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Torsion-induced effects in magnetic nanowires
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A magnetic helix wire is one of the simplest magnetic systems which manifests properties of both curvature
and torsion. Possible equilibrium magnetization states in the helix wire with different anisotropy directions are
studied theoretically. There exist two equilibrium states in the helix wire with easy-tangential anisotropy: a
quasitangential magnetization distribution in the case of relatively small curvatures and torsions, and an onion
state in the opposite case. The curvature and torsion also essentially influence the spin-wave dynamics in the
helix wire, acting as an effective magnetic field. Originated from a geometry-induced effective Dzyaloshinskii
interaction, this magnetic field leads to a coupling between the helix chirality and the magnetochirality and breaks
mirror symmetry in the spin-wave spectrum: the modification of magnon dispersion relation is linear with respect
to the torsion and quadratic with respect to the curvature. All analytical predictions on magnetization statics and
dynamics are well confirmed by direct spin-lattice simulations.
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I. INTRODUCTION

During the past few years, there has been growing interest
in the curvature effects in the physics of nanomagnetism. A
crucial aspect of the interest is caused by recent achievements
in nanotechnologies of flexible, stretchable, and printable
magnetoelectronics (see Ref. [1] and references therein). The
effects of the curvature on the magnetization structure in
nanomagnetic particles of nontrivial geometry were stud-
ied for cylinders [2,3], tori [4], half spheres [5], spheri-
cal shells [6], hemispherical caps [7,8], cylindrical capped
nanomembranes [9], cone shells [10,11], and paraboloidal
shells [12]. Chiral and curvature effects taking into account
the nonlocal dipolar interaction were discussed for cylinder
nanotubes [13–15].

Very recently, we developed a fully three-dimensional
(3D) approach for studying statics and dynamics of thin
magnetic shells and wires of arbitrary shape [10,11]. This
approach gives a possibility to derive the energy for arbitrary
curves and surfaces and arbitrary magnetization vector fields
on the assumption that the anisotropy contribution greatly
exceeds the dipolar and other weak interactions, i.e., for
hard magnets. We have shown [11] that due to the curvature,
two additional effective magnetic interactions originate from
the exchange term: (i) curvature-induced effective anisotropy,
which is bilinear with respect to curvature and torsion, and (ii)
curvature-induced effective Dzyaloshinskii interaction, which
is linear with respect to curvature and torsion. This approach
opens doors for studying several perspective directions in
nanomagnets, including topologically induced patterns [6,16]
and magnetochiral effects [11,16].

The simplest system which displays all the essential
features of a 3D curve is a helix with its coordinate-
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independent curvature and torsion. The interest in such a
geometry is motivated also by recent experiments on rolled-up
ferromagnetic microhelix coils [17,18]. Depending on the
anisotropy direction, different artificial complex helimagnet-
iclike configurations were experimentally realized: hollow-
bar-, corkscrew-, and radial-magnetized 3D microhelix
coils [17]. Rolled magnetic structures are now widely dis-
cussed in the context of possible application in flexible
and stretchable magnetoelectronic devices [19], in particular,
rolled-up giant magnetoresistance (GMR) sensors [20], for
magnetofluidic applications, spin-wave filters [21,22], and
microrobots [23]. Helix coil magnetic structures have a
potential to be used in a variety of bioapplication areas, such
as in medical procedures, cell biology, or laboratory on a
chip [24].

In the current study, our recently developed theory [11] is
applied to describe magnetization statics and linear dynamics
in the helix wire. We analyze equilibrium states for different
types of magnetocrystalline anisotropy. The equilibrium state
is determined by the relationship between the curvature,
torsion, and the anisotropy strength. We compute phase
diagrams of possible equilibrium states for three types of
anisotropy (easy tangential, easy normal, and easy binormal)
and summarize the results in Fig. 4. In each of these
cases, the equilibrium state is either an onion state or an
anisotropy-aligned state. For example, in the most interesting
case of easy-tangential anisotropy, a quasitangential magneti-
zation distribution appears for strong enough anisotropy; see
Figs. 3(a) and 3(b). We show that even in the case of strong
anisotropy, the magnetization deviates from the tangent vector.
The deviation is determined by the curvature and torsion.
There also exists coupling between the helix chirality and the
chirality of magnetization distribution (i.e., magnetochirality).

We also study the spin-wave dynamics in the helix wire. Our
analysis shows that the curvature and torsion act on magnons
in two ways: they cause a standard potential scattering of
magnons and they lead to the appearance of an effective
magnetic field. The origin of this field is the geometry-induced
effective Dzyaloshinskii interaction [11]. Finally, the torsion
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breaks the symmetry of the spin-wave spectrum with respect
to the direction of the spin-wave propagation; see Fig. 5. This
effect is completely analogous to the effect of asymmetry
of magnon dispersion due to the natural Dzyaloshinskii
interaction in magnetic films [25–27].

The paper is organized as follows. In Sec. II, we introduce
a model of a curved magnetic wire and discuss three possible
magnetocrystalline anisotropy directions. The model of the
helix wire appears in Sec. III. Equilibrium magnetization
distributions are described analytically for the easy-tangential
helix wire: the quasitangential state (see Sec. III A) and the
onion state (see Sec. III B). The phase diagram of energetically
preferable states is presented in Sec. III C. The spin-wave
dynamics is discussed in Sec. IV. In Sec. V, we study statics
and linear dynamics for helix wires with other anisotropy
orientations: the easy-normal anisotropy (Sec. V A) and easy-
binormal one (Sec. V B). We verify our theory by numerical
simulations of the helix-shaped chain of discrete magnetic
moments in Sec. VI. In Sec. VII, we present final remarks and
discuss possible perspectives and generalizations by paying
particular attention to magnetostatic effects. Some details
concerning the computation of the onion state are presented in
the Appendix.

II. THE MODEL OF A CURVED WIRE

We consider a curved cylindrical wire. Let γ (s) be a 1D
curve embedded in the 3D space R3, with s being the arc
length coordinate. It is convenient to use the Frenet-Serret
reference frame with basic vectors eα:

eT = γ ′, eN = e′
T

|e′
T|

, eB = eT × eN, (1)

with eT being the tangent, eN being the normal, and eB being
the binormal to the curve γ . Here and below, the prime denotes
the derivative with respect to the arc length s and Greek indices
α,β enumerate curvilinear coordinates (TNB coordinate) and
curvilinear components of vector fields. The relation between
e′
α and eα is determined by Frenet-Serret formulas,

e′
α = Fαβ eβ, ‖Fαβ‖ =

∥∥∥∥∥∥
0 κ 0

−κ 0 τ

0 −τ 0

∥∥∥∥∥∥.

Here, κ and τ are the curvature and torsion of the wire,
respectively.

The wire of a finite thickness h can be defined as the
following space domain:

r(s,u,v) = γ (s) + ueN + veB,

where u and v are coordinates within the wire cross section
(|u|,|v| � h).

Let us describe the magnetic properties of the wire. The
magnetic energy of the wire can collect different contribu-
tions such as exchange-interaction energy, magnetocrystalline
anisotropy energy, and dipolar (i.e., magnetostatic) interaction.
We start our analysis with the case of a so-called hard magnet
where the anisotropy contribution greatly exceeds the dipolar
and other weak interactions. For such hard magnets, a quality

factor [28],

Q ≡ K

2πM2
s

, (2)

is supposed to be large; here, K > 0 is the constant of
magnetocrystalline anisotropy and Ms is the saturation mag-
netization.

We assume the magnetization spatial one-dimensionality,
which can be formalized as m = m(s,t). This assumption is
appropriate for the cases when the thickness h does not exceed
the characteristic magnetic length w = √

A/K , with A being
an exchange constant. The wire thickness is also supposed to
be small in comparison with the radii of curvature and torsion.
Therefore, our model provides an adequate picture under the
following assumptions:

h � w � 1

κ
,

1

τ
, Q � 1. (3)

That is why in the current study we can restrict ourselves
to the consideration of Heisenberg magnets with the energy

E = AS

∫
ds(Eex + Ean),

Eex = −m · ∇2m, Ean = − (m · ean)2

w2
,

(4)

where the unit vector ean gives the direction of the anisotropy
axis and S is the cross-section area.

Typically, the orientation of the anisotropy axis ean is
determined by the wire geometry (e.g., it can be tangential to
the wire [17]). This means that due to curvilinearity of the wire,
it may complicatedly depend on spatial coordinates. Therefore,
it is convenient to represent the energy of the magnet in the
curvilinear reference frame (1), where Ean has the simplest
form. For a thin wire, the exchange energy density can be
presented as follows [11]:

Eex = E 0
ex + E A

ex + E D
ex, E 0

ex = |m′|2,
E A

ex = Kαβmαmβ, E D
ex = Fαβ(mαm′

β − m′
αmβ).

(5)

Here the first term E 0
ex describes a usual isotropic part

of the exchange interaction which has the same form as
for the straight wire. The second term E A

ex describes an
effective anisotropy interaction, where the components of
the tensor Kαβ = FανFβν are bilinear with respect to the
curvature κ and the torsion τ . This term is similar to the
“geometrical potential” [29]. (Note that a curvature caused
“geometric” effective magnetic field was considered recently
for curved magnonic waveguides [30].) The last term E D

ex in the
exchange energy functional is the geometry-induced effective
Dzyaloshinskii interaction, which is linear with respect to
curvature and torsion. As shown below, this interaction is
responsible for the magnetochiral effects in curved wires.

We consider three types of curvilinear uniaxial anisotropy
which correspond to three possible curvilinear directions (1)
(see Table I): (i) An easy-tangential anisotropy corresponds
to the anisotropy axis ean directed along eT, where the
anisotropy interaction tries to orient the magnetization along
the curve. Note that in soft magnets, such kind of anisotropy
appears effectively as a shape anisotropy caused by the dipolar
interaction [31]. (ii) An easy-normal anisotropy is determined
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TABLE I. Types of equilibrium magnetization states for various uniaxial anisotropies in a helix-shaped magnetic wire. In Ref. [17] onion
states were not observed.

Magnetization states in a helix wire

Anisotropy type Anisotropy axis ean Equilibrium states Orientation according to Ref. [17]

Easy tangential eT Quasitangential state Corkscrew
Onion state —

Easy normal eN Normal state Radial
Onion state —

Easy binormal eB Quasibinormal state Hollow bar
Onion state —

by the normal vector eN. (iii) An easy-binormal anisotropy
direction corresponds to the binormal basic vector eB.

All three types of anisotropic magnets can be realized ex-
perimentally: In straight nanostrips/nanowires, the anisotropy
can have well-defined uniaxial directions, e.g., in plane along
the strip, in plane perpendicularly to the strip, or out of plane,
which correspond to the uniformly magnetized samples in
the corresponding direction. Using the coiling process [17], it
is possible to obtain 3D microhelix coil strips with different
magnetization orientation: corkscrew, radial, and hollow-bar
magnetized (see Table I) to get a link between the anisotropy
type and the magnetization orientation.

For the further analysis, it is convenient to introduce the
angular parametrization of the magnetization unit vector m
using the local Frenet-Serret reference frame,

m = sin θ cos φ eT + sin θ sin φ eN + cos θ eB,

where the angular variables θ and φ depend on both spatial and
temporal coordinates. Then the energy density (5) reads [11]

Eex = [θ ′− τ sin φ]2+ [sin θ (φ′ + κ) − τ cos θ cos φ]2,

E ET
an = − sin2 θ cos2 φ

w2
, E EN

an = − sin2 θ sin2 φ

w2
,

E EB
an = −cos2 θ

w2
.

(6)

Here, E ET
an , E EN

an , and E EB
an denote anisotropy energy densities

of easy-tangential, easy-normal, and easy-binormal types,
respectively.

The magnetization dynamics follows the Landau-Lifshitz
equation. In terms of the angular variables θ and φ, these
equations read

Ms

γ0
sin θ∂tφ = δE

δθ
, − Ms

γ0
sin θ∂tθ = δE

δφ
, (7)

with γ0 being the gyromagnetic ratio.

III. EQUILIBRIUM MAGNETIZATION STATES OF A
HELIX WIRE WITH EASY-TANGENTIAL ANISOTROPY

Hereafter we will be concerned with curvilinear effects
in statics and dynamics of helical magnetic wires. A typical
parametrization of the helix wire reads

γ (χ ) = x̂R cos χ + ŷR sin χ + ẑpχ, (8a)

where R is the helix radius, p = P/(2π ) with P being the
pitch of the helix, and χ is the azimuthal angle of a cylindrical
frame of reference with ẑ axis aligned along the helix axis; see
Fig. 1. The helix has the constant curvature κ = R/(R2 + p2)
and the torsion τ = p/(R2 + p2). For the further analysis, it
is instructive to rewrite (8a) as a function of the arc length s

and in terms of the curvature and the torsion,

γ (s) = x̂κs2
0 cos

(
s

s0

)
+ ŷκs2

0 sin

(
s

s0

)
+ ẑs0τs,

s0 = 1√
κ2 + τ 2

. (8b)

One has to notice a one-to-one correspondence between
(R,p) and (κ,τ ) parametrization; cf. (8a) and (8b).
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FIG. 1. (Color online) Schematics of the helix wire of the radius
R and the pitch P . (a) Arrangement of the curvilinear Frenet-Serret
reference frame (eT,eN,eB) from the front view. (b) Arrangement of
the magnetization angles θ and φ with respect to the magnetization
unit vector m.
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By substituting the energy functional (6) into the Landau-
Lifshitz equations (7), we get

− Ms

2γ0A
sin θ∂tφ

= τ cos φ(κ cos 2θ − 2∂sφ sin2 θ )

+∂ssθ − sin θ cos θ [(κ + ∂sφ)2− τ 2cos2 φ] − 1

2

∂Ean

∂θ
,

Ms

2γ0A
sin θ∂tθ

= sin θ cos θ [2∂sθ (κ + ∂sφ) − κτ sin φ]

+ sin2θ [∂ssφ + 2τ∂sθ cos φ − τ 2sin φ cos φ] − 1

2

∂Ean

∂φ
,

(9)

where Ean is the density of the anisotropy energy; see (6).
In this section, we are mostly interested in the case of

easy-tangential anisotropy, which is typical for the wires. In
this case, the anisotropy energy density has the form E ET

an ;
see (6).

First we discuss the limit case τ = 0 (ring wire instead of
the helix). For any plane curve, the energy functional (6) with
easy-tangential or easy-normal anisotropy is minimized by
the plane magnetization distribution, θ0 = π/2. The energy
minimization with respect to φ results in the pendulum
equation

�2∂χχφ − sin φ cos φ = 0, � = κw,

with � being a reduced curvature.
For relatively small values of the reduced curvature, � <

�0 ≈ 0.657, the equilibrium magnetization state of the ring is a
homogeneous (in the curvilinear reference frame) vortex state
φvor and an inhomogeneous onion solution φon for � > �0 [11],

φvor = 0,π, φon = π

2
− am(x,k), x = 2χ

π
K(k). (10)

Here, am(x,k) is the Jacobi amplitude [32] and the modulus k

is determined by the condition

2�kK(k) = π,

with K(k) being the complete elliptic integral of the first
kind [32].

A. Quasitangential state

Now we consider the helix wire with a finite torsion, τ 	= 0.
Similar to the case of the ring wire, discussed above, we first
look for the homogeneous (in the curvilinear reference frame)
solution. This kind of solution is possible due to the constant
curvature κ and the torsion τ . We can easily solve the static
equations [see Eq. (9)] using the substitution θ (s) = θ t and
φ(s) = φt :

tan 2θ t = − 2Cσ�

1 − �2 + σ 2
, φt = 0,π,

0 0.5 1 1.5 2

π
4

π
2

Reduced torsion σ

θt

κ = 0.1 (am) (a) (m)

κ = κc (am) (a) ♦· (m)

κ = 1 (am) •(a) (m)

boundary curve θt
b(σ)

Quasi-tangential

state

Onion
state

FIG. 2. (Color online) Equilibrium magnetization distribution in
the quasitangential state of the helix wire with C = +1. Lines
correspond to the analytics; see Eq. (11). Symbols correspond to
simulations: (a) anisotropic Heisenberg magnets [see (30)] (Q = 2,
w = �), (am) wires taking into account the dipolar interaction
[see (29) and (32)] (Q = 2, weff = 2�/

√
5), and (ms) isotropic wires

taking into account the dipolar interaction [see (29) and (32)] (Q = 2,
weff = 2�). The boundary curve θ t

b(σ ) corresponds to (15).

where C = cos φt = ±1, and the quantity σ ≡ wτ is a reduced
torsion. Explicitly for the magnetization angles, we get

θ t = π

2
− arctan

2Cσ�

V0
, φt = 0,π,

V0 = 1 + σ 2 − �2 + V1,

V1 =
√

(1 − �2 + σ 2)2 + 4�2σ 2.

(11)

The dependence θ t (�,σ ) is presented in Fig. 2.
In the limit case of very small curvature and torsion (�,σ �

1), the magnetization distribution becomes almost tangential
[see Fig. 3(a)], with the asymptotic behavior

θ t ≈ π

2
− Cσ� for �,σ � 1. (12)

That is why we refer to the state (11) as to the quasitangential
state. Such a state is a finite torsion analog of the vortex state
in the ring.

Even in the strong anisotropy case, the magnetization
deviates from the tangential distribution: the inclination angle
depends on the sign of Cσ . One can interpret the sign of σ

as the helix chirality (different for a right-handed helix when
σ > 0 and left-handed one when σ < 0); the quantity C can
be interpreted as the magnetochirality, hence one can interpret
it as a coupling between two chiralities.

The energy density (6) of the quasitangential state (11)
reads

E t = −1 − �2 − σ 2 + V1

2w2
.

It should be noted that the magnetization state in the helix
nanowire was recently studied [33]: in particular, the magnon
spectrum was shown to be affected by the curvature, which acts
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(a) Quasi-tangential state: κ = σ = 0.1

(b) Quasi-tangential state: κ = σ = κ0 ≈ 0.657

(c) Quasi-tangential state: κ = σ = 1

(d) Onion state: κ = 1.5, σ = 1

FIG. 3. (Color online) Magnetization distributions in the helix
wire with easy-tangential anisotropy and C = +1 obtained from
numerical simulations; see Sec. VI A.

mainly as an effective anisotropy. However, in Ref. [33], the
equilibrium state was forcedly supposed to be the tangential
one.

B. Onion state

Let us discuss the case of large curvature and torsion. We
are looking for a solution that is periodic with respect to χ of
the following form:

θon(s) = π

2
+ ϑ(χ ), φon(s) = −χ + ϕ(χ ), (13a)

with ϑ(χ ) and ϕ(χ ) being 2π -periodic functions. In analogy
with the ring wire (σ = 0) which possesses the exact onion
solution (10), the magnetization distribution given by Eq. (13a)
will be denoted as an onion solution.

Numerically, we found onion solutions for � > �0 ≈ 0.657
in a wide range of σ ; see Figs. 3(c) and 4(a). The symmetry
of the static form of Eqs. (9) dictates the symmetry of 2π -
periodic functions ϑ and ϕ, which have the following Fourier

expansion:

ϑ(χ ) =
N∑

n=1

ϑn cos(2n − 1)χ, ϕ(χ ) =
N∑

n=1

ϕn sin 2nχ,

(13b)

where N → ∞. By substituting series (13b) into the static
version of Eqs. (9), one can get a set of nonlinear equations
for amplitudes ϑn and ϕn; see (A3). Finally, the energy of the
onion state E on(σ,�b), averaged over the helix period, can be
calculated numerically using amplitudes ϑn and ϕn; see the
Appendix for details.

C. Phase diagram

Now we summarize the results of the equilibrium mag-
netization distribution. By comparing energies of different
states, we find the energetically preferable states for different
curvature and torsion values. The resulting phase diagram
is presented in Fig. 4(a). There are two phases: (i) The
quasitangential state is realized for relatively small curvatures,
when � < �b(σ ). In such a state, the magnetization direction
is close to the direction of the easy-tangential anisotropy, eT;
see Figs. 3(a) and 3(b). (ii) The onion state is energetically
preferable, when � > �b(σ ). The magnetization distribution
is inhomogeneous in accordance with (13); see Fig. 3(d).

The boundary between two phases �b = �b(σ ) can be
derived by using the condition

E t (σ,�b) = E on(σ,�b), (14)

where E on is the energy density of the onion state averaged over
the helix period 2πs0; see (A4). We computed the boundary
curve numerically for N = 1 and N = 3; see dot-dashed and
solid lines, respectively, in Fig. 4(a). The two obtained curves
are very close. The magnetization distribution in the onion state
of the helix wire is spatially almost uniform; see Fig. 3(d).

For the approximate description of the boundary depen-
dence, we use the trial function

�ET
b =

√
�2

0 + 2σ 2,

which fits the numerically calculated curve �b(σ ) with an
accuracy of about 5 × 10−2.

Using the boundary dependence �b(σ ), one can easily
compute the domain of applicability of the quasitangential
solution (11),

θ t ∈
{(

θ t
b,

π
2

)
when Cσ > 0,(

π
2 ,θ t

b

)
when Cσ < 0.

(15)

Here, θ t
b = θ t

b(σ ) determines the boundary curve,

θ t
b(σ ) ≡ θ t (�b(σ ),σ ).

IV. SPIN-WAVE SPECTRUM IN A HELIX WIRE WITH
EASY-TANGENTIAL ANISOTROPY

We limit our consideration of spin waves to the case of
the quasitangential magnetization state. First we linearize
the Landau-Lifshitz equations (9) on the background of the
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FIG. 4. (Color online) Phase diagram of equilibrium magnetization states for the helix wire with different types of anisotropy. Symbols
correspond to simulation data: green diamonds to homogeneous (in curvilinear reference frame) states and open circles to the onion ones. (a)
Easy-tangential case: the curve �b(σ ) (solid green line), calculated by (14) with N = 3, describes the boundary between the quasitangential
and the onion states; the dash-dotted line corresponds to �b(σ ) with N = 1. The curve �c(σ ) (dashed red line) describes the boundary of linear
instability of the quasitangential state, and the dotted line is its fitting by (22). In the region between lines �b(σ ) and �c(σ ), the quasitangential
state is metastable. (b), (c) Easy-normal and easy-binormal anisotropy, respectively; all notations have the same sense as in (a). Note that (b)
has a different scale in order to show the normal-state region in detail.

quasitangential equilibrium state (11),

θ (s,t) = θ t + ϑ(s,t), φ(s,t) = φt + ϕ(s,t)

sin θ t
.

Then, for ϑ and ϕ, we get the set of linear equations,

∂t ′ϕ = −∂ξξϑ + V1ϑ − 2A∂ξϕ,

−∂t ′ϑ = −∂ξξϕ + V2ϕ + 2A∂ξϑ,

where ∂t ′ is the derivative with respect to the dimensionless
time t ′ = �0t , with �0 = 2Kγ0/Ms , and ∂ξ is the derivative
with respect to the dimensionless coordinate ξ = s/w. Here,
V1 is determined according to (11), and the quantities V2 and
A have the following form:

V2 = 1 + �2 + σ 2 + V1

2
,

A = −� cos θ t − σC sin θ t = −σCV2

√
2

V1V0
.

(16)

While V1 and V2 appear as scalar potentials, A acts as a
vector potential A = AeT of the effective magnetic field. This
becomes obvious if we combine the set of linearized equations
for ϑ and ϕ in a single equation for the complex-valued
function ψ = ϑ + iϕ,

−i∂t ′ψ = Hψ + Wψ∗, H = (−i∂ξ − A)2 + U. (17a)

This differential equation has the form of a generalized
Schrödinger equation, originally proposed for the description
of spin waves on the magnetic vortex background [34]. The
“potentials” in Eq. (17a) read

U = V1 + V2

2
− A2, W = V1 − V2

2
= −1 + w2E t

2
. (17b)

The vector potential A originates from the curvature-
induced effective Dzyaloshinskii interaction; see Eq. (5). The
harmonic part of the energy density E D

ex in terms of the complex

function ψ has a form [35]

E D
ex = − 2

w2
A|ψ |2∂ξ arg ψ. (18)

The spectrum of the spin waves of the helix wire is analyzed
by considering the solutions of the linear system (17) of the
form

ψ(ξ,t ′) = uei� + ve−i�, � = qξ − �t ′ + η, (19)

where q = kw is a dimensionless wave number, � = ω/�0

is a dimensionless frequency, η is an arbitrary phase, and
u,v ∈ R are constant amplitudes. The corresponding wave
vector is oriented along the wire, q = qeT; its orientation
with respect to the equilibrium magnetization is determined by
Eq. (11). By substituting (19) into the generalized Schrödinger
equation (17), one can obtain the eigenfrequency of the spin
wave,

�(q) = 2Aq +
√

(q2 + V1)(q2 + V2). (20)

Note that the dispersion of spin waves in the straight wire
�s(q) = 1 + q2 is mirror symmetric (i.e., it is invariant with
respect to the transformation q → −q) and has a gap [�s(0) 	=
0] which in dimensional units is proportional to the anisotropy
constant �0 ∝ K . In contrast, the magnon spectrum of the
helix wire is not mirror symmetric, and has a gap at finite q =
q0; see Fig. 5. The gap �(q0) depends both on the anisotropy
constant and on the curvature and the torsion of the wire. The
asymmetry in the dispersion law (20) is due to the presence of
the effective Dzyaloshinskii interaction E D

ex.
In this context, it is instructive to mention that the spin-wave

spectrum in the presence of Dzyaloshinskii-Moriya interaction
is known to be asymmetric with respect to wave-vector inver-
sion and has a minimum at finite wave vectors [25–27]. The
curvature-induced asymmetry in the spin-wave propagation
in nanotubes and its analogy with the Dzyaloshinskii-Moriya
interaction was discussed recently in Ref. [36]. The spin-wave
spectrum for the helix wire was calculated recently in Ref. [33];
however, the deviations from the pure tangential state were not
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FIG. 5. (Color online) The top row demonstrates dispersion laws for spin waves in the helix wire for different anisotropies. The equilibrium
states are homogeneous in the curvilinear reference frame. The symbols correspond to simulation data (see Sec. VI B) and the lines correspond
to the analytics; see Eqs. (20) and (26). A few examples of dispersion relation are shown at the bottom row in terms of density plots to
demonstrate that (20) is a single-frequency branch in the system.

taken into account and the effective Dzyaloshinskii interaction
was not considered.

In order to make some analytical estimates, we consider
now the dispersion law for small curvatures and torsions,

�(q) = �gap + (q − Cσ )2 + O(�2,σ 2,�σ ),

�gap = 1 − �2

2
+ O(�2,σ 2,�σ ).

One can see that the spin-wave spectrum asymmetry increases
with increasing the torsion: the minimum of the frequency
corresponds to q0 = σC (in dimensional units, the correspond-
ing wave number k0 = τC) and its sign is determined by the
product of the helix chirality and the magnetochirality.

A further increase of the curvature and torsion decreases
the gap �gap; there is a critical curve �c = �c(σ ), where the
gap vanishes, �(qc) = 0 and ∂q�(qc) = 0. One can easily find
that qc = C

√
A2 − U and the critical curve �c = �c(σ ) can be

found as a solution of the algebraic equation

4A2U = W 2. (21)

The critical curve �c(σ ), calculated numerically, is plotted in
Fig. 4(a) (dashed red curve). The trial function

� trial
c =

√
1 + 2σ 2 (22)

fits the numerical results with an accuracy of about 5 × 10−3;
see the dotted curve in Fig. 4(a). In the region between the
boundary curve �b(σ ) and the instability curve �c(σ ) (see
Fig. 4), the quasitangential state becomes metastable.

V. HELIX WITH OTHER ANISOTROPY ORIENTATIONS

Let us discuss other types of anisotropies: easy normal and
easy binormal; see Eqs. (6) and Table I.

A. Easy-normal anisotropy

Let us start the analysis of the easy-normal anisotropy with
the limit case of the ring (τ = 0). In this case, similarly to the
easy-tangential anisotropy, the magnetization lies in the ring
plane, θ = π/2. The energy minimization with respect to φ

results in the pendulum equation,

�2∂χχφ + sin φ cos φ = 0.

In analogy with the easy-tangential anisotropy case, the
equilibrium state is the exactly normal state φn = ±π/2 for
relatively small reduced curvatures � < �0 and the onion state
φon

n (χ ) = π/2 − φon(χ ) for � > �0, where function φon(χ ) is
defined by Eq. (10).
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(a) Normal state: κ = σ = 0.45

(b) Onion state: κ = σ = 1

FIG. 6. (Color online) Magnetization distribution in the helix
wire with C = +1 and easy-normal anisotropy according to simu-
lations data; see Sec. VI A.

In the case of finite torsion, there also exists exactly normal
state

θn = π

2
, φn = C

π

2
, E n = −1 − �2 − σ 2

w2
, (23)

where C = ±1; see Fig. 6(a). Such a state is energetically
preferable for relatively small values of � and σ . The
magnetization in the normal state is directed exactly radially,
which is well pronounced in experiments with 3D microhelix
coil strips [17].

In the case of large curvature, there is the periodic (in
curvilinear reference frame) onion solution, which has the
form (13); see Fig. 6(b). Using the same numerical procedure
as in Sec. III B, we evaluate the onion solution and compute
the phase diagram; see Fig. 4(b).

For the approximate description of the boundary �EN
b (σ )

between two phases, we use the fitting function

�EN
b = �0

√
1 −

(
σ

σ0

)2

, σ0 ≈ 0.67,

which fits the numerically calculated curve �EN
b (σ ) with an

accuracy of about 3 × 10−3.
Let us now discuss the linear excitations on the background

of the normal solution. Using the same approach as in Sec. IV,
we linearize Landau-Lifshitz equations (9) on the background
of the normal solution (23), θ = θn + ϑ , φ = φn + ϕ. As a
result, one can get a generalized Schrödinger equation for the
complex function ψ = ϑ + iϕ,

−i∂t ′ψ = (−∂ξξ + Un)ψ + Wnψ∗.

Here the potentials read

Un = 1 − �2 + σ 2

2
, Wn = 1

2
(Cσ − i�)2. (24)

Let us compare these equations with the generalized
Schrödinger equation (17). First of all, there is no effective
vector potential. The second difference is that the potential Wn

in (24) is a complex-valued one; hence the scattering problem
is similar to the two-channel scattering process. Similar to (19),

we apply the following traveling-wave ansatz for the spin-wave
complex magnon wave function:

ψ(ξ,t ′) = ψ1e
i� + ψ2e

−i�, � = qξ − �t ′ + η, (25)

where ψ1,2 are complex constant amplitudes, ψ1,2 ∈ C. Now,
by substituting the ansatz (25) into the generalized Schrödinger
equation (24), one can derive the spectrum of the spin waves,

�(q) =
√

(1 + q2)(1 + q2 − �2 − σ 2). (26)

This dispersion relation is reproduced by the numerical
simulations with a high accuracy; see Fig. 5(b). The critical
dependence, where the gap of the spectrum vanishes, reads

�c =
√

1 − σ 2;

see thick dashed curve in Fig. 5(b). In the region between the
solid and dashed curves, the normal state is metastable.

The dispersion law (26) is symmetric with respect to the
direction of the wave propagation: �(q) = �(−q). Unlike
the easy-tangential case, there is no effective magnetic field
A because the curvature-induced effective Dzyaloshinskii
interaction is absent in the harmonic approximation; cf. (18).
The reason is that the equilibrium state is magnetized exactly
in the normal direction eN, which causes the degeneracy with
respect to the sign of q. A similar behavior is known for thin
films in the presence of Dzyaloshinskii-Moriya interaction,
where the asymmetry in the spin-wave spectrum vanishes if
the system is saturated perpendicularly to the film plane [26].

B. Easy-binormal anisotropy

If the anisotropy axis is directed along eB, one has the
easy-binormal anisotropy, E EB

an ; see (6). The magnetization of
the homogeneous (in the curvilinear reference frame) state
reads

tan 2θb = 2C�σ

1 + �2 − σ 2
, cos φb = C = ±1. (27)

Explicitly, θb reads

θb = π

2
[1 + sgn(Cσ )] − arctan

2Cσ�

V b
0

,

V b
0 = 1 + �2 − σ 2 + V b

1 ,

V b
1 =

√
(1 + �2 − σ 2)2 + 4�2σ 2.

The magnetization of this state is close to the direction of the
helix axis, and hence we name it a quasibinormal state; see
Fig. 7(a). It corresponds to the hollow-bar magnetization distri-
bution in the helix microcoils [17]. For different magnetization
distributions, see also Table I.

The energy of the axial state reads

E b = −1 − �2 − σ 2 + V b
1

2w2
.

Let us mention a formal analogy between the quasitangential
state and the quasibinormal one: the energy of the quasitan-
gential state can be obtained from the quasibinormal one by a
replacement � ↔ σ .
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(a) Quasi-binormal state: κ = σ = 1.5

(b) Onion state: κ = 1, σ = 2

FIG. 7. (Color online) Magnetization distribution in the helix
wire with C = +1 and easy-binormal anisotropy according to
simulations data; see Sec. VI A.

The analogy between two states becomes more lucid if we
use another parametrization for the magnetization m,

m = cos � eT − sin � sin � eN + sin � cos � eB,

where � = �(s) and � = �(s) are the angles in the Frenet-
Serret frame of reference: The polar angle � describes the
deviation of magnetization from the tangential curve direction,
while the azimuthal angle � corresponds to the deviation from
the binormal. Similar to (6), one can rewrite the energy terms
as follows (cf. Appendix in Ref. [11] for details):

Eex = [�′ − κ sin �]2 + [sin �(�′ + τ ) − κ cos � cos �]2,

E EB
an = − sin2 � cos2 �

w2
.

Now one can easily see that the energy functional of the easy-
tangential magnet transforms to the energy functional of the
easy-binormal magnet under the following conjugations: θ →
�, φ → �, and � ↔ σ .

Similarly to the easy-tangential case, in the helix wire
with the easy-binormal anisotropy there exist two equilibrium
states: the homogeneous state (quasibinormal) and the periodic
onion solution; see Fig. 7(b). The phase diagram, which
separates these two states, is plotted in Fig. 4(c).

Now we discuss the magnons for the easy-binormal case. In
analogy with the easy-tangential case, the linearized equations
can be reduced to the generalized Schrödinger equation (17a)
with the following potentials:

V b
2 = 1 + �2 + σ 2 + V b

1

2
,

Ab = −� cos θb − σC sin θb = −�CV b
2

√
2

V b
1 V b

0

.

The dispersion law formally has the form (20) with the
corresponding potentials described above. The dispersion
curve is plotted in Fig. 5(c) for some typical parameters;
it is confirmed by numerical simulations. The critical curve
�c(σ ), where the gap of the spectrum vanishes, can be
found numerically using condition (21). The critical curve
�c(σ ), calculated numerically, is plotted in Fig. 4(c) (dashed

red curve). For the approximate description of the critical
dependence, we use the trial function

� trial
c =

√
σ 2 − 1

2
,

which fits the numerical results of Fig. 4(c) with an accuracy of
about 2 × 10−2; see the dotted curve in Fig. 4(c). In the region
between solid and dashed curves, the quasibinormal state is
metastable.

VI. SIMULATIONS

In order to verify our analytical results, we numerically
simulate the magnetization dynamics of a helix-shaped chain
of discrete magnetic moments mi with i = 1,N . The shape of
the chain is described by Eq. (8b). The magnetization dynamics
of this system is determined by the set of Landau-Lifshitz
equations,

1

ω0

dmi

dt
= mi × ∂E

∂mi

+ αmi ×
[

mi × ∂E
∂mi

]
, (28)

where ω0 = 4πγ0Ms , α is the damping coefficient, and E is
the dimensionless energy, normalized by 4πM2

s �s3 with �s

being the sampling step of the natural parameter s. We consider
four contributions to the energy of the system,

E = Eex + Ean + E f + Ed. (29a)

The first term in Eq. (29a) is the exchange energy,

Eex = −2
�2

�s2

N−1∑
i=1

mi · mi+1,

with � = √
A/(4πM2

s ) being the exchange length. The second
term determines the uniaxial anisotropy contribution,

Ean = −Q

2

N∑
i=1

(
mi · ean

i

)2
,

where ean
i is the coordinate-dependent unit vector along the

anisotropy axis and Q is the quality factor; see (2). The third
term determines the interaction with an external magnetic
field b,

E f = −
N∑

i=1

bi · mi ,

where bi is the dimensionless external field, normalized by
4πMs .

The last term in (29a) determines the dipolar interaction,

Ed = (�s)3

8π

N∑′

i,j=1

mi · mj

|r ij |3 − 3
(mi · r ij )(mj · r ij )

|r ij |5 ,

where r ij ≡ γ i − γ j .
The dynamical problem is considered as a set of 3N ordi-

nary differential equations (28) with respect to 3N unknown
functions mx

i (t),my

i (t),mz
i (t) with i = 1,N . For given initial

conditions, the set (28) is integrated numerically. During the
integration process, the condition |mi(t)| = 1 is controlled.
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We considered the helix wire with length L = 500�s, the
exchange length � = 3�s, and the quality factor Q = 2 fixed.
The curvature κ and the torsion τ were varied under the
restriction �s � 2π/

√
κ2 + τ 2 (discretization step is much

smaller than length of a single helix coil).
In most simulations, we neglect the magnetic dipolar

interaction and consider the Heisenberg magnet with the
energy

EH = Eex + Ean + E f. (30)

A. Equilibrium magnetization states

We start our simulations with easy-tangential magnets.
In Sec. III A, we found that the curvature and the torsion
cause the deviation of the magnetization from the anisotropy
direction, which results in the magnetization distribution (11);
such results are presented in Fig. 2 by the curves for three
different value of the reduced curvature � = 0.1,�c,1 in
the wide range of the torsion σ ∈ (0; 2). In order to verify
our theoretical predictions, we simulate numerically Landau-
Lifshitz equations (28) in the overdamped regime (α = 0.1)
during a long-time interval �t � (αω0)−1.

Numerically we model the anisotropic Heisenberg magnet
with the energy (30) and Q = 2. Simulation data are presented
in Fig. 2 by filled symbols and labeled as (a); one can see an
excellent agreement between our theory and simulations. A
typical magnetization distribution is shown in Figs. 3(a)–3(c)
for the quasitangential states and in Fig. 3(d) for the onion
state.

We also perform simulations for other anisotropy types. The
magnetization distribution for the helix wire with easy-normal
anisotropy is presented in Fig. 6(a) for the normal state and
Fig. 6(b) for the onion one. For the case of easy-binormal
anisotropy, one has two possible states: the quasibinormal one
[see Fig. 7(a)] and the onion one [see Fig. 7(b)].

The second stage of our simulations is to find the equilib-
rium magnetization state of a given helix wire. Numerically,
we simulate Eqs. (28) as described above for five different
initial states, namely, the tangential, onion, normal, binormal,
and random states. The final static state with the lowest energy
is considered to be the equilibrium magnetization state. We
obtain that for each type of anisotropy, the equilibrium state
is either the onion state or anisotropy-aligned state (quasitan-
gential, normal, and quasibinormal state for easy-tangential,
easy-normal, and easy-binormal anisotropy, respectively). We
present simulation data in Fig. 4 by symbols together with
theoretical results (plotted by lines). One can see a very good
agreement between simulations and analytics.

B. Dispersion relations

For each anisotropy-aligned equilibrium state, the magnon
dispersion relation is obtained numerically. It is carried out
in two steps. In the first step, the helix wire is relaxed in an
external spatially nonuniform weak magnetic field,

bj

i = b0ed
i cos sik

j ,

for a range of wave vectors kj = j/(300�s) with j = 0,300.
Here, b0 � 1 is the field amplitude, and si = (i − 1)�s is
the position of the magnetic moment mi . The coordinate-

dependent unit vector ed
i determines the magnetic field

direction: ed
i = eN for the quasitangential state and ed

i = eT

for normal and quasibinormal states.
In the second step, we switch off the magnetic field

and simulate the magnetization dynamics with the damping
value α = 0.01 close to the natural one. Then the space-time
Fourier transform is performed for one of the magnetization
components (we consider the normal component for the
quasitangential state and the tangential component for the other
two equilibrium states). The frequency � which corresponds
to the maximum of the Fourier signal is marked by a symbol for
a given wave vector qj = wkj ; see the top row of Fig. 5. The
absence of additional peaks in the spectrum is demonstrated
by the dispersion maps below; see bottom row of Fig. 5.

VII. DISCUSSION

We have performed a detailed study of statics and linear
dynamics of magnetization in the helix wire with different
anisotropy. We have limited our study by hard magnets, which
can be well described by the model of anisotropic Heisenberg
magnets. Our study was limited by the condition (3).

Let us discuss how our model can be generalized taking into
account the long-range magnetostatics effects. The nonlocal
magnetostatic interaction for thin wires of circular and square
cross sections is known [31] to be completely reduced to a
local effective easy-tangential anisotropy. It is important that
such a conclusion survives for the case of curved wires [31].
Thus the magnetostatic interaction can be taken into account
as an additional anisotropy. In general, one has to consider the
model of a biaxial magnet. Here we limit ourselves by the helix
wire with easy-tangential magnetocrystalline anisotropy. In
this case, the magnetostatics effects can be taken into account
by a simple redefinition of the anisotropy constants, leading to
a new magnetic length,

K → Keff = K + πM2
s ,

w → weff =
√

A

Keff
= 2�√

1 + 2Q
.

(31)

Thus our model (4) is also suitable for thin wires made of a
magnetically soft material under the restriction

h � w, �,
1

κ
,

1

τ
.

In order to check our predictions about the effective
anisotropy, we perform numerical simulations taking into ac-
count the nonlocal dipolar interaction as described in Sec. VI.
Numerically, we integrate Eqs. (28) with the energy (29).

First, we simulate the anisotropic wire taking into account
the dipolar interaction with the energy (29). In this case, we
need to modify the magnetic length according to (31). Thus
we also need to redefine the reduced curvature and torsion as
follows:

� → �eff = τweff, σ → σ eff = τweff. (32)

For the case Q = 2, one gets � = w and weff = 2�/
√

5.
One can see that we have a very nice agreement between
the analytical results (11) and simulations data; see yellow
symbols in Fig. 2. We label these data as (am).
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The second kind of simulations taking into account the
dipolar interaction was aimed to verify the validity of our
approach for soft magnets with Q = 0. For this purpose, we
model the soft isotropic wire taking into account the dipolar
interaction. According to (31), we get weff = 2�. Simulation
data are presented in Fig. 2 by dotted symbols [labeled as (m)]
for the curvature and the torsion redefined according to (32).
By comparing the simulation data with analytical results, one
can see a pretty good agreement in the wide range of curvatures
and torsions. Our simulation data for soft magnets differ from
the theoretical predictions for hard magnets only for relatively
large values of the curvature in the vicinity of the boundary
which separates the quasitangential state and the onion state.

Thus we can conclude that our model of the anisotropic
Heisenberg magnet is physically sound also for thin wires
made of a magnetically soft material.

In conclusion, we have presented a detailed study of
statics and linear dynamics of magnetization in the helix
wire. We have described equilibrium magnetization states
for three types of uniaxial anisotropy, according to possible
curvilinear directions. All three cases have been realized ex-
perimentally in rolled-up ferromagnetic microhelix coils [17].
We have calculated the phase diagram of possible states in
the case of easy-tangential anisotropy: the quasitangential
configuration (11) is energetically preferable for the strong
anisotropy case. In this case, the deviations from the strictly
tangential direction (corkscrew orientation [17]) are caused by
the torsion, and the direction of the deviation depends on both
helix chirality and the magnetochirality of the magnetization
structure; see Eq. (12). In helix wires with large curvature, the
equilibrium state is the onion state (13). The same situation is
observed in magnetic ring wires [37,38]. The magnetization
distribution (27) of the quasibinormal state is directed almost
along the binormal (hollow-bar) orientation [17]. In contrast
to the quasitangential state and quasibinormal one (which are
realized for the easy-tangential and easy-binormal magnets,
respectively), the normal state for the easy-normal magnets
has several peculiarities: (i) The magnetization of the wire is
strictly parallel to the normal direction eN; see (23). (ii) The
normal-state phase is realized for small curvatures and torsions
only: �2/�2

0 + σ 2/σ 2
0 < 1; see Fig. 4(b). (iii) The spectrum of

spin waves on the normal-state background is symmetric with
respect to the direction of the wave propagation.

The torsion of the wire manifests itself in the magnetization
dynamics: an effective magnetic field, induced by the torsion,
breaks the mirror symmetry with the spin-wave direction. The
dispersion law of spin waves (20) is essentially affected by this
field.

There is a connection between the helix geometry and
the tube one: when the helix pitch vanishes, we have a
close-coiled solenoid magnet with properties similar to the
thin-shell nanotube. The spin-wave spectrum in the nanotube
is known [39] to have a gap, caused by the curvature. This
conclusion is in agreement with the dispersion law for the helix
wire; see Fig. 5(a). One has to note that the analogy between
two systems is adequate under the restriction of vanishing
torsions (σ → 0); this explains the absence of the linear shift
in the dispersion law for the nanotube in comparison with (20).
In general, the transition from 1D to 2D systems requires a
more accurate account of the dipolar interaction.

We considered the simplest example of the curved wire
with constant curvature and torsion. Our results can be
generalized for the case of variables parameters κ(s) and τ (s).
To summarize, we can formulate a few general remarks about
the curvature and torsion effects in the spin-wave dynamics.
The linear magnetization dynamics can be described by the
generalized Schrödinger equation (17). In the case of the
straight wire, one has the standard Schrödinger equation for
the complex magnon wave function ψ with a typical potential
scattering. The curvature induces an additional effective
potential: the “geometrical potential” [29]. This is described by
the modification of effective potential U in Eq. (17b). Besides,
there is a curvature-induced coupling potential W : the problem
becomes different in principle from the usual set of coupled
Schrödinger equations; see the discussion in Ref. [34]. Due
to the torsion influence, there appears an effective magnetic
field. The vector potential of this field is constant for the helix
wire [see (16)], and hence the effective magnetic flux density
B = ∇ × A vanishes. Nevertheless, the presence of magnetic
field with the vector potential A breaks the mirror symmetry
of the problem: the motion of magnetic excitations in different
spatial direction is not identical.

Let us mention the connection between the vector potential
and the effective Dzyaloshinskii interaction: the total energy
of the Dzyaloshinskii interaction E D

ex ∝ ∫
ds A · j with the

current j = |ψ |2∇ arg ψ ; see Eq. (18). Using the explicit form
of the integrand, one can find that E D

ex ∝ σqC. This expression
shows a relation between the topology of the wire (namely,
helix chirality) with the topology of the magnetic structure
(namely, the magnetochirality). In this context, it is instructive
to note that there is a deep analogy between the Dzyaloshinskii-
Moriya interaction and the Berry phase theory [40].

We expect that our approach can be easily generalized
for the arbitrary curved wires, where all potentials becomes
spatially dependent: U (s), W (s), and A(s). Depending on
the curvature and the torsion, these potentials can repel or
attract magnons. In the latter case, there can appear a well
with possible bound states, i.e., local modes.
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APPENDIX: ONION-STATE SOLUTION

We start from the static form of the Landau-Lifshitz
equations (9),

F (θ,φ) = 0, G(θ,φ) = 0, (A1)
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with F and G being the nonlinear operators,

F (θ,φ) = − ∂χχθ − σ cos φ(� cos 2θ − 2∂χφ sin2 θ )

+ sin θ cos θ [(� + ∂χφ)2− (1 + σ 2)cos2 φ],

G(θ,φ) = sin2θ [−∂χχφ + (1 + σ 2)sin φ cos φ.

− 2σ∂χθ cos φ] + sin θ cos θ [�σ sin φ

− 2∂χθ (� + ∂χφ)].

By substituting here the expansion (13) in the form

θ (χ ) = π

2
+ ε

N∑
n=1

ϑn cos(2n − 1)χ,

φ(χ ) = −χ + ε

N∑
n=1

ϕn sin 2nχ,

(A2)

and expanding results into series over ε up to the N th order,
one can get the Fourier expansion of operators F and G as

follows:

F (θ,φ) =
N∑

n=1

Fn(ϑ1, . . . ,ϑn; ϕ1, . . . ,ϕn) cos(2n − 1)χ,

G(θ,φ) =
N∑

n=1

Gn(ϑ1, . . . ,ϑn; ϕ1, . . . ,ϕn) sin 2nχ.

Here, Fn and Gn are polynomials of the order n with respect
to ϑk and ϕk . Then the Landau-Lifshitz equations (A1) result
in the set of nonlinear polynomial equations,

Fn(ϑ1, . . . ,ϑn; ϕ1, . . . ,ϕn) = 0

Gn(ϑ1, . . . ,ϑn; ϕ1, . . . ,ϕn) = 0,
n = 1,N, (A3)

which can be solved numerically on ϑk and ϕk with any
precision.

In order to calculate the energy of the onion state, we
substitute the magnetization angles θ and φ in the form (A2)
into the energy density (6), expand the results over ε up to the
2N th order, and average the result over the helix period,

E on(σ,�) = 1

2π

∫ 2π

0
E dχ,

E = Eex + E ET
an = E (ϑ1, . . . ,ϑn; ϕ1, . . . ,ϕn).

(A4)
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