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Effect of structure on the magnetic anisotropy of L10 FePt nanoparticles
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We carry out a systematic theoretical investigation of magnetocrystalline anisotropy (MCA) of L10 FePt
clusters with alternating Fe and Pt planes along the (001) direction. The clusters studied contain 30–484 atoms.
We calculate the structural relaxation and magnetic moment of each cluster by using ab initio spin-polarized
density functional theory, and the MCA with both the self-consistent direct method and the torque method. We find
the two methods give equivalent results for all the structures examined. We find that bipyramidal clusters whose
central layer is Pt have higher MCA than their same-sized counterparts whose central layer is Fe. This results
from the fact that the Pt atoms in such configurations are coordinated with more Fe atoms than in the latter. By
thus participating in more instances of hybridization, they contribute higher orbital moments to the overall MCA
of the unit. Our findings suggest that by properly tailoring the structure one can avoid encapsulating the FePt L10

nanoparticles, as has been proposed earlier, to protect a high and stable magnetic anisotropy. Additionally, using
a simple model to capture the thermal behavior, we predict that a five-layered nanoparticle with approximately
700 atoms can be expected to be useful in magnetic recording applications at room temperature.
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I. INTRODUCTION

Understanding the physics of smaller structures can help
in exploiting their useful properties. For example, the high
surface-to-volume ratio and tailorable surface chemistry of
metal nanoparticles have long been relied on in optimizing
the activity and specificity of catalysts [1]. And small metal-
particle arrays have been used to build single-electron devices
[2,3]. Recently demand has arisen for magnetic particles
with high anisotropic energy necessary for energy-harvesting
technologies [4] as well as for ultra-high-density recording
media [5]. Satisfaction of this demand requires development
of metal thin-film media with smaller particles, more tightly
sized distributions, and optimized compositions [6,7].

Since the mid-1930s Fe-Pt alloys of L10 phase have been
known to exhibit high magnetocrystalline anisotropy (MCA)
[8]. Since among the various ferromagnetic metals and alloys
FePt alloys show large perpendicular MCA (on the order of
meV/atom [9]) and since, in nanoscale particles, they do not
exhibit the superparamagnetism often characteristic of such
small clusters [10], it lends itself to magnetic applications
requiring small-grained constructions. FePt alloys also have
advantages over rare-earth transition-metal-based compound
with high MCA, such as Nd2Fe14B and SmCo5 in that they
are very ductile and chemically inert [11]. L10-based thin
films and nanoparticles in general would seem to be promising
candidates for ultra-high-density magnetic storage media
owing to their high corrosion resistance and excellent intrinsic
magnetic properties [12]. But, in contrast to the fine grain of the
L10 FePt systems, other conventional magnetic materials (Fe,
Co, Ni, and their alloys) would, through thermal fluctuation,
within a very short time become superparamagnetic, losing any
stored information. And given their high cost, bulk FePt-based
permanent magnets can be used only for some especially
delicate applications, as in magnetic microelectromechanical

systems (MEMS) [13], and in dentistry as attachment devices
for retaining a dental cap in the cavity [14].

The chemically ordered FePt L10 structure can be obtained
by annealing from the fcc structure of FePt alloy or by deposi-
tion on substrate above the L10 ordering temperature [15,16].
At high temperature an fcc solid solution of Fe-Pt is observed
in the A1 phase; below 1573 K (and down to 973 K) alloys with
a nearly equal number of Fe and Pt atoms (35%–55% Pt) show
order-disorder transition and the L10 ordered phase begins to
form [11]. Though the L10 phase is typically obtained by heat
treatment of the A1 phase, it can also be produced by chemical
synthesis of nanoparticles [12]. Deposition of alternate Fe
and Pt monolayers can reduce the onset temperature of
the L10 phase [17]. Another way to obtain the L10 phase
experimentally is by annealing alternating multilayers of Fe
and Pt [11]. Stable FePt L10 nanoparticles have been prepared
experimentally [18] both without any covering and with Al
encapsulation.

The L10 structure has alternating Fe and Pt planes along the
(001) direction, which is also the easy axis of magnetization,
abandoning the cubic symmetry of the fcc system. In this
type of layered magnetic system the MCA is mainly due to
the contribution from the Pt (5d element) having large spin-
orbit coupling (SOC) while the Fe (3d element) provides the
exchange splitting of the Pt sublattice [19–21]. It is well known
that in the FePt system, the Pt atoms play an important role in
magnetic anisotropy, because the hybridization of Fe orbitals
causes spin polarization of Pt atoms, which in turn enhance
the MCA owing to the relative strong SOC of the Pt atoms in
comparison with that of the Fe atoms.

There have been several theoretical studies on MCA of
nanoparticles. Cyrille et al. [22] calculated the size- and
shape-dependent magnetic properties of L10 FePt clusters
using a tight-binding approach. In their study the central plane
of clusters is always Fe and they do not take into account
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the atomic relaxation of the clusters. Błonski and Hafner
[23] undertook ab initio density functional calculations of the
magnetic anisotropy of supported nanostructures. Fernandez-
Seivane and Ferrer [24] studied the correlation of the magnetic
anisotropy with the geometric structure and magnetic ordering
of small atomic clusters of sizes up to seven atoms. Gruner et al.
[18,25] demonstrated that in cuboctahedral nanoparticles the
high anisotropy of the layers increases as one moves towards
the surface, and the anisotropy can be even enhanced by
embedding the material in some suitable other metal (e.g., Au
in the case of Pt-terminated structures). Various experimental
studies, using x-ray magnetic circular dichroism spectroscopy
(XMCD) or x-ray absorption spectra (XAS), have recently
confirmed the enhancement of MCA in free or supported
clusters [26–28].

The earlier theoretical results suggest that in order to
preserve the high values of the MCA, one needs to encapsulate
the particles [25]. However, issues coming from encapsulation
such as charge transfer or structural integrity may adversely
affect the MCA. In this work, we explore a possibility to tune
the MCA by changing system geometry in such a way that the
anisotropy mostly comes from the central part of the particle,
which may help avoid the necessity of capping.

We carry out a systematic theoretical investigation of the
MCA of L10 FePt clusters consisting of alternating Fe and Pt
planes along the (001) direction. Namely, the studied clusters
consist of three, five, seven, and nine alternating layers of
Fe and Pt atoms. We considered both cases with Pt and Fe
outer layers. The three-layer cluster consists of 30 atoms, the
five-layer clusters—of 38, 71, 114, 230, and 386 atoms, the
seven-layer clusters—of 79, 132, and 484 atoms, and, finally,
the nine-layer clusters—of 140 atoms. We also examine the
electronic structural and magnetic properties (including the
orbital moments) of each atom in each of these configurations.

To calculate the structural relaxation and magnetic mo-
ments of the clusters we adopted an ab initio spin-polarized
density functional theory (DFT) approach. To calculate the
MCA we employed two methods: (i) the direct method where
we take the difference in band energy for two orientations
of the average magnetic moment and (ii) the torque method
[29,30]. The latter method is simpler and computationally less
demanding. In this work we show its validity even for systems
at the nanoscale.

We found that the MCA of layered L10 FePt clusters is
enhanced over that of both bulk FePt and that of either a pure
Fe or Pt cluster of comparable size, all with L10 geometry.
Previous investigations attributed this enhancement is due to
the hybridization 3d orbital of Fe atom with the 5d orbital
of Pt atom. Our calculations indicate that this is so because
this hybridization increases both spin and orbital moment of
the Pt atoms. And given the large SOC constant of Pt it is this
enhanced orbital moment of Pt that is responsible for the higher
anisotropy of the system as a whole. We also found that when
the central layer of the bipyramidal cluster is Pt, the cluster has
higher MCA than a cluster of the same size but with Fe as the
central layer, in contrast to the cuboctahedral cases [18,25], in
which it is the surface layers that play a crucial role in high
MCA. This stems from the fact that when Pt atoms comprise
the central layer they have more Fe atoms neighboring them,
so that hybridization increases, lending them higher orbital

moments than are possessed by Pt atoms in other layers.
This center-of-system “concentration” of the MCA makes it
possible to preserve the anisotropy without having to resort to
capping of the particles.

II. COMPUTATIONAL DETAILS

To calculate the structural relaxation (both the shape and
the volume of the particles, placed in a periodic supercell, were
allowed to change) and spin and orbital magnetic moments we
used the ab initio spin-polarized DFT approach implemented
in the VASP code [31]. In describing the electronic exchange
and correlation effects we used the spin-polarized generalized-
gradient approximation (GGA) with the Perdew and Wang
(PW91) functional [32] and the spin interpolation proposed
by Vosko et al. [33]. In calculating the ionic relaxation, we
employed the conjugate-gradient algorithm. In describing the
electron-ion interaction we used the projector augmented-
wave (PAW) [34] formalism. To calculate the strength of the
SOC it is essential to take relativistic effects into account.
We did so by choosing the relativistic version of PW91 as
an input to the noncollinear mode framework implemented in
VASP [35,36].

To construct the bulk FePt L10 structure we replaced every
alternating layer of fcc Fe with Pt atoms in (001) planes. This
ordering induces a contraction along the (001) direction of the
fcc lattice, which reduces the ratio c∗

a∗ , where a∗ is the nearest-
neighbor distance in (001) planes (related to the primitive cell
parameter a as a = a∗√2), from the fcc value (

√
2) to 1.363.

Figure 1 shows the relation between the lattice parameter for
the pseudocell and the parameter for the primitive unit cell.

Lattice distortion brings about chemical reordering in the
unit cell. For the lattice parameter we used the experimentally
derived data for bulk powder [37], (a∗ = 2.72 Å and c∗

a∗ =
1.36), and then relaxed the structure using the DFT approach
described above.

For dimers and clusters, in relaxing the structure using the
method described above, we set the vacuum space to 12 Å in
all three directions, in order to prevent artificial electric field
interactions between the images, and used only one (�) point
in the Brillouin zone. To obtain the relaxed geometry of a

FIG. 1. (Color online) The L10 crystal structure of bulk FePt [Fe
atoms in dark (red) and Pt in light (gray)]. The dashed line represents
the primitive cell. The parameters are related as follows: c = c∗ and
a = a∗√2, where c∗ and a∗ are the lattice parameters of the primitive
cell and c and a are the corresponding parameters of the pseudocell.
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cluster of given size and shape, we first obtained the relaxed
lattice parameter for bulk L10 FePt, then cut the bulk to the
size and layered shape of the cluster in question to get its
initial configuration, and finally relaxed that configuration. In
calculating the MCA of L10 FePt nanoparticles we used both
the direct method [23] (i.e., including SOC self-consistently),
and the torque method [29,30].

In the direct method, once the structural relaxation for a
given cluster is completed, we calculate the MCA by compar-
ing the band energy between two magnetic orientations. The
band energy of the system is calculated by using spin-polarized
DFT, now taking SOC into account.

MCA = E(↑) − E(→) =
∑
occ′

εi(↑) −
∑
occ

′′
εi(→), (1)

where εi is the band energy of the ith state and the arrows in
the parentheses denote the direction of magnetization. For the
surface of a film, these are usually the directions perpendicular
and parallel to the film. As is appropriate for nanoparticles, in
Eq. (1) we performed summation along the z direction and
xy plane, i.e., perpendicular and parallel to the L10 planes,
respectively. The sums in Eq. (1) are usually large numbers
(on the order of hundreds of eV), whereas the MCA is on the
order of few meV. Since MCA is a small number coming from
the difference of two large numbers, one needs to take great
care, in determining the Kohn-Sham energy of the system,
in selecting the convergence criterion for the calculation. In
fact, for accurate integration, it is necessary to use a very
fine k-point mesh in reciprocal space. And the fact that a
very accurate convergence of energy is also required in the
self-consistent cycle makes the calculations rather expensive.
This method can give quite divergent results if one does not
use a sufficient number of integration points: for example, Gay
and Richter [38] predict the easy axis of monolayer Fe to be
perpendicular to the plane and found the anisotropic energy
to be −0.4 meV/atom, whereas Karas et al. [39] report the
easy axis of the same system to be along the plane of the
layer, and the value of anisotropy to be 3.4 meV/atom. Since
we used a large supercell, we performed calculations by using
only one (�-) momentum point. We also carried out a set of
calculations for 3 × 3 × 3 k-point mesh in the case of Fe18Pt20

and Fe20Pt18 clusters in order to test the sensitivity of the
results to the number of k points. We found that the difference
between the results for the MCA in the case of � point and the
3 × 3 × 3 k-point mesh is less than 1.0%.

An alternative way of calculating the MCA is the torque
method [29,30] which is suitable for systems with uniaxial
symmetry. The advantages of this method are that it does not
require calculations of the total energy of the system with very
high accuracy and that it is much faster because it does not
require self-consistent calculations with SOC for two different
directions of the magnetization. For our calculations using the
torque method we employed the VASP postprocessing package
developed by Hu et al. [40], based on the augmented-wave
projection of the SOC operator [41]. We also calculated the
MCA to see whether the results differed considerably from
those obtained from the direct method. (As Fig. 7 indicates,
they generally did not.)

FIG. 2. (Color online) Spin- and orbital-projected DOS for dif-
ferent cases: (a) bulk Fe, (b) bulk Pt, (c) Fe atom in the L10 FePt, and
(d) Pt atom in L10 FePt. (e) Spin-projected DOS for bulk L10 FePt.

III. RESULTS AND DISCUSSION

A. Magnetic anisotropy of the bulk system

The lattice parameters of the relaxed structure of bulk
L10 FePt do not change much from the experimental ones
(a∗ = 2.72 Å and c∗

a∗ = 1.36): the in-plane parameter a∗ =
2.74 Å, and the ratio value c∗

a∗ = 1.37. We have obtained the
following values for the magnetization: 2.85 μB for the Fe
atoms and 0.36 μB for the Pt atoms, both in good agreement
with experiment (Fe : 2.90 μB, Pt : 0.34 μB ) [37]. It is worth
mentioning that though bulk Pt is nonmagnetic, in the FePt
alloy the Pt atoms possess a magnetic moment. The magnetic
moment of Fe atoms increases substantially in the alloy from
their values in bulk Fe. The enhancement of the Fe magnetic
moment is a consequence of the hybridization between the
states of the 3d orbitals of the Fe atoms, and not only the 5d

but also s and p orbitals of their neighboring Pt atoms. As can
be seen in Fig. 2, the hybridization causes a broadening of the
d bands for the majority spins, while its effect on the shift of
the minority spins, though smaller, is that the shift moves the
band across the Fermi level into the area unoccupied by any
electron. Thus, it is natural to suppose that the finite magnetic
moment (0.36 μB ) of Pt atoms in FePt clusters comes mostly
from the hybridization of the minority spin bands.

The density of states (DOS) of bulk L10 FePt is plotted in
Fig. 2, where we also present the projected DOS for the Fe and
Pt atoms, which is similar to the one reported by Barreteau
et al. [22]. Our calculations show MCA value for the bulk
to be 2.22 meV per FePt pair, which is also in agreement
with other studies [2], encouraging confidence that our results
in the nanocase are reliable as well. We attribute the large
MCA to the large SOC of Pt atoms and to the increase in
orbital moment owing to the strong hybridization of their 5d

orbitals with the 3d orbitals of Fe. It is this hybridization that
breaks the symmetry of free energy in the two perpendicular
directions, resulting in a surplus of free energy in the direction
of magnetization [19]. Interestingly, Lyubina et al. found that
the anisotropy of the disordered phase of FePt is an order of
magnitude less than that of the L10 phase [11].

B. Magnetic anisotropy of the dimer

To gain more insight into the nature of MCA in the
nanoparticles that are the chief object of our study, we also
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TABLE I. Magnetic moments and MCA energy (in meV) of the Fe, Pt, and FePt dimers. LDA stands for the local density approximation
in DFT.

Spin moment (μB ) Orbital moment (μB ) MCA (meV)

Dimer (100) direction (001) direction (100) direction (001) direction E100-E001

Fe2 This work 5.99 5.99 0.32 0.16 0.07
GGAa 5.84 5.84 0.32 0.16 0.3
LDAb 6.00 6.00 1.89 0.89 32
GGAc 6.00 6.00 0.25 0.10 0.5

Pt2 This work 1.89 1.38 2.74 0.80 55.94
GGAa 1.88 1.34 2.74 0.80 46.3
LDAd 1.90 1.65 2.40 1.20 220.0
GGAc 1.80 1.70 2.40 0.80 75.00

FePt This work 4.16 4.26 0.36 0.41 −10.37
GGAc 4.30 4.30 0.2 0.40

aReference [23].
bReference [47].
cReference [44].
dReference [24].

considered the case of pure Fe, pure Pt, and FePt dimers. For
Fe2 the bond length is found to be 1.98 Å and for Pt2 the
bond length is 2.37 Å, which are in good agreement with the
bond length reported in the earlier work by Blonski et al. [23]
and the references therein. The experimental data are available
only for the Fe dimer—the bond length (1.87 ± 0.13) Å [42]
in argon matrix and (2.02 ± 0.02) Å [43] in neon matrix—and
is in agreement with our calculations. For the FePt dimer we
obtained a dimer bond length of 2.18 Å when leaving SOC
out of account, and 2.17 Å when taking SOC into account.
We thus infer that SOC does not play an important role in
determining the geometry of this system. This result is also
in good agreement with the results of Ref. [44]. Fe2 turns out
to exhibit very small anisotropy owing to the relatively small
SOC of the Fe atom. The SOC of the Fe atom is 81.6 meV
and of the Pt atom is nearly 7 times greater, 544 meV [45].
Contrary to the other two dimers, in Pt2 the spin moment and
orbital moment significantly differ in the directions along the
dimer and perpendicular to it. Therefore, it is the Pt atom’s
high SOC and relatively large orbital moment in Pt2 that
together account for the fact that the MCA of that dimer greatly
exceeds those of the other two. The MCA of the mixed FePt
system has a value—|10.37| meV—between those of the two
monometallic cases—|0.07| and |55.94|, meV, respectively.
Table I and Fig. 3 help us understand why this is the case.
In the FePt dimer the total magnetic moment of the Fe atom is
3.22 μB and that of the Pt atom is 0.58μB . The large magnetic
moment of Fe in this dimer can be attributed to the charge
transfer from the 3d orbital of Fe to the 5d orbital of the Pt
atom, which creates a polarization and an extra “hole charge”
on the Fe atom [44]. The MCA for the FePt dimer is 10.37
meV (with the easy axis perpendicular to the dimer axis). This
value is higher than the value for Fe2, because the values of
both the spin and orbital momenta are larger in the FePt dimer.
Our results for the spin and orbital momenta and the MCA
energy along with corresponding available numerical results
obtained by other methods are compiled in Table I.

In all three cases, the easy axis of magnetization coincides
with the direction of highest orbital momentum, in agreement

with Bruno [46] (see Table I). The negative MCA for the case
of the FePt dimer means that the easy axis of magnetization is
perpendicular to the dimer axis in this case.

The projected DOS values for the d orbitals of the Fe and
Pt atoms in the dimers are shown in Fig. 4. As follows from
this figure, the majority spin orbitals have zero occupancy at
the HOMO level, but the minority spins are present there,
indicating that the change of the orbital occupancy upon
hybridization is defined by change of the density of the
spin-down electrons. We thus conclude that the anisotropy and
the magnetization of the dimers are generated by the minority
spins as well.

To summarize, the MCA is proportional to the change of or-
bital momentum in two different directions; the comparatively
small value of MCA for Fe2 is due to its small SOC constant;
the larger value of MCA for Pt2 is due both to its large SOC
constant and to its relatively large orbital moment, while the
intermediate value of MCA in the FePt dimer is due to mutual
tempering of each atom of the other’s SOC and to the fact
that its orbital moment falls between those of Fe2 and of Pt2.
The MCA as function of the change of the orbital moments
�L = Lx − Lz per atom (OMA) for all three dimer systems
is shown in Fig. 5

FIG. 3. (Color online) DOS of (a) each Fe atom in the Fe dimer,
(b) each Pt atom in the Pt dimer, and (c) the Fe and Pt atoms in
the FePt dimer. The solid (red) line corresponds to Fe atoms and the
dotted (blue) to Pt atoms. The dashed green lines indicate the highest
occupied molecular orbital (HOMO) level of the dimers.
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FIG. 4. (Color online) Projected DOS for the d orbitals of (a) the
Fe atom in the Fe dimer, (b) the Pt atom in the Pt dimer, (c) the Fe
atom in FePt dimer, and (d) the Pt atom in FePt dimer. The dashed
lines highlight the HOMO level in each case.

C. Magnetic anisotropy of L10 FePt nanoclusters

The high MCA of bulk L10 FePt alloy with equiatomic
composition has stimulated researchers to inquire into the
properties of its small particles. To be sure, there are some
problems in maintaining the bulk geometry for the nanoparti-
cles. For example, Muller et al. predicted theoretically that the
L10 phase is not thermodynamically stable [48], and another
study, by Jarvi et al. [49] showed that the structure may
alter, disrupting the original atomic order. Moreover, several
experimental studies support the existence of a minimum
size limit below which the L10 order can no longer be
achieved [50,51], and other studies have shown the migration
of Pt atoms towards the surface in smaller particles [52,53].
However, for more definitive answers concerning feasibility of
exploiting FePt nanoparticles in the applications mentioned in
the Introduction, detailed and systematic studies are in order.

Those undertaken so far are suggestive. In particular, it is
known that the magnetic properties of nanoparticles depend on

FIG. 5. (Color online) Orbital moment versus MCA of dimers.
The arrows indicate the direction of easy axis for magnetization—
perpendicular to the dimer axis for FePt and parallel for the
monometallic clusters.

FIG. 6. (Color online) Clusters of the twenty L10 FePt nanopar-
ticles under comparative study here. Dark (red) and light (gray) balls
represent Fe and Pt atoms, respectively. The clusters whose central
layer is composed of Pt atoms are presented in (a), and the clusters
with central layer composed of Fe atoms are presented in (b).

the size, shape, and the way of synthesizing [11]. Gas-phase
particles can in fact exhibit lower MCA than perfectly ordered
bulk L10 alloys, because (i) their internal structure may not
be perfect L10, and individual particles can become multiply
intertwined; (ii) the Pt atoms may tend to migrate towards
the surface [43,44]; or (iii) an inhomogeneous alloying may
be present from the beginning, as indicated by the extended
x-ray absorption of fine structure (EXAFS) measurements by
Antoniak et al. [54]. The enhancement of surface-to-volume
ratio (and hence the size) of a nanoparticle plays a significant
role in its MCA. For example, the crystal symmetry–dependent
quenching of the orbital magnetic moments disappears for
all surface atoms of nanoparticles, thereby enhancing their
orbital moments relative to those of bulk or core atoms [55]
(Antioniak’s XMCD measurements have confirmed this for Fe
surface atoms in L10 FePt nanoparticles [56].)

The cluster structures we studied—constructed as described
in the section on Computational Details—are shown in Fig. 6.

The values of MCA for the above clusters obtained with
both methods are presented in Fig. 7.

FIG. 7. (Color online) MCA of the clusters studied, calculated by
different methods. Light (white striped) bars represent MCA energy
according to the direct approach; dark (magenta crossed) bars indicate
results under the torque approach.
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FIG. 8. (Color online) Magnetic moment of atoms at different
positions in the central layer of the cluster. The arrows in (a) indicate
the row in which we picked atoms for comparing their magnetization.
(b) The magnetic moment of atoms at different positions. For this
pair of clusters, there are six atoms along the line passing through
the cluster’s center; the third and fourth atoms are at the center of the
cluster.

The results for MCA calculated with the direct and the
torque methods generally agree well. This is encouraging,
particularly for nanostructures, because the direct method
in this case is much more computationally demanding. One
definite conclusion supported by the calculations is that those
nanoparticles with a larger number of Pt atoms have larger
MCA than their counterparts with a larger number of Fe atoms.
We also find that the atoms on the outside of the clusters
have higher magnetic moments than do atoms inside. One
example of such a situation is shown in Fig. 8 for Fe72Pt68

and Fe68Pt72 clusters. The line through which we calculate
the magnetic moment is presented by the arrow in Fig. 8(a).
The line (red) with solid circles and the line (blue) with open
circles in Fig. 8(b) represent magnetization for Fe (middle
layer with Fe atoms, Fe72Pt68) and Pt (middle layer with Pt
atoms, Fe68Pt72) atoms, respectively. It is clear from the figure
that the outer atoms in the cluster have larger magnetization
than the inner atoms. As we shall see, this comes from the fact
that exterior atoms have fewer neighbors than do those inside
the cluster.

Pt atoms in the FePt clusters exhibit magnetization, in
contrast to atoms in bulk Pt (where they exhibit virtually none).
Once again, the inside Pt atoms have smaller magnetization
than do the Pt atoms on the outside. The contrast between Fe
atoms in our FePt clusters and Fe atoms in bulk Fe is different
but parallel: Atoms in bulk Fe do show magnetization, but
Fe atoms in FePt clusters exhibit even higher magnetization.
Here, too, the inside atoms exhibit less magnetization than
those on the outside of the cluster. All four contrasts—between
magnetization of atoms in pure bulk and in composite clusters,
and between that of interior and exterior atoms within clusters
of the same size—are due to the orbital hybridization of Pt with
Fe atoms. The lower number of neighbors for surface atoms
explains the narrowing of the 3d orbital bands of the Fe and
the 5d bands of Pt that are in turn responsible for enhancing
the magnetization of the surface atoms.

The projected DOS for the atoms at different positions
in Fe20Pt18 and Fe18Pt20 clusters is presented in Fig. 9. As
this figure makes clear, there is a significant difference in the
projected DOS for the Pt atoms within the interior and at

the periphery of the Fe18Pt20 cluster. Remarkably, the main
contribution to this difference comes from the less filled spin-
down dx2−y2 orbital in the case of the inside Pt atoms. This leads
to a significant difference in the orbital momenta of the inside
and outside atoms and hence of the high MCA. On the other
hand, in the case of “flipped” cluster Fe20Pt18 one gets less
difference in the orbital occupancies for the inside and outside
atoms for both cases of Fe and Pt. Thus, it is not surprising
that we find that bipyramidal structures with a large central
Pt layer have significantly higher MCA per atom compared to
the cuboctahedral ones [18,25]. For example, we get an MCA
per atom value 1.14 meV for the Fe64Pt68 versus 0.86 meV
reported in the papers above for the 147-atom FePt cluster
reported in Ref. [25]. This difference can be traced to the
larger percentage of Pt atoms in the center for the bipyramidal
case compared to the cuboctahedral structure.

As Table II reveals, the total magnetic moment does not
significantly change as the direction of magnetization shifts
from (001) to (100). The orbital moment changes in such a
way that the easy axis of magnetization is always along the
direction of the lower orbital moments. This finding contradicts
Bruno’s prediction [46], according to which the easy axis
of magnetization always coincides with the direction of the
highest orbital moments. To be sure, for dimers (Table I) the
direction of easy magnetization does follow the direction of
highest orbital moment of the system, but for larger clusters
it behaves in the opposite fashion. One would expect the easy
axis of magnetization of still larger clusters to exhibit the same
sort of alignment of direction of easy axis of magnetization
with the direction of the highest orbital moment, as in those
clusters under study here.

The magnitude of difference in orbital moment between the
directions of magnetization �l = lx − lz per atom also plays a
key role in determining the overall MCA of clusters. As Table II
shows, for the majority of clusters anisotropy increases with
increase in the difference between orbital moment per number
of atoms, and, between clusters of the same size, anisotropy is
higher in the cluster whose predominant constituent element
has the higher SOC energy. In sum: for the majority of
clusters we studied, the contribution to MCA comes mostly
from increase in the orbital moment of the system along
with increase in SOC energy, though in the general case the
dependence of the MCA on the size and shape of the clusters
is highly nontrivial and requires further detailed studies.

We also studied the MCA of different layers within the
clusters (Fig. 10). As Fig. 10 indicates, the central plane of a
cluster of the same size has much higher anisotropy when it
consists of Pt than when it consists of Fe atoms. Anisotropy
is also higher when the central Pt layer adjoins a layer of
Fe than when its neighboring layer is Pt. This turns out to
be the case for all of the clusters we studied which can
be explained as follows. When a Pt atom hybridizes with
neighboring Fe atoms in FePt clusters, the orbital moment
of Pt atoms increases. In the example above, the Pt atom in
the Fe20Pt18 cluster shows an orbital moment of 0.11 μB but
in Fe18Pt20 its orbital moment increases to 0.145 μB . This
increase in the orbital moments, along with the greater SOC
energy of Pt, thus increases the MCA of the central layer.
These values of the orbital moment for the Pt atoms are much
higher than that of Pt in Pt38 (0.02 μB), Fe in Fe38 (0.06μB ),
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FIG. 9. (Color online) Projected DOS for the atoms at different positions (a) in Fe20Pt18 and (b) in Fe18Pt20 cluster. The DOS is more
localized for an atom on the surface of the cluster than for one atom inside. For all cases the majority spin band is completely filled and
magnetization is due to the contribution from the minority band only. The value of m in each graph is the magnetic moment of that particular
atom.

Fe in Fe20Pt18 (0.06 μB), and Fe in Fe18Pt20 (0.04 μB). The
same pattern holds for all sizes of clusters we study here.

The difference in anisotropy for different layers of Fe/Pt
atoms can be explained in simple terms of orbital occupancies
as we show below from perturbation theory. This is appropriate
because the portion of the d bandwidth contributed by the
SOC component of the Hamiltonian is much smaller than the
d bandwidth as a whole [57]. We see from Fig. 9 that, since all
the majority spin states are completely occupied, all the empty
states belong to the minority spins only. Since there are no
empty states available for occupation by the spin-up electrons,
there are only two types of SO interactions in the systems: the
coupling between occupied and unoccupied spin-down states
and the coupling between states occupied by spin-up electrons
with states unoccupied by spin-down electrons. The MCA
energy can be calculated by using the following formula [57]:

Ex − Ez ∼ ξ 2
∑
o,u

|〈o|L̂ z|u〉|2 − |〈o|L̂x |u〉|2
εu − εo

, (2)

where ξ is the SOC constant, 〈o| and |u〉 are the occupied
and unoccupied minority spin states, respectively, and L̂ z and
L̂x are the z and x components of the angular momentum

operators. For the SOC between different spins, i.e., occupied
majority spin states and unoccupied minority spin states, a
minus sign should be added [58]. We have calculated the
orbital occupancy of both empty and filled states of both spin
arrangements and find that for the Fe atom in the first layer of
Fe20Pt18, Ex − Ez = 0.24ξ 2, for the atoms in the third layer
(exterior) of Fe20Pt18 this value is Ex − Ez = 0.17ξ 2, and for

FIG. 10. (Color online) MCA of different layers of atoms in the
four clusters consisting of 38 atoms. Dark (red) corresponds to Fe
and light (gray) to Pt atoms.
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TABLE II. The magnetic moments, orbital moments, and MCA of clusters with magnetization along two different directions.

Magnetic moment (μB ) Orbital moment (μB ) MCA (meV)

mx mz lx lz MCA = (Ex − Ez)

Fe12Pt18 46.74 46.26 2.283 2.037 84.60
Fe18Pt12 62.33 62.03 2.14 2.54 47.60
Fe18pt20 68.16 68.06 3.31 2.97 94.37
Fe20Pt18 72.76 72.75 3.30 3.09 20.01
Fe32Pt39 117.18 115.19 5.86 4.46 154.28
Fe39Pt32 134.18 134.14 5.39 5.22 34.15
Fe39Pt40 133.57 132.46 5.74 5.17 81.05
Fe40Pt39 137.26 136.53 6.13 5.63 71.82
Fe50Pt64 175.97 175.67 7.95 6.91 170.11
Fe64Pt50 213.24 213.44 8.52 7.91 33.33
Fe64Pt68 214.84 214.76 9.64 8.24 155.90
Fe68Pt64 232.88 232.64 10.08 9.11 75.06
Fe68Pt72 233.90 231.71 10.59 10.06 142.80
Fe72Pt68 242.69 242.95 10.15 10.51 73.65
Fe98Pt132 350.02 350.78 16.90 14.57 349.38
Fe132Pt98 452.21 451.98 15.86 13.42 340.99
Fe162Pt224 583.97 583.97 28.11 23.63 659.77
Fe224Pt162 722.66 722.07 27.47 26.32 320.27
Fe260Pt224 870.00 870.21 36.10 33.38 454.44
Fe224Pt260 773.98 773.94 34.581 30.38 725.53

the atoms in the third layer (interior) of Fe20Pt18 this value is
Ex − Ez = 0.08ξ 2.

Thus, our perturbation theory estimation from the last
paragraph gives a MCA per atom for the top Fe layer that
is 2.5 times larger than the corresponding value for the third
Fe layer. This result is in good agreement with the DFT
ratio for the MCA’s, ∼ 3, for the corresponding layers (see
Fig. 10), suggesting the ability of DFT to describe correctly the
MCA in these clusters in terms of explicit orbital occupancies.
The discrepancy in results for the MCA may come from the
simplicity of the estimation used. For greater accuracy of the
perturbation theory calculations, one would need to take into
account the differences in hybridization undergone by each
individual atom. An example of the orbital occupancies for
differently situated atoms is given in Table III. Indeed, as it
follows from this table, the occupancies of individual d orbitals
are much less than 1, which suggests strong hybridization of
these orbitals.

To test the sensitivity of the results with respect to
the XC potential, we performed the calculations with the
Perdew-Burke-Ernzerhof (PBE) potential [59] for Fe18Pt20

and Fe20Pt18 clusters. Our calculations show that the results
for the MCA obtained with PW91 and PBE for these systems

TABLE III. Occupancy of d orbitals of differently situated atoms
in the first and third Fe layers in the Fe18Pt20 cluster.

Projected First-layer atom Tird-layer atom Third-layer atom
d orbitals (all exterior) (exterior) (interior)

dx2−y2 0.51 0.45 0.45
dxy 0.29 0.17 0.25
dxz, dyz 0.30 0.10 0.16, 0.13
dz2 0.18 0.28 0.28

differ by 8.5% (Fe20Pt18) and 6.2% (Fe18Pt20), respectively,
always giving a lower value of the MCA with PBE. This
non-negligible, but rather standard and tolerable in DFT,
difference in the results suggests reliability of the PW91
calculations presented in the paper.

IV. THERMAL EFFECTS

The calculations above are all appropriate for zero temper-
ature. We now deal with two thermal effects. The first topic
deals with the potential application for FePt nanoparticles
in the magnetic storage of data. It is well known that many
nanosized particles are superparamagnetic because their total
anisotropy energy is on the order of the thermal energy.
A standard measure for the magnetic stability time of a
small magnetic particle is given by an Arrhenius law [60]
involving the probability of climbing over an energy barrier.
For magnetic storage applications, the ratio of the anisotropy
energy to thermal energy is quite large. For T = 25 years, one
finds

KV

kBT
= ln

(
T

T0

)
� 41. (3)

Here K is the anisotropy per unit volume and V is the
volume. We have used T0 = 10−9 s as the value for a typical
attempt time for the system to climb the anisotropy barrier.
With our values for the largest anisotropy (KV is about
725 meV for the Fe224Pt260 cluster), we get

KV

kBT
= 28. (4)

Clearly, the total anisotropy energy is still not large enough
compared to the thermal energy. The required anisotropy
energy for the particle is about 1060 meV to satisfy the
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FIG. 11. (Color online) MCA with respect to number of Pt atoms
in the five-layered L10 FePt cluster with Pt as central layer.

condition in Eq. (3). This means that one still needs larger
particles if these elements are to work for magnetic storage.
We can use our previous data to project values of MCA for
larger particles. It follows from Fig. 7 that the MCA of clusters
with the same number of layers scales nearly linearly with the
number of Pt atoms in the cluster. As an example we plot the
MCA as a function of the number of Pt atoms for five-layer
clusters with Pt as central layer in Fig. 11. From Fig. 11 we can
predict (for this structure) that to get an MCA of 1060 meV
per cluster one needs to have a cluster with approximately 350
Pt atoms. This would correspond to a total of about 270 Fe
atoms. We note that other applications of FePt nanoparticles,
such as contrast agents for MRI, do not have such strict stability
requirements and could be done with much smaller particles,
indeed with superparamagnetic nanoparticles [61].

The second topic in the thermal behavior of these clusters
is to estimate how the magnetization would change in these
samples as a function of temperature, M(T ). Dealing with
this problem exactly is difficult, in part because there could
be multiple exchange constants within the nanoparticle, and
these are not known. Instead, we only want to provide a simple
estimate of M(T ) and see how this could vary depending on
the size and shape of the nanoparticle, and depending on the
position of the Fe atoms within the nanoparticle.

The thermal averaged magnitude of a spin in an effective
magnetic field is given by

S = SBS(x), (5)

where x is the ratio of the magnetic energy to the thermal
energy,

x = gμBSHeff

kBT
. (6)

Here g is the gyromagnetic ratio, S is the spin, Heff is the
effective magnetic field, and μB is the magnetic moment of
the atom. The function Bs(x) is the Brillouin function, and it
is given by

Bs(x) =
[

(2S + 1)

2S

]
coth

[
(2S + 1)x

2S

]
−

(
1

2S

)
coth

( x

2S

)
.

(7)
For bulk Fe with a body centered cubic structure there are

eight nearest-neighboring atoms of each Fe atom, so the ef-
fective field can be written as Heff = 8JS, where J is the

FIG. 12. (Color online) Schematic representation of Fe20Pt18

cluster in our simple mean-field model.

exchange constant and 〈S〉 is the thermal averaged magnitude
of the spin.

We can use the value of the critical temperature, Tc, to obtain
the exchange constant. For small values of x (appropriate near
T = Tc) the Brillouin function in Eq. (7) may be expanded to
give

B(x) =
(

S + 1

3S

)
x. (8)

Substituting this in Eq. (5) we can get the relation between J

and Tc,

J = 3kTc

8gμBS(S + 1)
. (9)

Using the value of Tc = 1043 K, appropriate for bulk Fe,
we can get an estimate for the exchange constants between
nearest-neighbor Fe atoms.

In the nanoparticle structures, the effective field acting on
each atom is different, so one cannot do standard mean-field
theory. Instead we use a simple self-consistent local-mean-
field magnetic model [62]. As an example, we show the key
elements of the calculation for the Fe20Pt18 configuration.
We label each Fe atom in our nanoparticles with a different
number, as an example, as seen in Fig. 12.

We calculate the effective field acting on each spin as arising
from the exchange coupling from nearby spins. We identify
two types of coupling:

(1) Coupling of nearest neighbors within a plane with
exchange constant J ;

(2) Coupling of nearest neighbors between planes, with
exchange constant Jp.

The effective field acting on each atom can be written in
terms of J and Jp. For example, the effective field on spin at
the site labeled by 1 can be written as

H1 = J (〈S2〉 + 〈S3〉) + Jp〈S8〉. (10)

Here we assumed that the spins are all pointing in one direction
and Sn is the thermal averaged magnitude of the spin at site n.
We can write the effective field equation for each of the sites
in the cluster, and the thermal averaged magnitude at any site
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FIG. 13. (Color online) (a) Averaged spin with respect to tem-
perature for Fe20Pt18 cluster (on the top) and for Fe39Pt40 cluster (on
the bottom); (b) averaged spin for inequivalent sites in Fe20Pt18 (on
the top) and Fe39Pt40 cluster (on the bottom). The calculation in (b)
is done with Jp = 0.5J .

now can be found by using the expression

Sn = SnB(xn), (11)

where xn in this case can be written as

xn = gnμBSn(SnHn + H0)

KT
. (12)

One then has a set of n coupled equations involving the
variables 〈S1〉 to 〈Sn〉. We solve this iteratively by picking a
site n at random, calculating the effective field at that site, and
the resulting new value of 〈Sn〉. Then a new spin is chosen
and the process is repeated until the process converges to final
values and all spins have thermal averaged magnitudes which
are consistent with the values of the neighboring spins.

We use the following parameters in our calculations μB =
9.27 × 10−21 erg Gauss, Boltzmann’s constant is k = 1.38 ×
10−16 erg/Kelvin, g = 2, and J = 1.455 × 106 Oe (bulk val-
ues of J ), S = 1. A small external magnetic field Ho = 100 Oe
is used to help orient the moments and speed convergence.
To see how the coupling between different planes of Fe
atoms affects the results, we use two different values for the
perpendicular coupling Jp : Jp = J and Jp = 0.5J .

Our results for the Fe20Pt18 and Fe39Pt40 clusters are
presented in Fig. 13. For both cases the critical temperature
is substantially less than the critical temperature of bulk Fe
(Tc = 1043K). However, there is still a substantial moment
at room temperature. The reduction in Tc is due to the
reduced coordination number of the Fe atoms in the FePt
structure. As might be expected, this reduced coordination has
a smaller effect for the larger structure because the percentage
of atoms at the surfaces and edges is smaller. Indeed we
find that the Fe39Pt40 has a higher Tc value. We also see
that the larger perpendicular coupling case gives a higher
critical temperature, as expected. This trend is consistent with
experimental data showing that larger FePt nanoparticles have
a higher Tc [63].

The thermal average spin values at different sites of the
cluster are shown in Fig. 13(b); they were done for Jp = 0.5J.
As can be easily seen by symmetry, there are only three unique
types of site for Fe20Pt18 and six unique sites for the Fe39Pt40

cluster. A key result is that even for moderate temperatures, the
thermal moments at the different sites throughout the cluster
can be quite different. Indeed the thermal averaged values
for spins at the outer surfaces and edges can be quite small
compared to those in the center for some temperatures.

We note that these calculations neglect any magnetic
moments in the Pt atoms, and assume that all the Fe exchange
values are the same. This is clearly a simplification, but the
results presented here, nonetheless, should give some idea of
possible thermal behaviors.

V. CONCLUSIONS

We have systematically studied the magnetic properties
of FePt L10 nanoparticles as a function of particle sizes
(30, 38, 71, 79, 114, 132, 140, 230, 386, and 484 atoms)
and compositions (i.e., consisting of pure Fe and Pt atoms
and of alternating planes of Fe and Pt atoms). We find that
nanoparticles have much higher magnetic moments than do
bulk atoms. This is due to the fact that the MCA arises from the
orbital moment coupled with the spin moment and that in the
bulk the system orbital moments are almost quenched, whereas
in small clusters the orbital moments of the system’s atoms are
considerably enhanced. We propose that this explains why it
is that (as earlier studies have shown) the hybridization of the
5d(Pt) orbitals with 3d(Fe) orbitals produces a high magnetic
anisotropy for layered FePt nanoparticles. We also find that
clusters with Pt atoms as the central layer have much larger
anisotropy than those in which the central layer consists of
Fe atoms. The explanation for this is that the central layer
has more atoms than other layers in the cluster, and when
these atoms are of high orbital moment—Pt atoms hybridizing
with the Fe atoms below and above—the system as a whole
exhibits higher anisotropy than when the central layer consists
of Fe atoms, whose orbital moment, in hybridizing with the
Pt atoms above and below, is markedly lower. In contrast
to the cuboctahedral case [18,25]bipyramidal nanoparticles
possess (similar magnitude) MCA mostly at the (large) central
Pt layer. This fact may eliminate the need to cap them in order
to preserve MCA. Our calculations show that five-layered
nanoparticles with approximately 700 atoms can be expected
to be useful in magnetic recording applications at room
temperature. Meanwhile, a deeper analysis of the electronic
structure of these and other TM nanosystems could contribute
further to this end.

Generally speaking, the relation between the structure and
MCA is not yet completely understood for FePt and other
binary alloys. For example, as an alternative type of system,
147-atom cuboctahedral FePt clusters encapsulated into Cu,
Au, and Al matrices were studied theoretically in Ref. [25]
where it was found, for example, that surface atoms have larger
MCA. Another consideration is the particular role of electron-
electron correlation in these systems. This was found to be
important for small Fe [64] and FePt [65] clusters and invites
further study.
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