2L

W

)⎛⎝1 − γ
λ/b√

1+2( λ
5b

)2

1 − γ
√

2λ̃

⎞
⎠

2

= 3.24

[
σ2L(μm)

W

]⎛⎝1 − γ
λ/b√

1+2( λ
5b

)2

1 − γ
√

2λ̃

⎞
⎠

2

×(n�0)2. (39)

Comparing Eq. (39) to Eq. (38), we see that in a typical device
(satisfying W < 103b), the edge surface contribution has the
same order of magnitude as the top surface contribution. Flux-
noise measurements in several niobium SQUIDs [25] were
fitted to spin-diffusion theory to yield σ2 = 5 × 1012 cm−2,
leading to noise power Eqs. (38) and (39) in the range of
1–100 (μ�0)2, see Fig. 12.

Our expressions for the noise power fully account for the
spin-dipole singularity, giving values that are qualitatively
different and numerically much larger than other expressions
derived in the literature. For example, Eq. (6) of Ref. [6]

FIG. 8. (Color online) Flux vector squared for electron spin at the top and edge surfaces of the wire, for W = 10 μm, b = 0.05 μm, and
different penetration depth λ. Note how the edge flux is quite sensitive to λ.
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FIG. 9. (Color online) Effect of a ferromagnetic phase transition
on the flux-noise power, calculated using mean-field theory with
anisotropy energy K/(σ2ξ

2
0 J̄ ) = 0.1 along easy axis ê‖ = ẑ. The ratio

of correlated noise to T = ∞ noise is shown as a function of T/Tc,
calculated from Eq. (27). At T ≈ Tc, a sharp finite peak appears,
with linewidth and peak value depending on ξ0, the range of the
exchange interaction. For large ξ0, correlated noise can be several
orders of magnitude smaller than the T = ∞ noise in the region
Tc � T < ∞, suggesting a new method to reduce flux noise in SC
devices. The noise reduction occurs due to ferromagnetic correlation
between the top and bottom surfaces with antiparallel F.

predicted a term proportional to ln (λ̃) in the top surface
electron noise power of a circular SQUID; in contrast, our
results show that the top noise power is roughly independent
of λ̃, with the edge noise strongly dependent on λ/b.

We now compare our results to the state of the art numerical
calculations of noise power in SQUID washers presented in
Anton et al. [32]. Our Eq. (9) is larger than Eq. (1) of Ref. [32]
by a factor of S(S + 1)/S2, which equals 3 for S = 1/2.
After multiplying the results of Ref. [32] by 3, we find that
our 〈�2〉Top+bottom (obtained after adding-up 4 wire segments
forming a washer) is 10% smaller than theirs for the case of
short wires (L ∼ 10 μm) in a wide range of parameters. For
longer wires (L ∼ 100 μm), we find that our results are as
much as 40% smaller. This quite good agreement indicates
that corner effects are not substantial.

B. With spatial correlation, ferromagnetic spin clusters

We now present explicit numerical results of noise power
with ferromagnetic correlations, for the case of surface
electrons. In order to evaluate Eq. (27), we separate each
surface integral into the 4 surfaces making the wire:∫

d2r =
∫

Top
d2r +

∫
Bottom

d2r +
∫

EdgeR
d2r +

∫
EdgeL

d2r.

(40)
The total integral

∫
d2r

∫
d2r ′ breaks up into 16 contributions,

of which only five are distinct: 2×Top-Top (because Bottom-
Bottom is identical to Top-Top by symmetry), 2×EdgeR-
EdgeR, 8×Top-Edge, 2×Top-Bottom, and 2×EdgeL-EdgeR.
For ferromagnetic correlations, the first three are always
positive, while the last two are always negative.

Figure 9 shows calculations of the correlated noise
power (27) divided by the T = ∞ uncorrelated noise (9)
(this ratio is denoted corr./uncorr.), as a function of T/Tc,

TABLE I. Exact flux noise [from Eq. (17)] for the spin-polarized
ground state for three spin polarization directions ê‖. We assumed a
long wire with JSC ‖ ŷ and other coordinates as in Fig. 3. The zero
point flux fluctuation goes to zero only in the classical limit S → ∞.

ê‖ corr./uncorr. at T = 0

x̂ 0.44/(S + 1)
ŷ 1.5/(S + 1)
ẑ 1.1/(S + 1)

for anisotropy energy K/(σ2ξ
2
0 J̄ ) = 0.1 along the easy axis

ê‖ = ẑ (as T → 0 all spins will polarize along ê‖). The
correlated noise power has a sharp peak at T = Tc; within
mean-field theory this peak is finite, and has its width and
height governed by the exchange interaction range ξ0. Quite
interestingly, for ξ0 � b, the correlated noise can be several
orders of magnitude smaller than uncorrelated noise in all
regimes, including the Tc � T � ∞ regime where mean-field
theory is known to be accurate.

To shed light in this feature, Fig. 10(b) shows correlated
noise for T � Tc, as a function of ξ‖ ≈ ξ⊥ ≡ ξ . Here we
see that the origin of the noise reduction is the presence
of spin clusters (nonzero spatial correlation). Remarkably,
correlated noise is always smaller than uncorrelated noise
for all average cluster sizes ξ . Figure 10(b) explains the
origin of the reduction; for ξ > b, the negative Top-Bottom
contribution (with F antiparallel) is activated, which nearly
cancels out the Top-Top contibution when ξ � b. Thus
antiparallel F for surfaces across from each other make
intersurface ferromagnetic fluctuations interfere destructively
with the intrasurface ferromagnetic fluctuations, leading to a
reduction of flux noise.

While uncorrelated noise scales roughly as σ2L/W [6,15],
correlated noise shows different behavior governed by the
additional length scales ξ . In the “short-range order” regime
b � ξ � W , correlated noise scales instead as σ2Lλ/(ξb);
in the “long-range order” regime with ξ � W it scales as
σ2LλW/(bξ 2).

When T � Tc, the spins are polarized along ê‖ leading
to pure quantum fluctuation noise that is larger than the
mean-field theory prediction. At T = 0, the noise can be
calculated exactly using Eq. (17) for B̂ = ê‖ leading to the
values calculated in Table I.

As noted in Eq. (17), flux noise is exactly zero for the
poloidal state. We now describe the flux-noise power as a
function of T for the poloidal model, which comprises Eq. (20)
with ê‖(r) = F̂(r) [as noted above, this model has the poloidal
state as its ground state when K � J̄ σdξ

d
0 (ξ0/b)2]. The result-

ing correlation functions are formally identical to Eqs. (26a)
and (26b); however, they describe correlations between ê‖
directions that are different in different surfaces (we take
ê⊥1 = ŷ and ê⊥2 = F̂(r) × ŷ). For example, Mx in the top
surface is correlated to −Mz in the edge right surface, and to
−Mx in the bottom surface. As a consequence, the poloidal
model shows antiferromagnetic correlation between spins
located in surfaces across from each other, with ferromagnetic
correlations between spins located in the same surface. The
resulting flux-noise power as a function of T/Tc is shown
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FIG. 10. (Color online) Noise power for the ferromagnetic model with ê‖ = ẑ (same as Fig. 9) in the T � Tc regime. (a) Correlated noise
power divided by uncorrelated noise power (at T = ∞). The results are presented as a function of average spin cluster size ξ‖ ≈ ξ⊥ ≡ ξ

divided by the wire thickness b. Note how the presence of ferromagnetic spin clusters makes the correlated/uncorrelated ratio smaller than
one in the Tc � T < ∞ regime. The origin of this effect is explained in (b), where each contribution is labeled by a pair of surfaces; for
example, −2×Top-Bottom refers to the negative of Top-Bottom + Bottom-Top contribution in Eq. (27). When ξ > b, ferromagnetic spin-spin
correlation between the wire’s top and bottom surfaces (where F is antiparallel) is activated, reducing the correlated noise power to a value
below the T = ∞ uncorrelated noise. When ξ > W , the ferromagnetic correlation between the wire corners (where F is also antiparallel) is
activated, producing further reduction of the correlated noise.

in Fig. 11. The behavior of the poloidal model is seen to be
quite distinct from the case of pure ferromagnetic correlation.
The noise at T ≈ Tc is more than 100 times larger, and at
T > Tc correlated flux-noise power is always larger than the
T = ∞ uncorrelated case. Clearly, this occurs because for ξ >

b the antiferromagnetic intersurface correlated fluctuations
interfere constructively with the intrasurface ferromagnetic
fluctuations; a simple consequence of having antiparallel F
between surfaces across from each other. In contrast to the
behavior shown in Figs. 10(a) and 10(b), noise power increases
with increasing spin correlation length ξ . When T > Tc and
b � ξ � W , correlated noise scales as σ2Lλξ/b3; in the

FIG. 11. (Color online) Flux-noise power of the poloidal model
[Eq. (20) with ê‖(r) = F̂(r)] with anisotropy energy K/(σ2ξ

2
0 J̄ ) =

100. The ratio of correlated noise to T = ∞ noise is shown as a
function of T/Tc, calculated from Eq. (27). At T > Tc, flux noise is
always larger than its T = ∞ value, in contrast to the result shown
for the ferromagnetic phase (Fig. 9). This occurs because the poloidal
model has antiferromagnetic correlation between the top and bottom
surfaces. At T = 0, the poloidal state has zero flux noise [Eq. (18)]
similar to the result obtained in mean-field theory. Engineering the
spin system to be close to the poloidal phase provides a novel method
to reduce flux noise in SC devices.

“long-range order” regime with ξ � W , it saturates at its
maximum value proportional to σ2Lλ/b2.

VI. BULK NUCLEAR SPINS

For bulk lattice spins inside the wire, Eq. (9) becomes

〈�2〉Bulk = S(S + 1)

3
σ3

∫
wire

d3r|F(r)|2, (41)

with the integral running over the volume of the wire, and
σ3 the corresponding volume density for spins. We evaluated
this expression numerically and were able to fit the following
expression with high accuracy in the region 10−3<2b/W<1:

〈�2〉Bulk ≈ S(S + 1)

6π4
(gμsμ0)2

(
σ3LW

b

)
ln
[
1 + (

4b
W

)2]
(1 − γ

√
2λ̃)2

.

(42)

Like the case of top surface noise, Eq. (42) is independent
of λ because at the edge F2 depends on λ only in a very
small fraction of the wire volume. This dependence becomes
negligible after volume integration.

We present numerical results for bulk nuclear spins in
the typical superconductors aluminum and niobium. For
aluminum, the 27Al isotope is 100% abundant in nature,
has S = 5/2 and g = 1.46 [40], and forms an fcc lattice
with a lattice parameter 4.05 Å. Thus σ3 = 4/(4.05 Å)3 =
6.02 × 1010 μm−3, and from Eq. (42) we get

〈�2〉Al = 1.8 × 10−2

[
LW

b(μm)

]
ln
[
1 + (

4b
W

)2]
(1 − γ

√
2λ̃)2

(μ�0)2. (43)

For niobium, the 93Nb isotope is 100% abundant in natural
samples, with S = 9/2 and g = 1.37 [41], and forms a bcc
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FIG. 12. (Color online) Contributions to the T = ∞ flux-noise
power due to surface electrons and nuclear spins, for a niobium wire
loop with length L = 100 μm, penetration depth λ = 0.07 μm, and
thickness b = 0.1 μm, as a function of wire lateral width W . For the
surface electrons, we assumed a spin area density σ2 = 5 × 1012 cm−2

(as measured in Ref. [25]), and separated the contributions into
top+bottom surfaces and inner+outer edge surfaces. The nuclear
spin contribution is for Nb; the noise for Al would be 2.3 times
smaller.

lattice with parameter 3.30 Å, leading to σ3 = 2/(3.30 Å)3 =
5.56 × 1010 μm−3. We get

〈�2〉Nb = 4.2 × 10−2

[
LW

b(μm)

]
ln
[
1 + (

4b
W

)2]
(1 − γ

√
2λ̃)2

(μ�0)2. (44)

The Nb noise power is 2.3 times larger than Al.
Figure 12 compares the T = ∞ surface electron and

nuclear spin contributions for a Nb wire loop with L =
100 μm, b = 0.1 μm, and σ2 = 5 × 1012 cm−2. It shows that
the contribution of bulk nuclear spins to the flux-noise power is
typically 5% of the total noise, which is dominated by surface
electrons close to the wire edges.

VII. DISCUSSION AND CONCLUSION

We proposed a flux-vector model of flux noise due to
spins in superconducting devices, and performed explicit
numerical calculations of the flux-noise power produced by
localized electrons and nuclear spins. We emphasized the
crucial difference between electron impurities and lattice
nuclear spins. Electron impurities are typically concentrated in
the wire surface (where flux vector F is maximum), and can be
substantially affected by the formation of spin textures above
or below the critical temperature for a spin phase transition.
Nuclear spins are instead distributed in the bulk of the wire,
and their noise is well described by the T = ∞ limit.

In many cases, the vectorial nature of the spin-wire coupling
plays an essential role in determining the value of the noise
power. This includes the case of a phase transition, when
additional correlation length scales appear in the problem
(describing the average size of spin clusters). Even in the
absence of a phase transition the vector nature of F plays
a role, e.g., for spins with easy-axis anisotropy (typical of
S > 1/2 transition metal impurities). The key experiment to

directly verify the vectorial nature of F is to measure flux
noise in SQUIDs as a function of the magnitude and in-plane
direction of an applied magnetic field. Fields of 0.5 T at
temperatures of 0.1 K will polarize electron spins without
affecting nuclear spins. Table I compares values of flux-noise
power for large B applied along different directions. Fits using
Eq. (16) plus a field independent contribution will allow a
measurement of S and disentanglement of electron and nuclear
spin contributions. These are quite challenging measurements,
but we hope they will be performed in the future to confirm
the origin of flux noise in superconducting devices.

Our explicit calculations of F for thin-film superconducting
wires show that the flux at the wire edges is much larger
than anticipated by previous calculations [6,15,16] because
of two reasons. First, the singularity associated to the spin-
dipolar field enhances the flux at the wire edges; second, the
edge surfaces of thin-film wires (hitherto ignored in previous
calculations) contributes the same order of magnitude as the
top + bottom surfaces. As a result, the scaling relations for
flux as a function of wire geometry are modified. Flux noise
can be greatly reduced by minimizing the electron spin density
at the wire edge region. One might be able to achieve this with
chemical passivation of the surface [16,20] or by growing the
wires with layer by layer deposition (to reduce the number of
vacancies and other defects) instead of the usual evaporation
method.

We also presented a realistic estimate for the noise power
contributed by nuclear spins. Nuclear spin flux noise has been
a subject of speculation for several years [15,21–24], and we
can now ascertain that it accounts for approximately 5% of
the total flux noise power affecting typical superconducting
devices made with aluminum or niobium. In the future, it
is conceivable that one will be able to design SQUIDs with
much lower defect spin density, making lattice nuclear spins
the ultimate source of noise to be optimized. Nuclear spin
noise spectral density ranges from 0 Hz up to ∼104 Hz,
the value of nearest-neighbor spin-spin dipolar interaction.
For very thin wires (2b/W � 1), nuclear spin noise will
scale proportional to bL/W , so that further reduction can
be achieved by reducing b, L, and increasing W . Another
alternative would be to use materials with zero lattice nuclear
spin, such as making the superconducting wires with lead
(Pb). Natural lead samples have 77.9% of zero-nuclear-spin
isotopes ( 204Pb, 206Pb, and 208Pb), with nuclear spin S = 1/2
present in only 22.1% ( 207Pb). Hence a dramatic reduction in
nuclear spin noise is predicted for natural Pb wires. Nuclear
spin noise can also be reduced in niobium by using metastable
nuclear states such as 93mNb, the first excited state of 93Nb
(100% natural abundance). 93mNb has S = 1/2 with a half-life
of 16 years [42], providing noise reduction by a factor of
( 1

2 × 3
2 )/( 9

2 × 11
2 ) = 1

33 .
For electron spins, a critical experimental question is

whether and how flux-noise power depends on temperature.
The proper answer to this question should reveal whether
or not the spin system is close to a phase transition. So far,
two experiments addressed this question, reaching opposite
conclusions in different temperature ranges. Reference [8]
measured a change of up to 103 in SQUID flux-noise power
when the temperature changed from 0.1–4 K; in contrast,
Ref. [25] made a direct measurement of noise power in the
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lower temperature range 0.01–0.1 K (see their Fig. 3), and
concluded that there was no change within experimental error
bars. It should be noted that even in the absence of a phase
transition the noise power may be temperature dependent. This
can occur because of spin anisotropy [Eq. (12)] or because
F(r) is temperature-dependent at temperatures near the su-
perconducting critical temperature [when penetration depth
λ increases with temperature and Eq. (32) no longer holds].
The latter effect might be contributing to the temperature
dependence observed in Ref. [8].

Our results provide guidance on how to reduce flux noise in
SQUIDs and superconducting qubits by changing the wire ge-
ometry and/or engineering a spin phase transition. Our Fig. 12
confirms the original claim [6,15] that uncorrelated noise
scales roughly as σ2L/W , and can be greatly reduced by using
wider wires with larger W . However, in the presence of spin-
spin correlation, the geometrical scaling of noise is quite dif-
ferent due to the introduction of the spin cluster length scales ξ .

We make several predictions for flux-noise power in the
presence of magnetic correlation. If the spins at the top
surface couple ferromagnetically (antiferromagnetically) to
the spins at the bottom surface, flux-noise power gets reduced
(increased) when the correlation length scale ξ is increased.
We should mention that magnetic coupling across thin metallic
surfaces is a well established phenomenon in the physics of
normal metals sandwiched between ferromagnetic layers. For
example, Ref. [43] demonstrates that the RKKY interaction
can induce magnetic coupling that alternates back and forth
between antiferromagnetic and ferromagnetic depending on
the thickness and electron density of the normal metal layer.
Perhaps in the future we will be able to engineer SC wires
with similar alternation between ferro and antiferro couplings,

allowing the corresponding control over flux noise induced by
electron spin impurities at the wire surface.

Moreover, we predict that flux-noise power is exactly equal
to zero for the poloidal spin texture (all spins si polarized
parallel or antiparallel to their corresponding flux vector Fi).
This occurs because at T = 0 spin fluctuation is perpendicular
to the spin polarization axis, which for the poloidal texture is
perpendicular to Fi by design; as a result, magnetic fluctuation
of the poloidal state does not produce flux noise. How to
imprint the poloidal texture to a disordered spin system is a
question for future research. Given that Fi is parallel to the
magnetic field generated by the SC wire, it might be possible
to at least partially polarize the spins in the poloidal direction
using a large device current.

In conclusion, we predict methods for reducing flux
noise in superconducting devices: We demonstrated with
explicit numerical calculations that enhancing ferromagnetic
correlation between wire surfaces, or engineering a poloidal
spin texture allows the reduction of the flux-noise power
due to electron spins by several orders of magnitude. The
remaining noise power, due to lattice nuclear spins, can be
as much as 20 times smaller than the noise observed in the
current state of the art devices.
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