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Boosting domain wall propagation by notches
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We report a counterintuitive finding that notches in an otherwise homogeneous magnetic nanowire can boost
current-induced domain wall (DW) propagation. DW motion in notch-modulated wires can be classified into
three phases: (1) A DW is pinned around a notch when the current density is below the depinning current density.
(2) DW propagation velocity is boosted by notches above the depinning current density and when nonadiabatic
spin-transfer torque strength β is smaller than the Gilbert damping constant α. The boost can be multifold.
(3) DW propagation velocity is hindered when β > α. The results are explained by using the Thiele equation.
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I. INTRODUCTION

Magnetic domain wall (DW) motion along a nanowire
underpins many proposals of spintronic devices [1,2]. High
DW propagation velocity is obviously important because it
determines the device speed. In current-driven DW propaga-
tion, many efforts have been devoted to high DW velocity and
low current density in order to optimize device performance.
The issue of whether notches can enhance current-induced
DW propagation is investigated here.

Traditionally, notches are used to locate DW positions
[1–4]. Common wisdom expects notches to strengthen DW
pinning and to hinder DW motion. Indeed, in the field-driven
DW propagation, intentionally created roughness slows down
DW propagation although they can increase the Walker
breakdown field [5]. Unlike the energy-dissipation mechanism
of field-induced DW motion [6], spin-transfer torque (STT)
[7–10] is the driven force behind the current-driven DW
motion. The torque consists of an adiabatic STT and a
much smaller nonadiabatic STT [9,10]. In the absence of the
nonadiabatic STT, there exists an intrinsic pinning even in a
homogeneous wire, below which a sustainable DW motion is
not possible [11,12]. Interestingly, there are indications [13]
that the depinning current density of a DW trapped in a notch
is smaller than the intrinsic threshold current density in the
absence of the nonadiabatic STT. Although there is no intrinsic
pinning [1,10] in the presence of a nonadiabatic STT, it is
interesting to ask whether notches can boost DW propagation
in the presence of both adiabatic STT and nonadiabatic STT.

In this paper, we numerically study how DW propagates
along notch-modulated nanowires. Three phases are identified:
pinning phase when current density is below depinning current
density ud , boosting phase, and hindering phase when the
current density is above ud and the nonadiabatic STT strength
β is smaller or larger than the Gilbert damping constant α.
The average DW velocity in boosting and hindering phases is
respectively higher and lower than that in the wire without
notches. It is found that DW depinning is facilitated by
antivortex nucleation. In the case of β < α, the antivortex
generation is responsible for velocity boost because vortices
move faster than transverse walls. In the other case of β > α,
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the longitudinal velocity of a vortex/antivortex is slower than
that of a transverse wall in a homogeneous wall and notches
hinder DW propagation.

II. MODEL AND METHOD

We consider sufficiently long wires (with at least 8 notches)
of various thickness and width. It is well known that [14]
narrow wires favor only transverse walls while wide wires
prefer vortex walls. Transverse walls are the main subjects of
this study. A series of identical triangular notches of depth d

and width w are placed evenly and alternately on the two sides
of the nanowires as shown in Fig. 1(a) with a typical clockwise
transverse wall pinned at the center of the first notch. The x,
y, and z axes are along length, width, and thickness directions,
respectively. The magnetization dynamics of the wire is
governed by the Landau-Lifshitz-Gilbert (LLG) equation:

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

− (u · ∇)m

+βm × (u · ∇)m,

where m, γ , Heff , and α are respectively the unit vector
of local magnetization, the gyromagnetic ratio, the effective
field including exchange and anisotropy fields, and the Gilbert
damping constant. The third and fourth terms on the right-hand
side are the adiabatic STT and nonadiabatic STT [10]. The
vector u is along the electron flow direction and its magnitude
is u = jPμB/(eMs), where j , P , μB , e, and Ms are current
density, current polarization, the Bohr magneton, the electron
charge, and the saturation magnetization, respectively. For
permalloy of Ms = 8 × 105 A/m, u = 100 m/s corresponds to
j = 1.4 × 1012 A/m2. In this study, u is limited to be smaller
than both 850 m/s (corresponding to j � 1.2 × 1013 A/m2)
and the Walker breakdown current density because current
density above the values generates intensive spin waves around
DWs and notches, which makes DW motion too complicated
to be even described. Dimensionless quantity β measures the
strength of nonadiabatic STT and whether β is larger or smaller
than α is still in debate [10,15,16]. The LLG equation is
numerically solved by both OOMMF [17] and MUMAX [18]
packages [19]. The electric current density is modulated
according to wire cross section area while the possible change
of current direction around notch is neglected. The material
parameters are chosen to mimic permalloy with exchange
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FIG. 1. (Color online) (a) A notch-modulated nanowire. L is
the separation between two adjacent notches. The color codes the
y component of m with red for my = 1, blue for my = −1, and
green for my = 0. The white arrows denote magnetization direction.
(b) The phase diagram in the β-u plane. A is the pinning phase, B is
the boosting phase, and C is the hindering phase. Vortices are (are not)
generated near notches by a propagating DW in C1 (C2). Inset: The
notch depth dependence of depinning current ud when notch width is
fixed at w = 48 nm.

stiffness A = 1.3 × 10−11 J/m, α = 0.02, and β varying from
0.002 to 0.04. The mesh size is 4 × 4 × 4 nm3.

III. RESULTS

A. Transverse walls in wide wires: Boosting and hindering

This is the focus of this work. Our simulations on wires 4 nm
thick and width ranging from 32 nm to 128 nm and notches of
d = 16 nm and w varying from 16 nm to 128 nm show similar
behaviors. Domain walls in these wires are transverse. Results
presented below are on a wire 64 nm wide and notches of
w = 48 nm. Three phases can be identified. A DW is pinned
at a notch when u is below a depinning current density ud .
This pinning phase is denoted as A (green region) in Fig. 1(b).
Surprisingly, ud increases slightly with β, indicating that the
β term actually hinders DW depinning out of a notch although
it is responsible for the absence of the intrinsic pinning in a
uniform wire (see discussion below for possible cause). When
u is above ud , a DW starts to propagate and it can either be
faster or slower than the DW velocity in the corresponding
uniform wire, depending on relative values of β and α.

When β < α, DW velocity is boosted through antivortex
generation at notches. This phase is denoted as phase B.
When β > α, the boosting of DW propagation is suppressed
no matter whether vortices are generated (phase C1) or not
(phase C2). The upper bound of the phase plane is determined
by the Walker breakdown current density and u = 850 m/s.
If the current density is larger than the upper bound, spin
wave emissions from DW [20] and notches are so strong that
new DWs may be created. Also, the Walker breakdown is
smaller than the depinning value ud for β > 0.04. Thus the
phase plane in Fig. 1(b) is bounded by β = 0.04. Although the
general phase diagram does not change, the phase boundaries

FIG. 2. (Color online) (a) L dependence of average DW velocity
v̄ for u = 600 m/s, α = 0.02, and β = 0.005 (squares), 0.01 (circles),
0.015 (up-triangles). The dashed lines are βu/α. (b) u dependence
of v̄ for β = 0.005 (squares), 0.01 (circles), 0.015 (up-triangles).
Open symbols are DW velocity in the corresponding homogeneous
wires. Straight lines are βu/α. v̄ is above βu/α when u > ud .
Inset: Instantaneous DW speed for u = 600 m/s, β = 0.005, and
L = 1.5 μm. The blue dots indicate the moments when the DW is at
notches.

depend on the wire and notch specificities. The inset is notch
depth dependence of the depinning current when w = 48 nm
and β = 0.01 [21].

Boosting phase. The boost of DW propagation for β < α

can be clearly seen in Fig. 2. Figure 2(a) is the average DW
velocity v̄ as a function of notch separation L for u = 600 m/s
> ud . v̄ is maximal around an optimal notch separation Lp,
which is close to the longitudinal distance that an antivortex
travels in its lifetime. Lp increases with β and it is respectively
about 1.5 μm, 2 μm, and 4 μm for β = 0.005 (squares), 0.01
(circles), and 0.015 (up-triangles). This result suggests that the
antivortex generation and vortex dynamics are responsible for
the DW propagation boost. Filled symbols in Fig. 2(b) are v̄ for
various current density when Lp is used. For a comparison,
DW velocities in the corresponding homogeneous wires are
also plotted as open symbols which agree perfectly with v̄ =
βu/α discussed below. Take β = 0.005 as an example: v̄ is
zero below ud = 550 m/s and jumps to an average velocity v̄ �
550 m/s at ud , which is about four times the DW velocity in the
homogeneous wire. As the current density further increases,
the average velocity also increases and is approximately equal
to u. The inset of Fig. 2(b) shows the instantaneous DW
velocity for β = 0.005 and u = 600 m/s. Blue dots denote the
moments at which the DW is at notches. Right after the current

054419-2



BOOSTING DOMAIN WALL PROPAGATION BY NOTCHES PHYSICAL REVIEW B 92, 054419 (2015)

is turned on at t = 0 ns, the instantaneous DW velocity is very
low until an antivortex of winding number q = −1 [23,24] is
generated near the notch edge at 0.5 ns (see discussion and Fig.
9 below). The motion of the antivortex core drags the whole
DW to propagate forward at a velocity around 600 m/s. The
antivortex core annihilates itself at the bottom edge of the wire
after traveling about 1.5 μm and the initial transverse wall
reverses its chirality at the same time [24]. Surprisingly, the
reversal of DW chirality leads to a significant increases of DW
velocity as shown by the peaks of the instantaneous velocity at
about 2.0 ns in the inset. Another antivortex of winding number
q = −1 is generated at the second notch and DW propagation
speeds up again. Once the antivortex core forms, it pulls the
DW out of the notch. This process then repeats itself and the
DW propagates at an average longitudinal velocity of about
600 m/s. A movie corresponding to the inset can be found in
the Supplemental Material [25].

Hindering phase. Things are quite different for β > α.
Figure 3(a) shows that v̄ increases monotonically with L

for β = 0.025, 0.03, and 0.035, which are all larger than
α. In order to make a fair comparison with the results of
β < α, Fig. 3(b) is the current density dependence of v̄

FIG. 3. (Color online) (a) L dependence of v̄ for u = 600 m/s
and β = 0.025 (squares), 0.03 (circles), and 0.035 (up-triangles), all
larger than α = 0.02. The dashed lines are βu/α. (b) u dependence
of v̄ for L = 2 μm. Filled symbols (squares for β = 0.025, circles
for β = 0.03, and up-triangles for β = 0.035) are numerical data
in notched wire of w = 48 nm and d = 16 nm. Open circles are
DW velocity of the corresponding homogeneous wire. Straight lines
are βu/α. Inset: Instantaneous DW velocity for u = 600 m/s and
β = 0.025. The blue dots denote the moments when the DW is at
notches.

for L = 2 μm and β = 0.025 (filled squares), 0.03 (filled
circles), and 0.035 (filled up-triangles). Again, DW velocities
in the corresponding homogeneous wires are presented as open
symbols. Take β = 0.025 as an example: although the average
velocity jumps at the depinning current density 565 m/s, it is
still well below the DW velocity in the corresponding uniform
wire. The inset of Fig. 3(b) shows the instantaneous DW
velocity for u = 600 m/s. An antivortex is generated at the
first notch. In contrast to the case of β < α, the antivortex
slows down DW propagation velocity below the value in the
corresponding uniform wire. Moreover, the transverse wall
keeps its original chirality unchanged when the antivortex is
annihilated at wire edge, and no vortex/antivortex is generated
at the second notch. However, another antivortex is generated
at the third notch. This is the typical cycle of phase C1. As
u increases above 640 m/s, phase C1 disappears and the DW
passes all the notches without generating any vortices. This
motion is termed as phase C2. For β > 0.025, only phase C2
is observed. In C2, DW profile is not altered, and the average
DW velocity is slightly below that in a uniform wire.

B. Transverse walls in very narrow wires

One interesting question is whether notches can boost DW
propagation in very narrow wires such that the nucleation of a
vortex/antivortex is highly unfavorable. To address this issue,
Fig. 4(a) shows u dependence of the average DW velocity
on a 8 nm wide wire for β < α (circles for β = 0.01 and
up-triangles for β = 0.015) with (filled symbols) and without
(open symbols) notches. When notches of 2 nm deep and
10 nm wide are placed at an interval of L = 100 nm, the
averaged DW velocity in the notched wire (filled symbols) is
below the values of the DW velocity (open symbols) in the
corresponding homogeneous wire that follows perfectly with
v̄ = βu/α (straight lines). Take β = 0.015 as an example: v̄ is
zero below ud = 310 m/s and jumps to an average velocity v̄ �
168 m/s at ud , which is below the DW velocity in the
corresponding uniform wire.

Things are similar for β > α. Figure 4(b) is the current den-
sity dependence of v̄ for β = 0.03 (filled squares) and 0.035
(filled up-triangles). Again, DW velocities in homogeneous
wire are presented as open symbols for a comparison. The
averaged DW velocity in the notched wire (filled symbols)
is below the values of the DW velocity in the corresponding
homogeneous wire.

C. Vortex walls in very wide wires

Although our main focus is on transverse walls, it should
be interesting to ask whether DW propagation boost can occur
for vortex walls. It is well known that a vortex/antivortex wall
is more stable for a much wider wire in the absence of a
field and a current [14]. One may expect that DW propagation
boost would not occur in such a wire because the boost
comes from vortex/antivortex generation near notches and
a vortex/antivortex exists already in a wider wire even in
the absence of a current. However, DW propagation boost
was still observed as shown in Fig. 5 for a wire of 520 nm
wide and 10 nm thick. Rectangular notches 60 nm deep and
160 nm wide are separated by L = 8 μm. When β < α
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FIG. 4. (Color online) (a) u dependence of v̄ for β = 0.01 (filled circles) and 0.015 (filled up-triangles). (b) u dependence of v̄ for β = 0.03
(filled squares) and 0.035 (filled up-triangles). Open symbols are DW velocity in the corresponding homogeneous wires. Straight lines are
βu/α. v̄ is below βu/α when u > ud . The nanowire is 8 nm wide and 1 nm thick while the notch size is 10 nm wide and 2 nm deep for (a) and
50 nm wide and 2 nm deep for (b). The separation of adjacent notches is 100 nm.

[Fig. 5(a): circles for β = 0.01 and up-triangles for β =
0.015], the average DW propagation velocities in the notched
wire (filled symbols) is higher than the DW velocity in
the corresponding homogeneous wire (open symbols) when
u > ud . Figure 5(b) shows that the average DW propagation
velocity in a notched wire (filled symbols) is lower than that in
the corresponding homogeneous wire (open symbols) for β >

α (squares for β = 0.025 and circles for β = 0.03). Figure 5(c)

shows the spin configurations of the DW in the homogeneous
wire of β = 0.01 before a current is applied (the left configu-
ration) and during the current-driven propagation (middle and
right configurations). When a current u = 650 m/s is applied at
0 ns, a vortex wall moves upward. The vortex was annihilated at
the wire edge, and the vortex wall transformed into a transverse
wall. The DW keeps its transverse wall profile and propagates
with velocity of βu/α [solid lines in Figs. 5(a) and 5(b)].

FIG. 5. (Color online) (a) u dependence of v̄ for β = 0.01 (filled circles) and 0.015 (filled up-triangles). (b) u dependence of v̄ for β = 0.025
(filled squares) and 0.03 (filled circles). Open symbols are DW velocity in the corresponding homogeneous wires. Straight lines are βu/α. v̄ is
above (below) βu/α when u > ud and β < α (β > α). The nanowire is 520 nm wide and 10 nm thick while the rectangular notch is 160 nm
wide and 60 nm deep. The separation of adjacent notches is 8 μm. (c) and (d) The spin configurations in a uniform wire (a) and in a notched
wire (b) at various moments for β = 0.01 and u = 650 m/s. The time is indicated on the bottom-right corner of each configuration. The color
codes the value of my and color bar is shown in the bottom-right corner.
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The middle and right configurations are two snapshots at
14.5 ns and 47.5 ns. Time is indicated in the bottom-right
corner. Figure 5(d) shows snapshots of DW spin configurations
in the notched wire of β = 0.01 when a current u = 650 m/s
is applied at t = 0 ns. At t = 0 ns, a vortex wall is pinned near
the first notch. Right after the current is turned on, the vortex
wall starts to depin and complicated structures may appear
during the depinning process as shown by the snapshot at t =
1.5 ns. At t = 13.5 ns, the DW transforms to a transverse wall
and propagates forward. When the transverse wall reaches
the second notch at about t = 18.0 ns, a new vortex core
nucleates near the notch and drags the whole DW to propagate
forward. In contrast to the case of a homogeneous wire where
a propagating DW prefers a transverse wall profile, a DW with
more than one vortices can appear as shown by the snapshot
at t = 26.0 ns. The vortex core in this structure boosts DW
velocity above the average DW velocity of a uniform wire.
This finding may also explain a surprising observation in an
early experiment [4] that depinning current does not depend
on DW types. A vortex wall under a current transforms into a
transverse wall before depinning from a notch. Thus both vor-
tex wall and transverse wall have the same depinning current.

IV. DISCUSSION

A. Depinning process analysis

Empirically, we found that vortex/antivortex polarity is
uniquely determined by the types of transverse wall and
current direction. This result is based on more than twenty
simulations that we have done by varying various parameters
such as notch geometry, wire width, magnetic anisotropy, and
damping. Within the picture that DW depinning starts from
vortex/antivortex nucleation, the β dependence of depinning
current density ud can be understood as follows. For a
clockwise (counterclockwise) transverse wall and current in
the −x direction, p = +1 (p = −1), as shown in Fig. 6. If
one assumes that vortex/antivortex formation starts from the
vortex/antivortex core, it means that the core spin rotates into
the +z direction for a vortex of p = 1. For a clockwise wall, β
torque (βm × ∂m

∂x
) tends to rotate core spin in the −z direction,

as shown in Fig. 6(a), so the presence of a small β torque tries
to prevent the nucleation of vortices. Thus, the larger β is, the
higher ud will be. This may be the reason why the depinning
current density ud increases as β increases.

Our simulations suggest that DW depinning starts from vor-
tex/antivortex nucleation. Adiabatic spin transfer torque tends
to rotate the spins at the edge defect near a notch out of plane
and to form a vortex/antivortex core. Thus, any mechanisms
that help (hinder) the creation of a vortex/antivortex core shall

decrease (increase) the depinning current density ud . To test
this hypothesis, we use a magnetic field pulse of 0.4 ns along
±x direction [shown in the inset of Fig. 7(a)] such that the field
torque rotates spins out of plane. Figure 7(a) is the numerical
results of the magnetic field dependence of the depinning
current density for a 64 nm wide wire with triangular notches
48 nm wide and 16 nm deep. The nonadiabatic coefficient
is β = 0.01. As expected, ud decreases (increases) with field
when it is along −x direction (+x direction) so that spins
rotate into +z direction (−z direction). All other parameters
are the same as those for Fig. 2.

If the picture is correct, one should also expect that the
depinning current density depends on the wire thickness. The
shape anisotropy impedes vortex core formation because it
does not favor a spin aligning in the z direction. The shape
anisotropy decreases as the thickness increases. Thus, one
should expect that the depinning current density decreases
with the increase of wire thickness. Indeed, numerical results
shown in Fig. 7(b) verify the conjecture. All other parameters
are the same as those in Fig. 7(a) (H = 0).

B. Width effects on the depinning current density

The DW propagating boost shown above is from the wire in
which the notch depth (16 nm) is relatively big in comparison
with wire width (64 nm). Naturally, one may ask whether
the DW propagation boost exists also in a wire when the notch
depth is much smaller than the wire width. To address the issue,
we fix the notch geometry and vary the wire width. Figure 8 is
the nanowire width dependence of depinning current density
when the notch size is fixed at 48 × 16 nm2. Figures 8(a)
and 8(b) show the phase boundary between vortex-assisted
boosting phase and the pinning phase. DW propagation boost
exists when nanowire width is one order of magnitude larger
than the notch depth. The top views of the wire and spin
configurations for 64 nm wide and 160 nm wide wires are
shown in Figs. 8(c) and 8(d), respectively.

C. DW propagation and vortex dynamics

DW propagation boost and slow-down by vortices can be
understood from the Thiele equation [10,26,27],

F + G × (v − u) + D · (αv − βu) = 0, (1)

where F is the external force related to magnetic field that is
zero in our case, G is the gyrovector that is zero for a transverse
wall and G = −2πqplMs/γ ẑ for a 2D vortex wall, where q is
the winding number (+1 for a vortex and −1 for an antivortex),
p is vortex polarity (±1 for core spin in ±z direction), and
l is the thickness of the nanowire. D is dissipation dyadic,

FIG. 6. (Color online) Directions of vortex core magnetization (red symbols) and nonadiabatic torque (blue symbols) for a clockwise
transverse wall (a) and a counterclockwise transverse wall (b). The dots (crosses) represent ±z direction.
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FIG. 7. (a) Depinning current density as a function of an external field. A 0.4 ns field pulse in the x direction is turned on simultaneously
with the current. The shape of a pulse of H = 100 Oe is shown in the inset. Since the depinning field of the wire (64 nm wide and 4 nm thick) is
150 Oe, the field amplitude is limited to slightly below 150 Oe in the curve. (b) Depinning current density as a function of nanowire thickness.

whose nonzero elements for a vortex/antivortex wall are Dxx =
Dyy = −2MsWl/(γ�) [27], where W is nanowire width and
� is the Thiele DW width [26]. v is the DW velocity.

For a transverse wall, v = βu/α (solid lines) agrees per-
fectly with numerical results (open symbols) in homogeneous
wires as shown in Figs. 2(b) and 3(b) without any fitting
parameters. For a vortex wall, the DW velocity is

vy = 1

1 + α2W 2/(π2�2)

W

πqp�
(α − β)u,

(2)

vx = u

1 + α2W 2/(π2�2)

(
1 − β

α

)
+ βu

α
. (3)

vy depends on DW width, α as well as β/α. For a given vortex
wall, vy has opposite sign for β < α and β > α. In terms of
topological classification of defects [23], the edge defect of the
transverse DW at the first notch [Fig. 1(a)] has winding number

q = −1/2, and this edge defect can only give birth to an
antivortex of q = −1 and p = 1 while itself changes to an edge
defect of q = 1/2 as shown in Fig. 9(a). Empirically, we found
that antivortex polarity is uniquely determined by the types of
transverse wall and current direction. A movie visualizing the
DW propagation in the boosting phase is shown in the Supple-
mental Material [25]. All the parameters are the same as those
in the inset of Fig. 2(b). The three segments of identical length
1200 nm are connected in series to form a long wire. When β <

α, the antivortex moves downward (vy < 0) to the lower edge
defect of winding number of q = 1/2. The lower edge defect
changes its winding number to q = −1/2 and the transverse
DW reverses its chirality [24] when the vortex merges with the
edge defect. Then another antivortex of winding number q =
−1 and p = −1 is generated at the second notch on the lower
wire edge and it moves upward (vy > 0). The DW reverses
its chirality again at upper wire edge when the antivortex
dies. Then this cycle repeats itself. The spin configurations

FIG. 8. (Color online) (a) and (b) are nanowire width dependence of depinning current density for β = 0.005 (a) and β = 0.01 (b). The
wire thickness is 4 nm and notch size is fixed at 48 × 16 nm2. (c) and (d) are the real configurations of initial domain walls pinned at the notch
for 64 nm and 160 nm wide wires, respectively. The color coding is the same as that of Fig. 5. The blue jagged lines indicate the profiles of
triangular notches.
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FIG. 9. (Color online) (a) Illustrations of changes of topological defects (transverse DW edge defects and vortices) during the birth and
death of vortices in phase B as a DW propagates from the left to the right and the corresponding spin configurations at various moments.
Lines represent DWs. Big blue dots for vortices and open circles for edge defects of winding number −1/2 and filled black circles for edge
defects of winding number 1/2. The color coding is the same as that of Fig. 5. The blue jagged lines indicate the profiles of triangular
notches. The nanowire is 64 nm wide and 4 nm thick. The notch dimensions are 48 × 16 nm3. The interval between adjacent notches is L =
1500 nm. u = 600 m/s, β = 0.005. (b) Illustrations of changes of topological defects in phase C1 and the the corresponding spin configurations
at various moments. The nanowire is 64 nm wide and 4 nm thick. The notch dimensions are 48 × 16 nm2. The interval between adjacent
notches is L = 2000 nm. u = 600 m/s, β = 0.025.

corresponding to various stages are shown in the lower panels
of Fig. 9(a). When β > α, as shown in Fig. 9(b), the antivortex
of q = −1 and p = +1 moves upward since vy > 0. The
chirality of the original transverse wall shall not change when
the antivortex is annihilated at the upper edge defect because
of winding number conservation. No antivortex is generated at
the even number notches and the same type of the antivortex
is generated at odd number notches; hence the transverse
wall preserves its chirality throughout propagation. The corre-
sponding spin configurations are shown in the lower panels of
Fig. 9(b).

The second term in Eq. (3) (for vx) is βu/α, the same as
the transverse DW velocity in a homogeneous wire [straight
lines in Figs. 2(b) and 3(b)]. The first term depends on
DW properties as well as β and α. It changes sign at
β = α. vx is larger than βu/α in the presence of vortices
if β < α. Therefore, in this case vortex generations and vortex
dynamics boost DW propagation. For small α and to the

leading order correction in α and β, Eq. (3) becomes vx =
u − (α2 − αβ)uW 2/(π2�2). Thus, the longitudinal velocity
equals approximately u and depends very weakly on β.
This is what was observed in Fig. 2(b). vx = u corresponds
to the complete conversion of itinerant electron spins into
local magnetic moments. Although the Thiele equation cannot
explain why a DW generates vortices around notches in phase
B, it explains well DW propagation boost for β < α. This
result is in contrast to the field-driven DW propagation where
vortex/antivortex generation reduces the Walker breakdown
field and inevitably slows down DW motion [5,24].

Before concluding, we would also like to point out that it
is possible to realize both β < α (boosting phase) and β > α

(hindering phase) experimentally in magnetic materials such
as permalloy with damping coefficient engineering. A recent
study [28] demonstrated that α of permalloy can increase by
four times through a dilute impurity doping of lanthanides
(Sm, Dy, and Ho).
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V. CONCLUSIONS

In conclusion, notches can boost DW propagation when
β < α. The boost is facilitated by antivortex generation and
motion, and boosting effect is optimal when two neighboring
notches are separated by the distance that an antivortex travels
in its lifetime. In the boosting phase, DW can propagate
at velocity u that corresponds to a complete conversion of
itinerant electron spins into local magnetic moments. When
β > α, the notches always hinder DW propagation. According
to Thiele’s theory, the generation of vortices increases DW
velocity for β < α and decreases DW velocity when β > α.
This explains the origin of boosting phase and hindering phase.

Furthermore, it is found that a vortex wall favored in a very
wide wire tends to transform to a transverse wall under a
current. This may explain experimental observation that the
depinning current density is not sensitive to DW types.
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