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Quantum entanglement in the one-dimensional spin-orbital SU(2) ⊗ XXZ model
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We investigate the phase diagram and the spin-orbital entanglement of a one-dimensional SU(2) ⊗ XXZ
model with SU(2) spin exchange and anisotropic XXZ orbital exchange interactions and negative exchange
coupling constant. As a unique feature, the spin-orbital entanglement entropy in the entangled ground states
increases here linearly with system size. In the case of Ising orbital interactions, we identify an emergent phase
with long-range spin-singlet dimer correlations triggered by a quadrupling of correlations in the orbital sector.
The peculiar translational-invariant spin-singlet dimer phase has finite von Neumann entanglement entropy and
survives when orbital quantum fluctuations are included. It even persists in the isotropic SU(2) ⊗ SU(2) limit.
Surprisingly, for finite transverse orbital coupling, the long-range spin-singlet correlations also coexist in the
antiferromagnetic spin and alternating orbital phase making this phase also unconventional. Moreover, we also
find a complementary orbital singlet phase that exists in the isotropic case but does not extend to the Ising limit.
The nature of entanglement appears essentially different from that found in the frequently discussed model with
positive coupling. Furthermore, we investigate the collective spin and orbital wave excitations of the disentangled
ferromagnetic-spin/ferro-orbital ground state and explore the continuum of spin-orbital excitations. Interestingly,
one finds among the latter excitations two modes of exciton bound states. Their spin-orbital correlations differ
from the remaining continuum states and exhibit logarithmic scaling of the von Neumann entropy with increasing
system size. We demonstrate that spin-orbital excitons can be experimentally explored using resonant inelastic
x-ray scattering, where the strongly entangled exciton states can be easily distinguished from the spin-orbital
continuum.
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I. INTRODUCTION

Spin-orbital coupling phenomena are ubiquitous in solids
and have been known to exist since the early days of quantum
mechanics and band theory, but only recently it was realized
that the quantum nature of orbital degrees of freedom plays a
crucial role in the fields of strongly correlated electrons [1–7]
and cold atoms [8–12]. The growing evidence of spin-orbital
entanglement (SOE) accumulated due to novel experimental
techniques which probe a variety of underlying electronic
states. The strong Coulomb interactions and the relativistic
spin-orbit interaction entangle locally the spin and orbital
degrees of freedom [13] which display an amazing variety of
fundamentally new and fascinating phenomena, ranging from
topologically nontrivial states [14], relativistic Mott-insulating
behavior in 5d [15,16] and 4d [17,18] transition-metal oxides,
and entanglement on superexchange bonds in spin-orbital
models [6,19]. Other more recent developments include entan-
gled spin-orbital excitations [20,21], doped spin-orbital sys-
tems [22], skyrmion lattices in the chiral metal MnSi [23], mul-
tiferroics, spin-Hall effects [24], Majorana and Weyl fermions
[25], topological surface states [26], Kondo systems [27],
exotic spin textures in disordered systems, to name just a few.

To date, experimental observation of a dynamic spin-orbital
state has been a challenge. Apart from the intrinsic anisotropy
and the relative complexity of the orbital couplings, it has been
shown that the interplay between the two frustrated degrees of
freedom may lead to exotic states of matter. An x-ray scattering
study of a dynamic spin-orbital state in the frustrated magnet
Ba3CuSb2O9 supports spin-liquid state [28,29], while FeSc2S4

[30–32] and the d1 effective models on the triangular lattice

[33] and on the honeycomb lattice [34,35] are found to be
candidates for spin-orbital liquids in the theory. Recently,
remarkable progress was achieved due to rapidly developed
resonant inelastic x-ray scattering (RIXS) techniques [36]
which helped to explore the elementary excitations in Sr2CuO3

[37,38] and Sr2IrO4 [39], with antiferromagnetic (AF) and
ferro-orbital (FO) order in ground states. Orbital order in the
spin-gapped dimerized system Sr3Cr2O8 below the Jahn-Teller
transition was also identified [40]. However, it remains chal-
lenging experimentally and theoretically, mainly owing to the
lack of an ultimate understanding of spin-orbital correlations.

In the Mott insulators with an idealized perovskite structure,
the low-energy physics is described by spin-orbital models,
similar to the Kugel-Khomskii model [2], where the spin and
orbital are considered on equal footing as dynamic quantum
variables [4]. Spin interaction possesses SU(2) symmetry,
which will be broken, however, by the relativistic spin-orbit
coupling. It couples spins to the orbitals, that are in general
non-SU(2)-symmetric in a solid. However, this coupling can
frequently be neglected in realistic 3d systems and one is left
in general with entangled spin-orbital superexchange problem
[6], that is, the eigenstates cannot be written as products of
spin and orbital wave functions. One immediate consequence
of entanglement is that spin and orbital terms cannot be
factorized in the mean-field approach. Orbitals are spatially
anisotropic and thus their interactions have lower symmetry
than the spin ones which reflect the directional dependence of
the orbital wave functions. For the fixed occupation of orbitals,
the magnitude and sign of the spin-orbital superexchange
interactions follow the classical Goodenough-Kanamori rules
[41], but quantum fluctuations change them and make it

1098-0121/2015/92(5)/054423(19) 054423-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.054423


WEN-LONG YOU, PETER HORSCH, AND ANDRZEJ M. OLEŚ PHYSICAL REVIEW B 92, 054423 (2015)

necessary to consider spin-orbital interplay in entangled states
on exchange bonds [19]. Therefore, it is important to measure
whether eigenstates are entangled or not.

A natural measure of SOE is the von Neumann entropy
(vNE) which we write first for the nondegenerate ground state
|�0〉:

S0
vN ≡ −TrA

{
ρ

(0)
A log2 ρ

(0)
A

}
. (1.1)

Here, we consider a system � composed of two nonoverlap-
ping subsystems [42], i.e., � = A ∪ B, A ∩ B = ∅, and ρ

(0)
A

is the reduced density matrix. It is obtained by integrating the
density matrix over subsystem B, i.e., ρ

(0)
A = TrB |�0〉〈�0|.

However, one has to realize that information contained in
entanglement entropy depends crucially on how one partitions
the Hilbert space of the system. To investigate SOE, we use
here as two subsystems A and B the spin and orbital degrees
of freedom in the entire chain. Standard spin-orbital phases
may have entanglement in only one sector, and here we
concentrate on joint SOE [43]. This choice is distinct from
the one conventionally made when the system is separated
into two spatially complementary parts [44], for instance, in
frustrated spin chains [45] or in the periodic one-dimensional
(1D) Anderson model [46].

Although much attention was devoted to the ground state
in the past [47], it has been noticed only recently that the
entanglement entropy of low-energy excitations may provide
even more valuable insights [43,48,49] which are of crucial
importance to understand the origin of quantum phase transi-
tions in spin-orbital systems [50]. The well-known area law of
the bipartite entanglement entropy restricts the Hilbert space
accessible to a ground state of gapped systems [51,52], while
the area law is violated by a leading logarithmic correction in
critical systems, whose prefactor is determined by the number
of chiral modes and precisely given by Widom conjecture [53].
In this respect, the application of the entanglement entropy
in describing quantum criticality in many-body Hamiltonian
merits a lot of studies [42,54].

On the other hand, the excited states have the mixture
of logarithmic and extensive entanglement entropy, and the
logarithmic states are expected to be negligible in number
compared to all the others. The entanglement in the excited
state is proven always larger than that of the ground state
of a spin chain [55]. For a spin-orbital-coupled system, the
division of spin and orbital operators retains the real-space
symmetries, which is beneficial to the calculation of mutual
entanglement. In two-particle states, the SOE is determined by
the intercomponent coherence length [43], as though the state
has sufficient decay of correlations [45].

The aim of this paper is to use the entanglement entropy
to investigate the full phase diagram of the one-dimensional
anisotropic spin-orbital SU(2) ⊗ XXZ model. The main moti-
vation for considering the Ising asymmetry in the orbital sector
comes from the observation that spin-orbital entanglement is
large when both subsystems, i.e., spin and orbital sectors,
reveal strong quantum fluctuations. Thus, the Ising anisotropy
which is present in many physical systems introduces ad-
ditional control of orbital fluctuations and thereby provides
an important control parameter for SOE. Here, we focus on
the model with negative exchange interaction. This choice of

the exchange coupling restricts somewhat joint spin-orbital
fluctuations being particularly large near the SU(4) symmetric
point in the 1D spin-orbital model with positive coupling
constant [56], but opens possibilities for entangled states,
as we show in the following [50]. An interesting phase
with entangled ground state, consisting of alternating spin
singlets along the spin-orbital ring, is found for Ising orbital
interactions when the dimerization in the spin channel induces
the change from FO to alternating orbital (AO) correlations.
Here, we report the complete phase diagram of the anisotropic
SU(2) ⊗ XXZ spin-orbital model, with two phases of similar
nature which gain energy from singlet correlations leading to
dimerization, either in spin or in orbital sector. These phases
were overlooked before in the fully symmetric case, i.e., in the
phase diagram of the isotropic SU(2) ⊗ SU(2) model [43].

We also analyze the nature of spin-orbital excited states,
particularly in the case of the disentangled ferromagnetic
(FM) and FO ground states, labeled as FM/FO order. We
also analyze entanglement entropy in the excited states for
the FM/FO phase and show that spin-orbital excitations form a
continuum, supplemented by collective bound states. The latter
states are characterized by a logarithmic scaling behavior, and
as we show could be detected by properly designed RIXS
experiments [57–59].

The paper is organized as follows. The model is introduced
in Sec. II. In Sec. III, we present an analytic solution for the
ground state in the Ising limit of the orbital interactions. A more
general situation with anisotropic XXZ orbital interaction is
analyzed in Sec. IV A, and the phase diagram for the isotropic
SU(2) ⊗ SU(2) model is reported in Sec. IV B. This model and
the obtained SOE are different from the AF case, as shown in
Sec. IV C. Next, we determine the elementary excitations in
the FM/FO phase in Sec. V and show that they are entangled
although the ground state is disentangled. The vNE spectral
function is presented in Sec. VI A, including the scaling
behavior of the bound states which is contrasted with that in the
AF/AO ground state. In Sec. VI B, we explore the possibilities
of investigating entanglement in the present 1D spin-orbital
model by RIXS. The paper is concluded by a discussion and
brief summary in Sec. VII. Some additional technical insights
which are accessible by an exact solution of the two-site model
are presented in the Appendix.

II. 1D SPIN-ORBITAL SU(2) ⊗ XXZ

We consider the 1D spin-orbital Hamiltonian which couples
S = 1

2 spins and T = 1
2 orbital (pseudospin) operators

H = −J
∑

j

HS
j (x) ⊗ HT

j (�,y) , (2.1)

with SU(2) spin Heisenberg interaction HS
j (x), orbital

anisotropic XXZ interaction HT
j (�,y),

HS
j (x) = 	Sj · 	Sj+1 + x, (2.2)

HT
j (�,y) = �

(
T x

j T x
j+1 + T

y

j T
y

j+1

) + T z
j T z

j+1 + y. (2.3)

We take below J = 1 as the energy unit. The model (2.1)
has the following parameters: (i) x and y which determine the
amplitudes of orbital and spin ferroexchange interactions −Jx
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and −Jy, respectively, and (ii) � which interpolates between
the Heisenberg (� = 1) and Ising (� = 0) limit for orbital
interactions. When � = 1, the spin and orbital interactions
are on equal footing and the symmetry of the Hamiltonian
(2.1) is enhanced to SU(2) ⊗ SU(2): this model describes a
generic competition between FM and AF spin, and between
FO and AO bond correlations [43].

We emphasize that the coupling constant −J is negative,
so at large x > 0 and y > 0 it gives a disentangled FM/FO
ground state (see following); therefore, the model may be
called in short FM. This choice of the exchange coupling
restricts somewhat joint spin-orbital fluctuations being large
near the SU(4)-symmetric point (x,y) = (0.25,0.25) in the 1D
spin-orbital model with positive, i.e., AF coupling constant
[56], but opens other interesting possibilities for entangled
states, as we have shown recently [50]. Both total spin
magnetization Sz and orbital polarization T z are conserved,
and time-reversal symmetry leads to the total momentum either
k = 0 or π .

Before analyzing the spin-orbital model of Eq. (1) in
more detail, let us summarize briefly the properties of the
well-known AF model, with positive coupling constant J . The
SU(4)-symmetric Hamiltonian found at (x,y) = (0.25,0.25)
is an integrable model which can be solved in terms of the
Bethe ansatz [56,60]. Away from the SU(4)-symmetric points,
this choice of the coupling constant favors the phases with
spin-orbital order depending on the actual values of x and
y, and the phase diagram obtained by numerical methods
includes in general phases with all types of coupled spin-orbital
order, i.e., FM/FO, AF/FO, AF/AO, and FM/AO, as well as the
gapless spin-orbital liquid phase near the SU(4) point [61,62].
In addition, Schwinger boson analysis gives phases with spin-
orbital valence-bond correlations and also spin valence-bond
and orbital valence-bond phases [63]. The latter two show a
tendency towards dimerized spin or orbital correlations which
occur here in the proximity of the SU(4) point. For some
special choice of parameters, the model can be solved exactly:
(i) when � = 1 and x = y = 3

4 , the exact ground state is
doubly degenerate with the spins and the orbitals forming
singlets on alternate bonds, while (ii) when � = 0, x = 3

4 ,
and y = 1

2 , the non-Haldane spin-liquid ground state can
be analytically obtained [64,65], and (iii) several integrable
cases were presented for interactions with special symmetries
[66,67], or (iv) with XY orbital interactions (� = ∞) [20].

The form of Eq. (2.1) is not the most general one but is
representative for real spin-orbital systems with anisotropic
orbital interactions. In real systems, the orbital part contributes
by additional superexchange terms which are not coupled to
SU(2) spin interaction [4]. For instance, in the case of t2g orbital
degrees of freedom as in the perovskite titanates or vanadates,
the interactions along the c cubic axis involve the doublet of
two orbitals active along it, i.e., the yz and zx orbitals [68]; a
similar situation is encountered in a tetragonal crystal field of
a quasi-1D Mott insulator [69], or for px and py orbitals of a
1D fermionic optical lattice [8–10].

A priori, due to the quartic spin-orbital joint term,
∝(	Sj · 	Sj+1)[�(T x

j T x
j+1 + T

y

j T
y

j+1) + T z
j T z

j+1] in the Hamil-
tonian Eq. (2.1) the spin-orbital interactions are entangled,
and the spin and orbital operators cannot be separated from
each other in the correlation function, except for some ground

or excited states in which the SOE vanishes. The spin-orbital
bond correlations (2.4),

C tot
1 ≡ 〈

(	Sj · 	Sj+1)
[
�

(
T x

j T x
j+1 + T

y

j T
y

j+1

) + T z
j T z

j+1

]〉
, (2.4)

are uniform in the considered system and C tot
1 does not

depend on the site index j . We investigate below these
composite quartic correlations and show that they could also be
surprisingly large. As an additional criterion of setting up the
phase diagram, we use below the fidelity susceptibility which
elucidates the change rate of ground states in the parameter
space [70]. It serves as an order parameter to characterize the
phase diagram of the anisotropic (� < 1) spin-orbital model
(2.1). The fidelity susceptibility is defined as follows:

χF(λ) ≡ −2 lim
δλ→0

lnF(λ,δλ)

(δλ)2
, (2.5)

where the fidelity

F(λ,δλ) = |〈�0(λ)|�0(λ + δλ)〉| (2.6)

is taken along a certain path in the parameter space in the
vicinity of the point λ ≡ λ(�,x,y).

III. ISING ORBITAL INTERACTIONS (� = 0)

In the Ising limit of orbital interactions (� = 0) the
Hamiltonian (2.1) simplifies and has SU(2) ⊗Z2 symmetry:
it is a prototype model for the directional orbital interactions
with quenched quantum fluctuations in t2g systems. This may
happen in real compounds in two ways: (i) either only one
of the two active orbitals is occupied by one electron and
contributes in the hopping processes along the 180◦ bonds
[71] or 90◦ bonds [72], or (ii) the orbital degrees of freedom
are quenched in the presence of strong crystal field. In both
these cases, the orbital exchange (orbital-flip) processes are
blocked and orbital interactions are of a classical Ising-type
form. Such Ising interactions are frustrated when they emerge
in higher dimension, as in the well-studied orbital compass
model [73–75] and in the Kitaev model [76] (see also a recent
review on the compass model [77]). It is now intriguing to
ask what happens to the SOE in this case. It may be still
triggered by spin fluctuations while the model with Ising spin
interactions (A2) is classical.

The phase diagram of the model (2.1) at � = 0, i.e., in
the absence of orbital fluctuations, which follows from fidelity
susceptibility (2.5) is displayed in Fig. 1. As expected, one
finds four trivial combinations of spin-orbital order: FM/FO
(phase I), AF/FO (phase II), AF/AO (phase III), and FM/AO
(phase IV). All these phases have the entanglement entropy
(1.1) S0

vN = 0 and spins and orbitals disentangle. Transitions
between pairs of them are given by straight lines and may
be also obtained rigorously by the mean-field approach. The
ground state of an L-site chain stays in the subspace Sz = 0,
T z = 0, momentum k = 0 (always degenerate with Sz = 0,
T z = 0, k = π for all parameters) in phases III (AF/AO), IV
(FM/AO), and V, while it is found in the subspaces Sz = 0,
T z = ±L/2, k = 0 in phases I (FM/FO) and II (AF/FO) (of
course, in phases I and IV also other values of Sz �= 0, with
−L/2 � Sz � L/2, are allowed and the ground states have the
respective degeneracy). The ground states with energy E0 = 0
are highly degenerate when x < − 1

4 along the critical line
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FIG. 1. (Color online) Spin-orbital entanglement entropy S0
vN

[Eq. (1.1)] and the phase diagram in the (x,y) plane of the SU(2) ⊗Z2

spin-orbital model (2.1) with � = 0 as obtained for the system
size of L = 8 sites. The critical lines are discerned by both fidelity
susceptibility and analytical method. Phases I–IV are disentangled
(S0

vN = 0) with order defined as follows: FM/FO (phase I), AF/FO
(phase II), AF/AO (phase III), and FM/AO (phase IV). The spin and
orbital textures in phase V with finite entropy S0

vN > 0 are explained
in the text.

y = 1
4 between phases III and IV, suggesting that antiparallel

orbitals erase the spin dynamics. Along the critical line
y = − 1

4 between phases I and II, the ground states are also
highly degenerate when x � 3

4 , and parallel orbitals on the
bonds (in FO order) quench again the spin fluctuations.

Although the orbital interactions are Ising type, entangled
spin-orbital ground state occurs in phase V. In order to under-
stand better emergent phase V, we introduce the longitudinal
equal-time spin/orbital structure factor, defined for a ring
of length L (with a lattice constant a = 1; we use periodic
boundary conditions) by

Szz(k) = 1

L

L∑
j,j ′=1

e−ik(j−j ′)〈Sz
jS

z
j ′
〉
, (3.1)

T zz(k) = 1

L

L∑
j,j ′=1

e−ik(j−j ′)〈T z
j T z

j ′
〉
. (3.2)

The calculation of the equal-time structure factor Szz(k) for a
model of uncorrelated nearest-neighbor dimers was compared
with the one for the kagome lattice ZnCu3(OD)6Cl2 [78]. One
finds analytically that in the case � = 0, a cosinelike spin
structure factor, i.e., Szz(k) ∝ (1 − cos k), is revealed in phase
V for y = − 1

4 , implying that only nearest-neighbor spins are
correlated. This finding is essential as the short-range spin
correlation indicates here a translation-invariant dimerized
spin-singlet state which has the same spin structure as the
Majumdar-Ghosh (MG) spin state [79]. However, this state is
not triggered here by frustrated interactions J1 and J2, but is
evidently induced by the correlations in the orbital sector.

In the Ising limit, we obtain the analytic ground state for
phase V as described below. The essential feature is that the

FIG. 2. (Color online) (a) One of four translational equivalently
spin and orbital configurations in the Ising limit of the spin-orbital
model (2.1) at � = 0 and y = −0.25. The spins form isolated
dimers (shaded ovals). (b) A single orbital excitation and induced
spin configuration. (c) A single spin flip makes a singlet-triplet spin
excitation, but does not induce any change in orbital correlations.

energy is gained by spin singlets occupying the bonds with
AO states, while the bonds connecting two spin singlets have
FO order [see Fig. 2(a)]. To construct the ground state, we
introduce the corresponding four configurations in the orbital
sector:

|φ1〉 = |+ + − − + + − − · · · 〉,
|φ2〉 = |− + + − − + + − · · · 〉,

(3.3)
|φ3〉 = |− − + + − − + + · · · 〉,
|φ4〉 = |+ − − + + − − + · · · 〉.

The solutions are classified by the momenta correspond-
ing to the translational symmetry of the system. The or-
bital wave functions in the ground state for the momenta
k = 0,π/2,3π/2,π correspond to

|φk〉 = 1
2 (|φ1〉 + eik|φ2〉 + e2ik|φ3〉 + e3ik|φ4〉). (3.4)

In spin subspace there are two distinct (but nonorthogonal)
states ∣∣ψD

1

〉 = [1,2][3,4] . . . [N − 1,N ],∣∣ψD
2

〉 = [2,3][4,5] . . . [N,1], (3.5)

where the singlets are located on odd (even) bonds. Here, a
singlet is defined by [l,l + 1] = (|↑ ↓〉 − |↓ ↑〉)/√2.

One representative component of the ground state with the
orbital part |φ4〉 accompanied by the spin state |ψD

1 〉 is shown
in Fig. 2(a). The ground state in the k = 0 subspace is given
by the superposition

|�k=0〉
= 1

2

(|φ1〉⊗
∣∣ψD

2

〉+|φ2〉⊗
∣∣ψD

1

〉+|φ3〉⊗
∣∣ψD

2

〉+|φ4〉⊗
∣∣ψD

1

〉)

= 1√
2

( |φ1〉 + |φ3〉√
2

⊗ ∣∣ψD
2

〉 + |φ2〉 + |φ4〉√
2

⊗ ∣∣ψD
1

〉)
. (3.6)
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The state |�k=0〉 is entangled both in individual spin and
orbital subspaces, and also is characterized by SOE along
the chain. Such a many-body state, and similar states obtained
for other momenta k = ±π/2 and π , give an exact value of
the vNE, S0

vN = 1. The resulting fluctuations between these
states suppress conventional order, and the system features
finite entropy even at zero temperature, in contrast to the
naive expectation from the third law of thermodynamics. The
emergent excitations are also entangled and fundamentally
different from the individual spin or orbital ones [see Figs. 2(b)
and 2(c)].

As the orbital correlations are classical in the Ising limit,
we can determine all the phase boundaries analytically by
considering the spin interactions for various orbital config-
urations. The lower boundary between phases III (AF/AO)
and V at y = − 1

4 can be determined by comparing the
uniform state with energies of AO correlation on a bond, i.e.,
〈T z

j T z
j+1〉 = − 1

4 , with the alternating state of pairs of the same
orbitals shown in Fig. 2(a), i.e., 〈T z

j T z
j+1〉 = (−1)j /4, which

coexists with spin dimer order (spin interactions vanish for a
pair of identical orbitals). One finds the following effective
spin Hamiltonian in this case:

HDIM = 1

2

∑
j∈odd

(	Sj · 	Sj+1 + x), (3.7)

and the corresponding ground-state energy per site in the
thermodynamic limit is

E0
DIM = 1

4 (−0.75 + x). (3.8)

The dimerized phase competes with the AO order coexisting
with the 1D resonating valence-bond spin state, with energy

E0
AO = 1

2 (−0.4431 + x). (3.9)

Hence, one finds that E0
DIM < E0

AO for x > 0.136. The qua-
drupling due to spin-orbital interplay in phase V is well seen
by the calculation of the four-spin correlation function which
we define following Refs. [80,81]:

D(r) = 1

L

∑
i

[〈(	Si · 	Si+1)(	Si+r · 	Si+r+1)〉

−〈	Si · 	Si+1〉〈	Si+r · 	Si+r+1〉]. (3.10)

If y = − 1
4 , spin dimer correlations alternate and

D(r) = (−1)r
(

3
8

)2
, (3.11)

which follows from Eq. (3.10) for the alternating spin singlets
〈	Si · 	Si+r〉 = −3[1 − (−1)r ]/8. Indeed, one finds this value
(3.11) for x ∈ [0.2,0.7] and the result is robust and the same for
systems sizes L = 12 and 16 (see Fig. 3). On the contrary, for
x < 0.2 the values of D(r) decrease with increasing distance
r , and would vanish in the thermodynamic limit of L → ∞.

When y < − 1
4 , there are three competing phases with

predetermined orbital configurations (AO, DIM, or FO) and
the corresponding spin interactions given by effective spin

FIG. 3. (Color online) Dimer correlation function D(r)
[Eq. (3.10)] obtained for the anisotropic SU(2) ⊗Z2 spin-orbital
model for different values of x ∈ [0,0.7] in phases V and III and
for the ring of length: (a) L = 12 and (b) L = 16 sites. Parameters:
y = −0.25 and � = 0.

Hamiltonians:

HAO =
(

1

4
− y

) ∑
j

(	Sj · 	Sj+1 + x), (3.12)

HDIM =
(

1

4
− y

) ∑
j∈odd

(	Sj · 	Sj+1 + x)

−
(

1

4
+ y

) ∑
j∈even

(	Sj · 	Sj+1 + x), (3.13)

HFO = −
(

1

4
+ y

) ∑
j

(	Sj · 	Sj+1 + x). (3.14)

In this case, also even intersinglet bonds contribute to the
energy in the |DIM〉 state, but the spin correlations van-
ish, i.e., 〈	Sj · 	Sj+1〉 = 0. It is obvious that HAO and HFO

stand for the same (translational-invariant) spin Hamilto-
nian, and HFO will have lower ground-state energy when
x > −〈	Sj · 	Sj+1〉AF � 0.4431. The dimerized AF Heisen-
berg chain (3.13) related to spin-Peierls state cannot be
solved trivially, with the exception of the free-dimer limit
(y = −0.25) and the uniform Heisenberg limit (y = −∞)
[82]. One finds the ground-state energy per site ε∞(δ) of a
pure dimerized spin chain [83]

ε∞(δ) = 3

4

1

1 + α

(
1 + α2

8
+ α3

32
+ · · ·

)
, (3.15)

with α = (1 − δ)/(1 + δ) and δ ≡ 1/|4y| � 0.4. For δ � 0.4,

ε∞(δ) = ln 2 − (ln 2 − 1)|δ|4/3. (3.16)

In such a case, E0
DIM = y[ε∞(δ) − x]. The overwhelming

dimerized phase will persist in a range of negative values
of y, and the boundaries close at y = −∞, as is indicated by
structure factors and fidelity susceptibility.

The phase transitions in the phase diagram of Fig. 1 imply
the discontinuous changes of order parameters in first-order
quantum phase transitions. The orbital order changes from
phase II (AF/FO) to phase III (AF/AO), as shown in Ref. [50],
but the Néel order persists in both of them and manifests itself
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in the two-spin correlation 〈Sz
i S

z
i+r〉. For translational-invariant

and orthonormal linear combinations of the symmetry-broken
Néel (AF) states, ∣∣�AF

1

〉 = |↑ ↓↑↓ . . . ↑↓〉,
(3.17)∣∣�AF

2

〉 = |↓ ↑↓↑ . . . ↓↑〉,
there are spin 〈Sz

i S
z
i+r〉 = (−1)r/4 and dimer D(r) = 0 corre-

lations (for r �= 0), while for dimer states |�DIM
1 〉 and |�DIM

2 〉,
〈Sz

i S
z
i+r〉 = 0 (for r �= ±1) and D(r) �= 0 (for r �= 0) (see

Fig. 3), respectively. These results reflect the long-range nature
of the two types of order. The AF classical spin correlations
(3.17) are replaced by a power law for the AF spin S = 1

2 chain
in the thermodynamic limit

〈	Si · 	Si+r〉 ∼ (−1)r
√

ln |r|
|r| , (3.18)

which is equivalently revealed by the structure factors Szz(k)
and T zz(k) defined by Eqs. (3.1) and (3.2).

IV. ENTANGLEMENT IN THE GROUND STATES

A. Anisotropic orbital interactions (0 < � � 1)

When � = 0, there is no dynamics in the orbital sector,
and the orbital structure factor is dominated by a single mode
which follows from the Z2 symmetry [50]. This changes
when 0 < � � 1 and the quantum fluctuations in the orbital
sector contribute. In order to understand the modifications of
the phase diagram in the entire interval 0 < � � 1, we select
� = 0.5 and study the longitudinal equal-time spin/orbital

FIG. 4. (Color online) The spin Szz(k) (a), (c), and orbital T zz(k)
(b), (d) structure factors obtained for the selected points shown in the
phase diagram of the anisotropic spin-orbital SU(2) ⊗ XXZ model
(see Fig. 5): (a), (b) A, B, C, and D in phases I–IV, and (c), (d) E

and F in phases V and VI. Parameters: � = 0.5 and L = 8 sites.

structure factor, defined for a ring of length L in Eqs. (3.1)
and (3.2).

The most important change at finite � occurs for the phase
transition between phases V and III (AF/AO) which becomes
continuous for fixed y and decreasing x, with a gradual change
of spin correlations from the alternating singlets to an AF
order along the chain [50]. Here, we discuss in more detail
the intermediate case of � = 0.5. First, we address the phases
with uniform spin-orbital order. The spin structure factors have
distinct peaks at k = 0 for FM order and at k = π for AF order.
Similarly, one finds a maximum of the orbital structure factor
T zz(k) at k = 0 for FO order and at k = π for AO order. These
structure factors complement one another and one finds that
the spin correlations are somewhat weaker due to stronger spin
fluctuations, while the orbital fluctuations are moderate at this
value of � = 0.5.

The dimerized phase V is characterized by a remarkably
different behavior [see Figs. 4(c) and 4(d)]. Phase V, found
at the E point in Fig. 5, has spin dimers accompanied by an
orbital pattern with the periodicity of four sites [see Fig. 2(a)].
Spin correlations give a sharp maximum of Szz(k) at k = π as
for AF states, while two symmetric peaks of T zz(k) at k = π/2
and 3π/2 indicate quadrupling of the unit cell in the orbital
channel. When the model evolves towards the SU(2) ⊗ SU(2)
limit with increasing �, one expects also a similar phase VI
with interchanged role of spin and orbital correlations. Indeed,
this complementary phase emerges already at small � > 0 and

FIG. 5. (Color online) Phase diagram in the (x,y) plane and
spin-orbital entanglement S0

vN [Eq. (1.1)] (right scale) in different
phases (indicated by color intensity) of the anisotropic spin-orbital
SU(2) ⊗ XXZ model (2.1) with � = 0.5, obtained for a ring of
L = 8 sites. Phases I–IV correspond to FM/FO, AF/FO, AF/AO,
FF/AO order in spin-orbital sectors. Orbitals (spins) follow a
quadrupled pattern accompanied by spin (orbital) dimer correlations
in phase V (VI). Six labeled points are A = (−1,1), B = (−1, −0.5),
C = (0.5,1), D = (0.5, −0.5), E = (1,−0.5), and F = (−1,0.38):
they are used to investigate spin and orbital structure factors in
different phases (see Fig. 4). The phase boundaries, determined by
the dominant modes of structure factors are shown by solid (dashed)
lines for the first- (second-) order quantum phase transitions.
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TABLE I. The spin-orbital configurations, momenta k, the total
spin Sz, and orbital T z quantum numbers of the ground states I–VI
found for the anisotropic SU(2) ⊗ XXZ model at � < 1. All states in
these subspaces are nondegenerate (d = 1), but in case of Sz = L/2
there are L + 1 degenerate states for total S = L/2, and for T z = L/2
and � < 1 an equivalent state for − orbitals has T z = −L/2. At
� = 0, phase VI is absent and the ground-state degeneracy of phase
V changes to d = 4 corresponding to momenta k = 0, ±π/2,π .

Phase Spin state Orbital state k Sz T z

I ↑↑↑↑↑↑↑↑ + + + + + + ++ 0 L/2 L/2
II ↑↓↑↓↑↓↑↓ + + + + + + ++ 0 0 L/2
III ↑↓↑↓↑↓↑↓ + − + − + − +− 0 0 0
IV ↑↑↑↑↑↑↑↑ + − + − + − +− 0 L/2 0
V (S = 0) singlets + − − + + − +− 0 0 0
VI ↑↓↓↑↑↓↓↑ (T = 0) singlets 0 0 0

is identified by the respective structure factors shown also in
Figs. 4(c) and 4(d).

The above analysis of the structure factors demonstrates
that the phase diagram found for � = 0.5 contains six distinct
phases (see Fig. 5). The quantum phase transitions at the
border lines I-V and II-V are of first order. The phase transition
between phases III (AF/AO) and V is a first-order transition
only for � = 0, and here this transition is continuous [84]. As
described above, phase VI emerges at finite � but is still quite
narrow in the phase diagram of Fig. 5. Also the phase transition
from phase III to phase VI is continuous. We have verified that
due to the short-range nature of spin-orbital correlations, the
size L = 12 is sufficient as the phase boundaries are here
almost the same as for the ring of L = 8 sites.

The spin-orbital phases I–VI found at � > 0 are summa-
rized in Table I. Phases I–IV have polarized or alternating spin
and orbital components, combined in all possible ways into
phases: FM/FO, AF/FO, AF/AO, and FM/AO. Phases with
either Sz = L/2 or T z = L/2 (FM or FO) have of course
also degeneracy with respect to other possible values of Sz

or T z (the latter only at � = 1 when T is also a good
quantum number). In addition, there are two phases with dimer
orbital (phase V) or dimer spin (phase VI) correlations. It is
remarkable that these two phases survive in the isotropic model
at � = 1 (see Sec. IV B).

For � > 0 also phase III is characterized by finite SOE,
and it expands to higher values of y along vertical lines for
fixed x < −0.25. Indeed, the onset of entangled region in the
phase diagram of Fig. 5 moves to higher values of y with
increasing � (see Fig. 6). At � = 0.25 the entanglement
entropy S0

vN develops a narrow peak with a maximum at
y � 0.15. This maximum broadens up and moves somewhat
to the right (to higher y) when the orbital fluctuations increase
with increasing � towards the isotropic SU(2) ⊗ SU(2) model.
A sharp increase of the entropy to S0

vN = 1, visible in all the
curves shown in Fig. 6, signals the SOE in phase VI which
increases with increasing �. This large SOE can develop
because phase VI is similar to phase V: it does not break
translation invariance of the model and different spin-orbital
configurations contribute simultaneously.

To detect SOE, we employ here not only the vNE, S0
vN

[Eq. (1.1)], but also a direct measure by the spin-orbital

FIG. 6. (Color online) Spin-orbital entanglement entropy S0
vN

[Eq. (2.1)] in the ground state of the spin-orbital model (2.1) as
a function of y for selected values of �. The onset of phase VI
is detected at � > 0 by a steplike increase of entropy to S0

vN = 1.
Parameters: x = −0.5 and L = 8.

correlation function on a bond [19]

C1 ≡ 1

L

L∑
i=1

[〈(	Si · 	Si+1)( 	Ti · 	Ti+1)〉 − 〈	Si · 	Si+1〉〈 	Ti · 	Ti+1〉],
(4.1)

and we compare it with the conventional intersite spin- and
orbital correlation functions:

S1 ≡ 1

L

L∑
i=1

〈	Si · 	Si+1〉, (4.2)

T1 ≡ 1

L

L∑
i=1

〈 	Ti · 	Ti+1〉. (4.3)

The above general expressions imply averaging over the
exact (translation-invariant) ground state found from Lanczos
diagonalization of a ring of length L. While S1 [Eq. (4.2)]
and T1 [Eq. (4.3)] correlations indicate the tendency towards
particular spin and orbital order, C1 [Eq. (4.1)] quantifies
the SOE; if C1 �= 0 spin and orbital degrees of freedom are
entangled and the mean-field decoupling cannot be applied in
Eq. (2.1) as it generates systematic errors.

To gain a better insight into the nature of a phase transition
between phases II (AF/FO) and V and between V and III
(AF/AO) which occur for decreasing x at a fixed y < − 1

4 ,
we study SOE vNE S0

vN, joint spin-orbital C1 [Eq. (4.1)],
and individual spin S1 [Eq. (4.2)] and orbital T1 [Eq. (4.3)]
correlations in Fig. 7. Both S0

vN and C1 show a very similar
behavior with a maximum within phase V [see Fig. 7(a)].
The SOE is lower in phase III than in phase V, i.e., below
x � −0.25, and decreases further with decreasing x. These
two phases have rather similar spin correlations S1, but orbital
correlations T1 are similar to spin ones only within phase III
(AF/AO); above x � −0.25 they vary fast within phase V and
almost disappear (T1 � 0) near the transition point to phase II
(AF/FO) [see Fig. 7(b)].
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FIG. 7. (Color online) The onset of phase V and its gradual
change into phase III with decreasing x in the ground state of the
spin-orbital model (2.1): (a) spin-orbital entanglement entropy S0

vN

[Eq. (1.1)] and the spin-orbital correlation function C1 [Eq. (4.1)];
(b) spin S1 [Eq. (4.2)] and orbital T1 [Eq. (4.3)] correlation functions.
The onset of phase V is signaled by a steplike increase of the entropy
to S0

vN = 1. Parameters: � = 0.5, y = −0.5, and L = 8.

B. Isotropic spin-orbital SU(2) ⊗ SU(2) model

The phase diagram of the isotropic SU(2) ⊗ SU(2) model
(Fig. 8) includes the same six phases as those obtained at
� = 0.5 (Fig. 5), with spin-orbital correlations explained in
Table I. The main difference to the phase diagram at � = 0.5
is a somewhat reduced stability range of phase IV (FM/AO),
and also phase II (AF/FO), both destabilized by enhanced
spin-orbital fluctuations in and around phase III (AF/AO).
The range of entangled ground states is broad and includes

FIG. 8. (Color online) Phase diagram in the (x,y) plane and spin-
orbital entanglement S0

vN [Eq. (1.1)] (right scale) in the ground state
of the isotropic spin-orbital SU(2) ⊗ SU(2) model (2.1) with � = 1.0
obtained for a ring of L = 12 sites. Phases I–IV correspond to FM/FO,
AF/FO, AF/AO, FM/AO order in spin-orbital sectors. Orbitals (spins)
follow a quadrupled pattern accompanied by spin (orbital) dimer
correlations in phase V (VI). The phase boundaries determined by
dominant modes of structure factors, shown by solid (dashed) lines,
are of first (second) order. Inset shows the extended range of phase
VI which separates phases IV and III for −10 < x < 0.

FIG. 9. (Color online) The structure factors obtained for a spin-
orbital ring [Eq. (2.1)] of L = 8 sites in the full Hilbert space at
� = 1.0: (a) spin Szz(k) and (b) orbital T zz(k). The points (0.6, −1.0)
(filled squares) and (−1.0,0.6) (filled circles) correspond to phases V
and VI (see Fig. 8).

phase III as well as phases V and VI on its both sides. The
phase transitions from phase I where all quantum fluctuations
are absent to either phase II or IV are given by straight lines
and may be determined using mean-field approach.

It is quite unexpected that the dimerized phases V and VI
survive in the phase diagram of the isotropic SU(2) ⊗ SU(2)
model at � = 1.0 (see Fig. 8). These two phases emerge in-
between disentangled phases II and III in the case of phase V,
and similarly between phases IV and III in the case of phase
VI, and are stabilized by robust quadrupling of orbital or spin
correlations which was overlooked before [43]. This is not so
surprising as one expects that isotropic spin-orbital interactions
would lead instead to uniform phases only. In each case, the
effective exchange interaction changes sign in one (either spin
or orbital) channel which resembles the mechanism of exotic
magnetic order found in the Kugel-Khomskii model [85].

The phases V and VI emerge by the same mechanism as
phase V for the Ising orbital interactions (see Sec. III). In the
isotropic model, this phase and phase VI with complementary
spin-orbital correlations occur in a symmetric way with respect
to the x = y line (see Fig. 8). Orbital correlations in the
case of phase V (spin correlations in the case of phase VI)
change gradually towards FO (FM) order in phase II (IV) with
increasing x (y). The quadrupling of the unit cell seen in both
phases in such correlations, shown in Fig. 9, may be seen as
a precursor of this transition. Both phases are stable only in a
rather narrow range and disappear for y → −∞ or x → −∞,
respectively, as presented in the inset of Fig. 8 for phase VI.
The spin-orbital interactions and the mechanism stabilizing
these phases are different from spin-Peierls and orbital-Peierls
mechanisms in the 1D SU(2) ⊗ SU(2) spin-orbital model with
positive exchange (J = −1) [63]. We emphasize that the
present mechanism of dimerization is effective only in one
(spin or orbital) channel and thus it is also distinct from
the spin-orbital dimerization in a FM chain found at finite
temperature [86].
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FIG. 10. (Color online) Spin-orbital entanglement entropyS0
vN in

the ground state of the SU(2) ⊗ SU(2) spin-orbital model (2.1) as
a function of y for representative values of x ∈ [−2.0, −0.3]. The
onset of phase VI at decreasing y is detected by a steplike increase
of entropy at the IV-VI phase transition.

A characteristic feature of SOE in phase VI (and similar
in phase V) is a competition between the spin (orbital)
quadrupling correlations along the chain which support orbital
(spin) singlets, with the AF/AO order characteristic of phase
III (AF/AO). For x ∈ [−1.0,−0.3] the vNE S0

vN increases
discontinuously at the phase transition IV-VI, next drops
somewhat, and next increases further (see Fig. 10). It exhibits a
broad maximum, moving to lower values of y with decreasing
x. This behavior shows that two phases (VI and III) compete
in this regime. For still lower values of x, the SOE entropy
is smaller and almost constant when y decreases deeply into
phase III.

C. Entanglement in the SU(2) ⊗ SU(2) models

The ground state obtained in the present spin-orbital
SU(2) ⊗ SU(2) model for phase III (AF/AO) is distinct from
the one found for positive coupling constant, i.e., J = −1 in
Eq. (2.1). We elucidate this difference by studying both models
along the symmetry line x = y in the phase diagram. Phase I
(FM/FO) is found in the present case for x = y > 1

4 , while in
the case of positive coupling constant it becomes the ground
state for x = y < − 1

4 [61].
First, we consider SOE detected by the vNE S0

vN [Eq. (1.1)]
and by the joint spin-orbital correlation function C1 [Eq. (4.1)]
(see Fig. 11). To understand better the transition from phase
I to phase III, we consider the correlation functions along the
symmetry line x = y. Phase I with FM/FO order is disentan-
gled in both cases. At the quantum phase transition to phase III,
signaled by a rapid increase of both S0

vN and 8|C1|, we observe
that the entropy reaches the highest value at the onset of phase
III, and then decreases when x decreases and one moves deeper
into the entangled phase III. In the present model (2.1) one finds
C1 > 0 which is imposed by the negative coupling constant.
The entropy maximum and also the maximum of 8C1 are sharp
indeed and signal the onset of phase III [see Fig. 11(a)]. The
model with a positive coupling constant behaves differently;
here the joint spin-orbital correlations are negative C1 < 0,
and both S0

vN and 8|C1| have flat maxima in a range of x

FIG. 11. (Color online) von Neumann entropy S0
vN [Eq. (1.1)]

and joint spin-orbital bond correlation C1 [Eq. (4.1)] as obtained
in the SU(2) ⊗ SU(2) model (2.1) along the symmetry x = y line in
the phase diagram with the ring of L = 8 sites for (a) the model with
negative coupling −J = −1 [43], and (b) the model with positive
coupling −J = 1 constant [56].

and only at x � 0.5 both drop rapidly. This large SOE for
x ∈ [−0.25,0.5] indicates a spin-orbital liquid phase which
forms near the SU(4) point x = y = 1

4 [61]. Only at x > 0.5
the strong spin-orbital fluctuations are weakened when phase
III is approached and SOE decreases.

A special feature of the present SU(2) ⊗ SU(2) spin-orbital
model is a very distinct behavior along the I-III phase transition
line x + y = 1

2 (see Fig. 8). The ground-state energy of
phase I (FM/FO) in which quantum fluctuations are absent,
E0 = −J (1/4 + x)2, is found by taking exact classical values
of spin (4.2) and orbital (4.3) correlations on the bonds
S1 = T1 = 1

4 . The energy decreases when the transition at
x = 1

4 is approached. On the contrary, coming from the
other side it is not allowed to assume classical correlations

FIG. 12. (Color online) Spin S1 [Eq. (4.2)] and orbital T1

[Eq. (4.3)] (T1 = S1) bond correlations as obtained in the
SU(2) ⊗ SU(2) model (2.1) along the symmetry line x = y in the
phase diagram with the ring of L = 8 sites for (a) the model with
negative exchange J = 1 [43], and (b) the model with positive
exchange J = −1 [56].
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FIG. 13. (Color online) von Neumann entropy S0
vN [Eq. (1.1)]

obtained in the isotropic SU(2) ⊗ SU(2) model (2.1) at the maximum
seen in Fig. 11(a) at x = y = 0.249 (squares) and at J = −1 at
x = y = −0.249 (circles), i.e., at the onset of phase III, both for
rings of L = 4,6, . . . ,12 sites and the linear fits to the data (dashed
lines).

S1 = T1 = − 1
4 , as then the Hamiltonian would vanish at

the transition. In fact, the energy E0 = −J/4 can be also
obtained mainly from enhanced joint spin-orbital correlations
〈(	Sj · 	Sj+1)( 	Tj · 	Tj+1)〉 = 5

16 and C1 = 1
4 (see Fig. 11). At the

phase transition, the spin and orbital correlations are very weak,
i.e., S1 = T1 � − 1

8 . This is a very peculiar situation as joint
spin-orbital correlations cannot be factorized and damp to a
large extent individual spin and orbital correlations.

A qualitatively different nature of the SOE in both
SU(2) ⊗ SU(2) models is also captured by its effect on the
individual spin (orbital) correlations (see Fig. 12). In the
present model (2.1) with J = 1, C1 > 0 damps individual
spin and orbital fluctuations near the quantum phase transition
stronger than in the case of positive coupling (J = −1)
[cf. Figs. 12(a) and 12(b)]. However, the joint fluctuations
C1 decrease fast when J = 1, while they are robust in the
spin-liquid phase for J = −1 when x ∈ [0.25,0.50). At x = 0
one finds S1 = T1 � −0.37, already much below the value of
S1 = T1 � −0.22 found for J = −1. The spin S1 and orbital
T1 correlations become similar in both phases deeply within
phase III, as found by comparing these values at x = −1 for
J = 1 and at x = 1 for J = −1. Here, SOE is weak because
spins and orbitals fluctuate almost independently.

The sharp peak of S0
vN found near the phase transition

for J = 1 is rather unusual [see Fig. 11(a)]. In this regime
of parameters, the ground-state energy E0 is lowered by
positive joint spin-orbital correlations C1, while negative
S1 = T1 � − 1

8 [Fig. 12(a)] increases it somewhat. Large vNE
S0

vN is found near the phase transition for rings of even length,
starting from S0

vN � 1 for L = 4. It is remarkable that the vNE
at the maximum scales with system size L (see Fig. 13). This
behavior is unique and proves that SOE which takes place at
every bond is extensive and extends here over the entire ring.
The model with positive coupling constant J = −1 has also a
similar linear scaling S0

vN ∝ L, but the entropy is smaller and
systematic fluctuations between the rings of length of 4n and
4n + 2 sites, seen in Fig. 13, are distinct and indicate a crucial
role played here by global SU(4) singlets.

V. ENTANGLED ELEMENTARY
EXCITATIONS: FM/FO ORDER

A. Analytic approach

When the ground state is disentangled, SOE is generated
locally in excited states [87] and would not scale linearly with
system size. Indeed, we analyzed the low-energy excitations
of the disentangled FM/FO phase in the 1D SU(2) ⊗ SU(2)
spin-orbital model in Ref. [43] and found a much weaker
dependence on system size. We investigated the SOE for spin-
orbital bound states (BSs) and spin-orbital exciton (SOEX)
state and found a logarithmic scaling, while the entropy
saturates for other separable (trivial) spin-orbital excitations.
One finds that the vNE is controlled by the spin-orbital
correlation length ξ and decays logarithmically with ring
length L.

Here, we consider again the FM/FO disentangled
ground state |0〉, obtained for the anisotropic spin-orbital
SU(2) ⊗ XXZ model with the exactly known ground-state
energy E0:

H |0〉 = E0|0〉. (5.1)

Using the equation-of-motion method, one finds spin
(magnon) excitations with dispersion

ωS(Q) = (
1
4 + y

)
(1 − cos Q), (5.2)

and orbital (orbiton) excitations [88]

ωT (Q) = (
1
4 + x

)
(1 − � cos Q). (5.3)

The spin-orbital continuum is given by

�(Q,q) = ωS

(
Q

2
− q

)
+ ωT

(
Q

2
+ q

)
. (5.4)

Next, we consider the propagation of a magnon-orbiton
pair excitation along the FM/FO chain, by exciting simul-
taneously a single spin and a single orbital. The translation
symmetry imposes that total momentum Q = 2mπ/L (for
m = 0, . . . ,L − 1) is conserved during scattering. The scat-
tering of magnon and orbiton with initial (final) momenta
{Q

2 − q,Q

2 + q} ({Q

2 − q ′,Q

2 + q ′}) and the total momentum
Q is represented by the Green’s function [89]

G(Q,ω) = 1

L

∑
q,q ′

〈〈
S+

Q

2 −q ′T
+
Q

2 +q ′

∣∣∣∣S−
Q

2 −q
T −

Q

2 +q

〉〉
(5.5)

for a combined spin (S−
Q

2 −q
) and orbital (T −

Q

2 +q
) excitation. The

analytical form reads as

G(Q,ω) = G0(Q,ω) + �(Q,ω), (5.6)

�(Q,ω) = −2(1 + �) + (1 − �2)Fss(Q,ω)

4[1 + �(Q,ω)]
H 2

cc(Q,ω)

− 2(1 − �) + (1 − �2)Fcc(Q,ω)

4[1 + �(Q,ω)]
H 2

ss(Q,ω)

+ (1 − �2)Fsc(Q,ω)

2[1 + �(Q,ω)]
Hcc(Q,ω) Hss(Q,ω), (5.7)
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where the noninteracting Green’s function is given by

G0(Q,ω) = 1

L

∑
q

G0
qq(Q,ω), (5.8)

G0
qq(Q,ω) = 1

ω − �(Q,q)
, (5.9)

and

Hcc(Q,ω) = 1

L

∑
q

(
cos

Q

2
− cos q

)
G0

qq(Q,ω), (5.10)

Hss(Q,ω) = 1

L

∑
q

(
sin

Q

2
− sin q

)
G0

qq(Q,ω). (5.11)

One finds the denominator in �(Q,ω) [Eq. (5.7)]:

1 + �(Q,ω)

= [
1 + 1

2 (1 + �)Fcc(Q,ω)
][

1 + 1
2 (1 − �)Fss(Q,ω)

]
− 1

4 (1 − �2)F 2
sc(Q,ω) , (5.12)

with

Fcc(Q,ω) = 1

L

∑
q

(
cos Q

2 − cos q
)2

ω − �(Q,q)
, (5.13)

Fss(Q,ω) = 1

L

∑
q

(
sin Q

2 − sin q
)2

ω − �(Q,q)
, (5.14)

Fsc(Q,ω) = 1

L

∑
q

(
sin Q

2 − sin q
)(

cos Q

2 − cos q
)

ω − �(Q,q)
. (5.15)

Here, we define a phase δ ∈ [0,2π ] which quantifies the
difference of dynamic properties of magnon and orbiton
excitations throughout the Brillouin zone in the form

tan δ = (4y + 1) − (4x + 1)�

(4y + 1) + (4x + 1)�
tan

(
Q

2

)
. (5.16)

For the symmetry line x = y, Eq. (5.16) greatly simplifies
for the isotropic model at � = 1 and gives δ(Q) = 0, which
has been studied in Ref. [43]. Also, a quantity describes the
position relative to the continuum is given by

a(Q,ω) = ω − (
x + y + 1

2

)
b(Q)

, (5.17)

with

b(Q) = [(
x + 1

4

)2
�2 + (

y + 1
4

)2

+2�
(
x + 1

4

)(
y + 1

4

)
cos Q

]1/2
. (5.18)

The excitations at the top and at the bottom of the continuum
correspond to a(Q,ω) = 1 and −1, respectively. In the
noninteracting case, we have the imaginary and real parts of
Eq. (5.6):

ImG0(Q,ω) = − θ [1 − |a(Q,ω)|]
b(Q)

√
1 − a2(Q,ω)

, (5.19)

ReG0(Q,ω) = θ [a(Q,ω) − 1]

b(Q)
√

a2(Q,ω) − 1
− θ [−1 − a(Q,ω)]

b(Q)
√

a2(Q,ω) − 1
,

(5.20)

where θ (x) is Heaviside step function whose value is zero
for negative argument and 1 for non-negative argument. The
frequency dependence of the imaginary part exhibits square-
root singularities in Eq. (5.19) at the bottom and at the top of
the continuum [90].

B. Numerical studies

We note that the inclusion of the spin-orbital attraction
will smear out the singularities by Eq. (5.6) since a more
pronounced divergence of the numerator than the denominator
occurs when a(Q,ω) → ±1, and they cancel each other,
i.e., ImG(Q,ω) = 0. Furthermore, the poles of G(Q,ω) are
determined by

1 + �(Q,ω) = 0. (5.21)

Our analysis shows that for given Q, most of the real
solutions of Eq. (5.21) are interspersed within the con-
tinuum, but these modes are unstable to two free waves.
However, a small number of solutions may lie well below
the continuum. To investigate the spectra, we begin with the
asymmetric SU(2) ⊗ XXZ model. As it is shown in Fig. 14,
the attractive interactions shift spin-orbital BSs outside the
continuum [91–93]. The binding energy approaches zero for
the isotropic SU(2) ⊗ SU(2) model, but is finite for anisotropic
SU(2) ⊗ XXZ model due to a gap in the orbital excitation
spectrum, and the small-q behavior of the binding energy
reveals that the BSs appear for arbitrarily small wave number.

The BSs can be also obtained by the equation-of-motion
method for a spin-orbital joint excitation S−

mT −
m+l|0〉. The

collective mode follows from Eq. (5.21). Such a collective
spin-orbital excitation (bound state) involves spin and orbital
flips at many sites and can be written as follows:

|�(Q)〉 = 1√
L

∑
m,l

al(Q)eiQmS−
mT −

m+l|0〉

=
∑

q

aqS
−
Q

2 −q
T −

Q

2 +q
|0〉, (5.22)

with the coefficients

aq = 1√
L

∑
l

al(Q) e−i( Q

2 −q)l . (5.23)

The correlation length ξ ≡ ∑
l l|al|2 defines the average size

of spin-orbital BSs or excitons and is much smaller than the
system size, i.e., 0 < ξ � L. The correlation length becomes
extensive for a trivial continuum state, as shown in Fig. 15. The
analytic solution of this equation is tedious but straightforward.
The dispersion of the collective excitation ωBS(Q) can be
analyzed in a simple way at some special points, including
Q = 0 and π .

In the isotropic model (at � = 1), Eq. (5.21) reduces to
1 + Fcc(Q,ω) = 0. In this case, there is at most one solution
for every Q [43]. Nevertheless, the anisotropic orbital coupling
will induce more branches in part of Brillouin zone (see
Fig. 14). When � < 1 and Q = 0, Fsc(0,ω) = 0 and then
Eq. (5.21) reduces to

1 + 1
2 (1 + �)Fcc(0,ω) = 0 (5.24)
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FIG. 14. (Color online) (a) Excitation spectra of a ring of L = 40
sites for the spin-orbital SU(2) ⊗ XXZ model with � = 0.5 as
function of momentum Q at (a) x = y = 1

4 , (b) x = 0.375,
y = 0.125, and (c) x = 0.27, y = 0.23. The dotted (blue), dashed
(green) lines inside the spin-orbital continuum �(Q,q) denote the
orbital and SOEX excitations, i.e., ωT (Q) and ωSOEX(Q), respectively,
that are degenerate. The (red) solid lines show spin excitations.

or

1 + 1
2 (1 − �)Fss(0,ω) = 0. (5.25)

The solution that follows from Eq. (5.24) is given by

ωBS,1(0) = (α + 3β)2 −
√

(α − 17β)(α − β)3

8β

+ x(1 − �) − 3β + 1

2
, (5.26)

FIG. 15. (Color online) The correlation length ξ for increasing
momentum Q as obtained for a ring of L = 80 sites in the anisotropic
SU(2) ⊗ XXZ model with � = 0.5.

where α = (�x + y), β = (1 + �)/4. The instability of such
a mode given by ωBS,1(0) = 0 sets up the threshold of the
FM/FO state separating it from the AF/AO state (phase III)
[43,92]. Moreover, the solution for Eq. (5.25) is given by

ωBS,2(0) = x + y − (α + β)2

(1 − �)
+ β. (5.27)

We find that when α < (1 − 3�)/4, both ωBS,1(0) and ωBS,2(0)
exist, while only ωBS,1(0) survives when (1 + �)/4 > α >

(1 − 3�)/4. Finally, for α > (1 + �)/4 no bound states exist.
When � < 1 and Q = π , one finds that Fsc(π,ω) = 0.

Analogously, Eq. (5.21) has two solutions ωBS,1(π ) and
ωBS,2(π ) when −(3 + �)/4 < y − �x < (1 − �)/4, with ex-
plicit expressions for their energies:

ωBS,1(π ) = x + y + 1

2
− 1 + �

4

− [
(
y + 1

4

) − �
(
x + 1

4

)
]2

1 + �
, (5.28)

ωBS,2(π ) = x + y + 1

2

+ζ − (2γ − 1 − �)
3
2
√

2γ − 9 + 9�

8(� − 1)
, (5.29)

with

γ = (y + 1/4) − �(x + 1/4),
(5.30)

ζ = 3 + 4γ − 4γ 2 − 6� − 4γ� + 3�2.

When y − �x < −(3 + �)/4 and (1 − �)/4 < y − �x <

(3� + 1)/4, only one ωBS,1(π ) solution exists. In case of
y − �x = (1 − �)/4, ωBS,2(π ) merges with lower boundary
of the continuum.

C. Propagating spin-orbital exciton states

Especially at the SU(4)-symmetric point, i.e., at x = y = 1
4 ,

spinon and orbiton are strongly coupled to form a joint
SOEX state inside the spin-orbital continuum across the
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FIG. 16. (Color online) Excitation spectrum for the spin-orbital
SU(2) ⊗Z2 model (2.1) on a ring of L = 40 sites. The dotted (blue)
and dashed-dotted (gray) lines indicate the orbital excitation ωT (Q)
and the lower boundary of the continuum �(Q,q), ωc(Q); both
are degenerate. The dashed (green) and solid (red) lines denote the
SOEX excitations ωSOEX(Q) and spin excitations ωS(Q). Parameters:
� = 0.0, x = 0.375, and y = 0.125.

whole Brillouin zone. Usually, such an elementary spin-orbital
excitation in the continuum is unstable and decays into a
spinon and an orbiton [38]. However, it is surprising that
such a SOEX state propagates here as an undamped onsite
spin-orbital excitation [88], e.g., S−

l T −
l |0〉 at site l, within

the spin-orbital continuum with ξ = 0 [see Eq. (5.23)]. It is
straightforward to derive

[H,S−
l T −

l ]|0〉 = [Cl(x,y) + Dl(x,y)]|0〉, (5.31)

where

Cl(x,y) = (x + y)S−
l T −

l − �

4

(
S−

l−1T
−
l−1 + S−

l+1T
−
l+1

)
,

Dl(x,y) = − 1
2

[
�

(
x − 1

4

)(
S−

l T −
l−1 + S−

l T −
l+1

)

+
(

y − 1

4

)(
S−

l−1T
−
l + S−

l+1T
−
l

)]
. (5.32)

The dissipative term Dl(x,y) vanishes when x = y = 1
4 .

Consequently, the dispersion of the SOEX state is given by

ωSOEX(Q) = 1
2 (1 − � cos Q). (5.33)

The SOEX state for x = 1
4 is degenerate with the or-

bital wave excitation [see Eq. (5.3) and Fig. 14(a)]. When
� = 1 and x = y > 0.25, there is a quasi-SOEX state inside
the spin-orbital continuum for Q < π , with ξ < 1. When
x �= y, the residual signal of the SOEX state denoted by finite
ξ vanishes and the BS ωBS,2(π ) appears. The smaller the �

is, the more values of Q give ωBS,2(Q). There is no BS at
Q = π for y − �x > (3� + 1)/4. Furthermore, away from
the symmetric point, the SOEX will acquire a finite linewidth
due to residual interactions into magnon-orbiton pairs

� = Im{G−1(Q,ω)}. (5.34)

The exciton spectral weight can be calculated from the self-
energy �(Q,ω):

zQ =
[

1 −
(

∂�(Q,ω)

∂ω

)]−1
∣∣∣∣∣
ωSOEX(Q)

, (5.35)

where the SOEX energy is given by by the pole

ωSOEX(Q) = Re{G−1(Q,ω)}. (5.36)

If �/[ω − ωSOEX(Q)]2 → 0, the exciton is stable. The decay
rate of the SOEX increases with growing x > 1

4 and also for
decreasing momenta Q, and they coincide at � = 0.

In the limit of Ising orbital interactions (� = 0), the
orbital part becomes classical and orbitons are dispersionless,
indicating localized orbital excitations (see Fig. 16). We find
that two BSs, ωBS,1(0) and ωBS,2(0), exist when y < 1

4 , and
there are no BSs otherwise. In contrast, at Q = π one finds two
solutions, ωBS,1(π ) and ωBS,2(π ), when − 1

4 < y < 1
4 and no

BS is found for y > 1
4 . In Fig. 16, both BSs, ωBS,1 and ωBS,2,

are undamped. In this case, ωT (Q) = 1
4 + x and is degenerate

with the lower boundary of the continuum ωc(Q) = 1
4 + x.

Moreover, ωSOEX(Q) = x + y, and especially when
x = y = 1

4 , these excitations coincide. In this case, all
excitations are dispersionless (see Fig. 16). The spin-orbital
BS in Fig. 16 appears below the bottom of the spin-orbital
continuum and is stabilized by its binding energy.

VI. VON NEUMANN ENTROPY SPECTRA

A. Spectra in the FM/FO phase

To investigate the degree of entanglement of spin-orbital
excited states, we introduce the vNE spectral function in the
Lehmann representation

SvN(Q,ω) = −
∑

n

Tr
{
ρ

(μ)
S log2 ρ

(μ)
S

}
δ{ω − ωn(Q)}, (6.1)

where we use a shorthand notation (μ) = (Q,ωn) for momen-
tum Q and excitation energy ω, and

ρ
(n)
S = TrT |�n(Q)〉〈�n(Q)| (6.2)

is the spin (S) density matrix obtained by tracing over the
orbital (T ) degrees of freedom. In Fig. 17, we present the
analytic results for the vNE spectral function when � = 0.5,
x = 0.375, and y = 0.125. The parity symmetry is broken at
x �= y and � �= 1. The even and odd excitations show diverse
behavior of their entanglement, as is displayed in Fig. 17.
Inspection of the vNE spectra shows that the entanglement
reaches a local maximum at the BSs and SOEX states, and all
these states have short-range correlation length ξ .

We have derived an asymptotic form of the vNE as a
function of ξ [43]:

SvN � log2

{
L

(1 + ξ )

}
. (6.3)

One finds the asymptotic logarithmic scaling of vNE of
spin-orbital BSs and SOEX state whose magnon-orbitons
correlation length is short range, and the vNE is given by

SvN = log2 L + c0. (6.4)
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FIG. 17. (Color online) The vNE spectral function SvN(Q,ω)
[Eq. (6.1)] for the anisotropic spin-orbital SU(2) ⊗ XXZ model (2.1)
with � = 0.5 on a ring of L = 160 sites [see Fig. 14(b)] obtained
for different momenta Q � 0.8π , and for (a) even excitations, and
(b) odd excitations. Isolated vertical lines below the continuum
indicate the BS, with dispersion given by the dashed (red) line.
Parameters: x = 0.375, y = 0.125.

In particular, c0 = 0 for the SOEX state and c0 < 0 otherwise.
Such relation is displayed in Fig. 18. Figure 15 implies that
ωBS,1 are always stable for all momenta while ωBS,2 are
undamped for large momenta.

When both x and y are away from 1
4 , the SOEX state is

unstable and decays into a spinon and an orbiton. In this case,
the correlation length ξ becomes extensive. We have verified
that the scaling is entirely different in such a case and the
entropy of the SOEX scales instead as a power law

SvN = c1

L
+ c0. (6.5)

The vNE saturates in the thermodynamic limit.

B. RIXS spectral functions in the FM/FO state

The entanglement spectral function SvN(Q,ω) has a similar
form as any other dynamical spin or charge correlation
function. There is, however, an important difference: As there
is no direct probe for the vNE of an arbitrary state, the SOE

FIG. 18. (Color online) Scaling behavior of the entanglement
entropy SvN of the spin-orbital BSs at Q = 0.8π (points) for
x = 0.375, y = 0.125, and for (a) � = 0.5 and (b) � = 0. Lines rep-
resent logarithmic fits to Eq. (6.4) with (a) c0 = −0.421 and −0.842;
(b) c0 = −0.368 and −1.122.

spectra can be calculated but cannot be measured directly. On
the other hand, we have shown before [43] that the intensity
distribution of certain RIXS spectra of spin-orbital excitations
in fact probe qualitatively SOE.

We introduce the spectral function of the coupled spin-
orbital excitations at distance l:

Al(Q,ω) = 1

π
lim
η→0

Im〈0|�(l)†
Q

1

ω + E0 − H − iη
�

(l)
Q |0〉.

(6.6)
Here,

�
(0)
Q = 1√

L

∑
j

eiQjS−
j T −

j (6.7)

is the local operator for an onsite joint spin-orbital excitation
measured in RIXS [57–59]. We employ as well the even- and
odd-parity operators

�
(1±)
Q = 1√

2L

∑
j

eiQj (S−
j+1 ± S−

j−1)T −
j , (6.8)
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FIG. 19. (Color online) The spectral function of the onsite spin-
orbital excitation A0(Q,ω) for the anisotropic SU(2) ⊗ XXZ model
with � = 0.5, and for (a) x = 0.25, y = 0.25, (b) x = 0.5, y = 0.5,
and (c) x = 0.375, y = 0.125. In each panel, the momenta Q

range from π/10 (bottom) to 9π/10 (top); the peak broadening is
η = 0.001. The red dotted (green dashed) lines mark the positions of
BSs (SOEX) states. Gray dashed-dotted line signals the onset of the
continuum.

which serve to probe the nearest-neighbor spin-orbital excita-
tions.

Intuitively, the onsite spectral function A0(Q,ω) highlights
the SOEX state. It is found that both ωSOEX(Q) and ωBS(Q) are
solutions of Eq. (5.21) when x = y = 1

4 . However, the weight
of the BS is here zero. Now, the spectral function is given by

A0(Q,ω) = δ{ω − ωSOEX(Q)}, (6.9)

which is confirmed in Fig. 19(a). As the point (x,y) moves
away from the symmetric point, i.e., x = y = 1

4 , the BSs
gain spectral weight which decreases with momentum Q.
The spectral weight vanishes at Q = π accompanying a

FIG. 20. (Color online) The spectral function of the spin-orbital
excitation at nearest neighbors A1+(Q,ω) with even parity for the
anisotropic SU(2) ⊗ XXZ model with � = 0.5, and for (a) x = 0.25,
y = 0.25, (b) x = 0.5, y = 0.5, and (c) x = 0.375, y = 0.125. In
each panel, the momenta Q range from π/10 (bottom) to 9π/10 (top);
the peak broadening is η = 0.001. The red dotted (green dashed) lines
mark the positions of BSs (SOEX) states. Gray dashed-dotted line
signals the onset of the continuum.

FIG. 21. (Color online) The spectral function of the spin-orbital
excitation at nearest neighbors A1+(Q,ω) with odd parity for the
anisotropic SU(2) ⊗ XXZ model with � = 0.5, and for (a) x = 0.25,
y = 0.25, (b) x = 0.5, y = 0.5, and (c) x = 0.375, y = 0.125. In
each panel, the momenta Q range from π/10 (bottom) to 9π/10 (top);
the peak broadening is η = 0.001. The red dotted (green dashed) lines
mark the positions of BSs (SOEX) states. Gray dashed-dotted line
signals the onset of the continuum.

square-root singularity at the lower bound of the continuum
[see Fig. 19(b)]. The δ peak turns into a broad peak. A
difference between x and y induces a second branch of BSs
and it gains larger spectral weight at large momenta than the
first BS [see Fig. 19(c)]. Altogether, the evolution of spectral
weight is similar to that of the correlation length in Fig. 15.

The BSs can be captured also by the spectral functions for
the nearest-neighbor excitations (see Figs. 20 and 21). With
increasing momentum Q, the spectral weight of even-parity
excitation A1+(Q,ω) at the first BS decreases (see Fig. 20),
while the spectral weight of odd-parity excitation A1−(Q,ω)
rises (see Fig. 21). A1+(Q,ω) reaches its valley for quasi-
SOEX states, but no such feature could be found in A1−(Q,ω).

VII. DISCUSSION AND CONCLUSIONS

Motivated by the discovery of new Majumdar-Ghosh–
type valence-bond spin-singlet phases triggered by orbital
correlations, we have studied the spin-orbital entanglement
(SOE) in the one-dimensional (1D) anisotropic SU(2) ⊗ XXZ
spin-orbital model with the negative exchange interaction. The
asymmetry between spin and orbital degrees of freedom yields
a better insight into the phase diagram and the mechanisms
responsible for the different types of order observed for this
system. In addition to the four uniform phases I–IV, our
study demonstrates that a gapful phase V exists in case of
classical Ising orbital interactions, i.e., in the SU(2) ⊗Z2

model. It is characterized by quadrupling of the unit cell seen
as a maximum of the orbital structure factor at k = π/2. For
y = − 1

4 this provides a perfect dimer structure of spin singlets
in the whole region of stability of this phase, where the dimer
spin correlations D(r) develop and uncover long-range dimer
order. The dimer phase V is quite robust and survives when the
orbital quantum fluctuations at � > 0 are taken into account.

The phase diagram is still richer at finite � > 0, when
quantum orbital fluctuations develop and induce an orbital
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dimer phase VI, with a complementary role of spin and orbital
correlations to phase V. The emergence of the nonuniform
phase V is a result of the joint interaction between spin
fluctuation and orbital degrees of freedom, and thus phase
V carries finite SOE. The orbital fluctuations enhance the
SOE in ground state near the III/V phase transition and lead
to phase VI when the {x,y} parameters are interchanged.
We also anticipate that these dimer phases may survive in
higher dimensions. In fact, the Lieb-Schultz-Mattis theorem
is applicable to the present model for arbitrary x and y and
nonzero �, where a finite gap exists above these degenerate
ground states. Both phases V and VI are gapped phases with
alternating spin and orbital singlets, respectively. As we have
shown, the phase boundaries can be captured by SOE and
fidelity susceptibility. The phase transition between phases III
and V is a first-order transition in the � = 0 case, and the
transition changes to continuous when � > 0.

An important consequence of finite SOE in the ground
state is that it invalidates mean-field decoupling of spin and
orbital degrees of freedom, as this would imply a spin-
orbital product ground state. A similar restriction applies
to the entangled elementary excitations in the disentangled
ferromagnetic phase with ferro-orbital order in spin-orbital
systems which were analyzed here with the help of the von
Neumann entropy spectral function. Spin-orbital excitations
are highlighted by nontrivial SOE, especially by logarithmic
scaling of SOE in this phase.

A priori, the SOE makes it necessary to treat the eigenstates
of a given model exactly. In fact, since a mean-field decoupling
shields the SOE, it fails to describe elementary excitations even
qualitatively correctly in a number of spin-orbital models.
In antiferromagnetic ground states with ferro-orbital order
it was demonstrated both in theory [37] and experiment
[38] that the spin-orbital excitation fractionalizes into freely
propagating spinon and orbiton, giving rise to spin-orbital
separation under specific condition. The SOE in the spin-
orbital separation remains unclear. The low-lying excitations
in phases II (AF/FO) and III (AF/AO) are spin waves with
vanishing SOE, corresponding to a two-spinon continuum of
an antiferromagnetic spin chain. The low-lying excitation in
phases V and VI corresponds to spin-orbital excitation, as
shown in Figs. 2(b) and 2(c). The problem of the SOE in
elementary excitations in other phases remains a challenge for
future studies.

Summarizing, we have shown that the anisotropic
SU(2) ⊗ XXZ spin-orbital model with negative exchange cou-
pling has remarkably different behavior and phase diagrams
from the well-known SU(2) ⊗ SU(2) model with positive
exchange coupling. While the spin-orbital liquid phase is
absent in the former case, we have found that the joint
ferromagnetic/ferro-orbital fluctuations are surprisingly strong
at the quantum phase transition to the antiferromagnetic spin
order which gives even stronger SOE than that established for
the 1D isotropic SU(2) ⊗ SU(2)model with positive exchange
coupling.
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APPENDIX: PHASE DIAGRAMS FOR
THE TWO-SITE MODEL

To understand better the phase boundaries in the anisotropic
SU(2) ⊗ XXZ spin-orbital model with negative exchange
coupling (2.1), we present here an exact solution for the system
of L = 2 sites [91]:

H12 = −J (	S1 · 	S2 + x)

[
�

2
(T +

1 T −
2 + T −

1 T +
2 ) + T z

1 T z
2 + y

]
.

(A1)

Again, {x,y} are the parameters, and 0 � � � 1 interpolates
between the Ising Z2 (� = 0) and Heisenberg SU(2) (� = 1)
symmetry. The orbital interaction with XXZ symmetry can be
exactly diagonalized and one finds four eigenstates: | + +〉,
| − −〉, (| + −〉 + | − +〉)/√2, (| + −〉 − | − +〉)/√2,
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TABLE II. The spin-orbital configuration for the model (A1),
with phases I–IV defined by distinct spin S and orbital state as as
obtained at 0 < � < 1. The lowest energy E0/J has degeneracy
d and becomes the ground state at the respective values of {x,y}
parameters (Fig. 22). At � = 0, the degeneracies of phases III and
IV change to 2 and 6 for the Z2 ⊗ Z2 symmetry, while at � = 1 the
degeneracies for the ground states I–IV are 9, 3, 1, 3 and follow from
the SU(2) ⊗ SU(2) symmetry.

Phase S Orbital states E0/J d

I 1 |++〉, |−−〉 −( 1
4 + x)( 1

4 + y) 6

II 0 |++〉, |−−〉 −(− 3
4 + x)( 1

4 + y) 2

III 0 1√
2
(|+−〉 − |−+〉) (− 3

4 + x)( 1
4 + �

2 − y) 1

IV 1 1√
2
(|+−〉 − |−+〉) ( 1

4 + x)( 1
4 + �

2 − y) 3

corresponding to eigenvalues 1
4 , 1

4 , �/2 − 1
4 , −�/2 − 1

4 ,
respectively. At � = 0, we recover doubly degenerate
configurations from the latter two, while at � = 1 we recover
a triplet T = 1 from the first three. In any case, the third
component of the triplet (| + −〉 + | − +〉)/√2 is always an
entangled excited state with the present choice of parameters,
while the orbital singlet (| + −〉 − | − +〉)/√2 is an entangled
ground state for some parameters.

The spin part is classified as a triplet S = 1 or a singlet
S = 0, and these states are accompanied by the orbital states

described above. This gives the states I–IV in Table II, and
one of them is the ground state for any point in the (x,y)
plane. All phase transitions are first order, with a change of
spin or orbital state. The phases II and IV are symmetric for
� = 1, and the transition between I and III occurs along the
x + y = 1

2 line [43]. At � = 0, phase IV exists for y > 1
4

while phase II only for x > 3
4 [see Fig. 22(a)]. This reflects the

essential difference between the orbital configurations in the
Ising limit and the quantum spin states. Note that spin singlet
S = 0 is an entangled state, but the larger Hilbert space gives no
spin-orbital entanglement in any phase. Thus, the total energies
and the phase diagram are easily deduced (see Fig. 22).

From the comparison of the energies E0 of phases III
and IV (Table II), one can see that the boundary between
III and IV, given by the straight line y = 1

4 + �/2, moves
upwards with increasing � [see Fig. 22(b)]. Accordingly, the
phase boundary between phases I and III is also modified.
The interplay between spins and orbitals develops and leads
to interesting consequences of entanglement for rings with
L � 4. Remarkably, the trivial phase diagram found for
Ising-Ising interactions for L = 2 sites (with II-III and IV-III
transition lines at x = 1

4 and y = 1
4 , similar to the diagrams in

Fig. 22) is the same for the Z2 ⊗ Z2 spin-orbital model in the
thermodynamic limit

HZ2⊗Z2 = −J
∑

j

(
Sz

jS
z
j+1 + x

)(
T z

j T z
j+1 + y

)
. (A2)
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