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Spin waves in one-dimensional bicomponent magnonic quasicrystals
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We studied a finite Fibonacci sequence of Co and Py stripes aligned side by side and in direct contact with each
other. Calculations based on a continuous model, including exchange and dipole interactions, were performed
for structures feasible for fabrication and characterization of the main properties of magnonic quasicrystals. We
have shown the fractal structure of the magnonic spectrum with a number of magnonic gaps of different widths.
Moreover, localization of spin waves in quasicrystals and the existence of surface spin waves in finite quaiscrystal
structure is demonstrated.
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I. INTRODUCTION

Quasicrystals [1,2] are aperiodic structures with long range
order which can be constructed in deterministic way by
self-similar replication or by partial projection of appropriate
periodic structure from higher dimensions [3]. This symmetry
can be revealed in diffraction pattern showing the set of discrete
diffraction spots. The diffraction pattern can be described by
the structure factor which, for a quasiperiodic lattice, consists
of a dense set of delta peaks. The location and the amplitude of
peaks of the structure factor is, on the other hand, related to the
position and width of frequency/energy gaps [2]. This feature
of quasicrystals allows for advanced tailoring of the band
structure which exceeds possibilities offered by homogeneous
material or artificial crystals [4,5].

One-dimensional (1D) quasicrystals in the form of the Fi-
bonacci sequence have already been studied for photonic [3,6],
electronic [7,8], and phononic [9] systems. However, research
of spin waves (SWs) in 1D magnonic quasicrystals (MQs)
has been so far mainly limited to theoretical investigations
of multilayered structures [10]. Attention was focused on
lattice models for exchange SWs [11,12] and in a continuous
model for magnetostatic SWs [13]. Recently, SW excitations in
quasicrystals were investigated experimentally regarding their
localization properties in two-dimensional structures made of
thin veins of Py [14,15] and in a larger scale for enhancement
of nonlinear effects in thick yttrium-iron-garnet film with a
Fibonacci sequence of etched groves [16]. These studies have
shown interesting properties of MQs potentially useful for
applications and fundamental studies. However, there is an
evident gap in studies of SW dynamics in MQs, especially
in studies of structures feasible for experimental realization.
This area can be explored theoretically by considering the finite
structure of planar geometry and including both exchange and
dipole interactions. Therefore, we focus our study on planar
bicomponent MQs modulated in nanoscale, i.e., on structures
preserving all features characteristic for wave dynamics in
quasiperiodic structures which are possible for fabrication and
characterization.
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We considered a thin plate of 1D MQs in the form of
a finite Fibonacci sequence consisting of Co and permalloy
(Py: Ni80Fe20) stripes. Ferromagnetic stripes were in direct
contact, which ensures exchange coupling between neighbor-
ing stripes, in addition to long-range dipole interactions. We
investigated a system in a saturation state with static magne-
tization aligned along infinite stripes. The strong dynamical
coupling makes the system dispersive for propagating SWs
with interesting features like a fractal SW spectra and localized
properties of SWs. Moreover, the finite Fibonacci sequence
allowed us to study surface SWs localized at the edges of the
MQs. To find frequencies of SWs and their spatial profiles
we solved a linearized Landau-Lifshitz equation with the
finite-element method (FEM) in the frequency domain [17,18].

First, we present the structures under investigation and
describe shortly the computational method we used (Sec. II).
In Sec. III we present results of our calculations and perform
discussion of obtained results. Finally, in the last section, we
summarize the paper.

II. MODEL AND THE STRUCTURE

We have investigated SW spectra for 1D MQs obtained
according to the Fibonacci inflation rule and made from long
Co and Py stripes of 91 nm width and 30 nm thickness. The
saturation magnetization and exchange constants for Co and
Py are as follows: MPy = 0.86 × 106 A/m, APy = 1.3 × 10−11

J/m, MCo = 1.445 × 106 A/m, and ACo = 3.0 × 10−11 J/m
[19,20]. For each material gyromagnetic ratio γ = 176 GHz/T
is assumed the same. In accordance with the Fibonacci inflation
rule, Co and Py stripes are arranged in Fibonacci sequence
using the following recursion: Sn = [Sn−1Sn−2] [21], where
S1 and S2 are initial structures consisting of single-Co and
-Py stripes, respectively. [Sn−1Sn−2] indicates concatenation
of the two subsequences Sn−1 and Sn−2 of the stripes. We
obtained in the first subsequences: Co, Py, PyCo, PyCoPy, and
PyCoPyPyCo [Fig. 1(a)]. In each next step the structure total
width grows in the x direction, e.g., for the quasicrystal made
from 55 stripes the width of the whole structure is 5 μm. We
have analyzed structures S10, S11, . . . , S16, made of 55, 89,
144, 233, 377, 610, and 987 numbers of stripes, respectively.
With n → ∞ the filling fraction of the Py approach to the
golden ratio σ = (

√
5 − 1)/2 and the sequence of stripes

S∞ becomes rigorously quasiperiodic. We use the coordinate
system as defined in Fig. 1. Along stripes structure is infinite
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FIG. 1. (Color online) (a) First few sequences of a planar Fi-
bonacci MQ (Fibonacci sequences from S1 to S5 are shown)
composed of Py and Co infinite stripes of finite width and thickness.
(b) 1D bicomponent magnonic crystal (MC) with Py and Co infinite
stripes of the same width. Both structures are saturated by external
magnetic field H0. (c) Integrated density of states (IDOS) as a function
of frequency for successive Fibonacci sequences: from S10 (bottom
curve) to S16 (top curve). In the IDOS of the S16 MQ three surface
SWs existing in the widest magnonic gaps are marked with circles.

and saturated by the external magnetic field μ0H0 = 0.1 T.
To emphasize interesting properties of SWs in quasicrystals
we will make reference to magnonic spectra calculated for
magnonic crystal (MC) [22] composed of the same stripes of
Py and Co as in the Fibonacci sequence [Fig. 1(b)].

To calculate SW spectra we solve the Landau-Lifshitz
equation (LLE):

∂M(r,t)
∂t

= μ0γ [M(r,t) × Heff(r,t)

+ α

MS

M(r,t) × (M(r,t) × Heff(r,t))], (1)

where t is time and r is position vector. The last term describes
damping of SWs with α being the dimensionless damping co-
efficient. Heff is an effective magnetic field, which is assumed
to be the sum of three terms: Heff = H0 + Hex + Hdm. Hex is
an exchange field and Hdm is a dynamic demagnetizing field
with components along the x and y directions (due to assumed
geometry the static demagnetizing field is 0). The Hex and
Hdm fields are defined in Ref. [17]. We neglect the magnetic
anisotropy term in Heff , because its influence on the presented
results in MQs and MCs composed of Py and Co nanostripes
is small [23].

From Eq. (1) we find dynamical components of magneti-
zation, m(r,t) [M(r,t) = Mz(r)ez + m(r,t)]. We use a linear

approximation, i.e., we neglect the higher-order terms arising
in Eq. (1) with respect to m. This is justified when Mz is as-
sumed to be constant in time, namely when |m(r,t)| � Mzez,
and therefore Mz ≈ MS (MS is saturation magnetization). We
seek solutions of LLE (1) in the form of monochromatic SWs,
having harmonic dynamics in time: eiωt , where ω is angular
frequency of the SW. Equation (1) is complemented with
Maxwell equations to determine demagnetizing fields. With
these equations, we define the eigenvalue problem, which is
solved by using FEM with COMSOL 4.3a software to obtain dis-
persion relation and profiles of SWs. For more details concern-
ing this computation we refer to Ref. [18]. From the solution of
Eq. (1) we found complex values of ω with its real part corre-
sponding to SW frequency and its imaginary part proportional
to the inverse of time of life of the SW [24]. We have checked
numerically that the influence of damping on SW frequencies
(by assuming α coefficients 0.01 and 0.1 for Py and Co,
respectively, in one calculations and 0 in other) is smaller than
0.5% [25]. Thus, in further calculations we neglect damping.

III. RESULTS AND DISCUSSION

To visualize the SW spectra we use the integrated density
of states (IDOS), defined as:

IDOS(fi) =
i∑

j=0

DOS(fj ), (2)

where DOS is density of SW modes and fi is a frequency of
the ith SW mode (fi = ωi/2π ), which are ordered according
with increased frequency [26]. IDOS as a function of frequency
calculated for successive Fibonacci sequences from S10 to S16

are shown in Fig. 1(c).
Due to the finite width of structures used in calculations,

we always observe a discrete set of frequencies. The finer
steps and faster increase of IDOS are observed for wider
structures (i.e. composed of larger number of nanostripes). By
finding plateaus in IDOS we are able to identify magonic gaps.
The width of these plateaus converges for larger Fibonacci
structures and can approximate width of magnonic gaps in
infinite MQs [see the gray areas marked in Fig. 1(c)]. Within
some plateaus of IDOS, we can also find surface modes of
MQs. In IDOS shown in Fig. 1(c) these surface SWs are
indicated by separated steps (marked with circles for S16)
inside the magnonic gaps, discussed in a later part of the paper.

With the increase (decrease) of size of the structure, the
spectrum of IDOS reveals more (less) details which are
characteristic for quasicrystals [see Fig. 1(c)]. For larger
structures, we are able to identify the fine structure of magnonic
gaps, whereas gaps found for shorter sequences still exist [27].
This provides us with a mechanism to explore the fractal nature
of the SW spectrum in MQs. In Fig. 2(a) we present in detail
the spectrum for structure consisting of 377 nanostripes. The
inset in this figure shows a magnified region of spectrum with
a subtle, multilevel structure of magnonic gaps, resembling the
property of self-similarity.

In order to validate the fractal nature of the SW spectrum
we have calculated its Hausdorff dimension [28]. We divided
the whole investigated frequency range into intervals of equal
lengths �f and then we counted the number N (�f ) of
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FIG. 2. (Color online) (a) IDOS for Fibonacci sequence S14.
Gray areas mark the most pronounced magnonic gaps. Inset presents
the magnified region of the IDOS plot where the complex band-gap
structure is visible. The Hausdorff dimension DH is equal to 0.9602.
(b) IDOS for MC consisting of 144 nanostripes, DH = 1.

these intervals which are included in or partially overlap with
magnonic bands. The number N (�f ) increases with a decrease
of length �f and the dependence of log [N (�f )] on log ( f0

�f
)

should be linear (f0 is a frequency of the first mode in spectra,
and its choice is arbitrary and does not influence results).
The Hausdorff dimension of the spectrum is defined as the
derivative:

DH = d log[N (�f )]

d log
(

f0

�f

) . (3)

Numerically, we have calculated DH as a coefficient of re-
gression for dependence of log [N (�f )] on log ( f0

�f
). We have

obtained the value DH = 0.9603 with the standard deviation
0.0011 and the coefficient of regression R2 = 0.99991, which
points close to linear dependence. This noninteger value of
DH proves the fractal property of the SW spectra in MQs.
Its value is close to the DH obtained for plasmonic Fibonacci
structures [28]. In the considered range of frequencies (which
is accessible for experimental investigations) we found the
DH practically independent on the size of intervals �f . This
indicates that the spectrum is not a multifractal one and can be
characterized by a single DH dimension.

The IDOS for MCs has a regular dependence on f . In
Fig. 2(b) we have plotted the IDOS(f ) for a MC structure

consisting of 144 nanostripes. Here DH is equal to 1. The first
magnonic band gap starts at 16.5 GHz; however, in MQ gaps
are present already at the lower frequencies. The existence of
low-frequency gaps in MQs can be useful for application, for
instance, in magnon transistors [29].

The other interesting issue of excitations in quasicrystals is
a possibility for their spatial localization in MQ interiors [6].
In crystals without any defects, all modes are extended, but in
random systems localization occurs [30,31]. MQs are neither
periodic nor random systems. Therefore, we can observe both
extended and localized SW modes.

To discuss localization quantitatively, we need a measure
of the strength of localization. For this purpose we will use
localization factor λ [32]. The parameter λi for the ith mode
is defined as:

λi = 1

L

j=L∑

j=0

log |mx,i(xj )|, (4)

where the in-plane dynamical component of magnetization
mx,i(xj ) is taken at the point xj and is normalized according
with the norm:

1

L

j=L∑

j=0

|mx,i(xj )| = 1. (5)

Summation runs over all L equidistant points xj covering all
the space between surfaces of the structure along x axis. The
λ = 0 corresponds to uniform excitation. For all other modes
λ takes negative values. Modes with stronger localization are
characterized by a large absolute value of λ.

In the considered systems, the separation of frequencies
of SW modes quantized across the thickness, exceeds the
frequency range considered in this paper. Thus, for further
analysis of localization factors, we take SW amplitude from
the middle plane of the structure.

Localization factors of SWs in MC and the Fibonacci qua-
sicrystal (S12) are shown in Fig. 3. In general, the localization
factor λ increases in magnitude with growing frequency. For
extended modes (e.g., in MCs or the low-frequency part of the
MQ spectra) with increasing frequency, the number of nodal
points in the profiles of the SWs increases (see the profiles
of the SWs in Fig. 3). Because Py has lower ferromagnetic
resonance frequency than Co, the modes distribute their
amplitude more in Py stripes with nodal points placed mainly
in Co stripes. Such inhomogeneous distribution increases the
magnitude of λ. The rate of this change is relatively small for
MC [see Fig. 3(b)] where the localization factor for SWs up to
20 GHz does not fall below −1 (apart from mode 73 being a
surface SW, which is discussed later). In the case of MQs [S12

shown in Fig. 3(a)], changes of the measure of localization
have a tendency similar to that for MC to ≈15 GHz.

Modes corresponding to higher frequencies feel the struc-
ture stronger and, because of that, they oscillate more sharply
than modes corresponding to lower frequencies. The Fibonacci
sequence is much more complex than a periodic one, thus the
high-frequency excitations essentially differ more for MQs
than for MCs. There are three reasons for this: (i) in MQs Py
stripes of both single (91 nm) and double (182 nm) widths are
present [see Fig. 1(a)], (ii) the Py and Co stripes are distributed
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FIG. 3. (Color online) Localization factors λ of SW modes in
(a) the S12 sequence of the Fibonacci MQs and (b) of MC composed
of the same number of nanostripes in dependence on frequency.
Numbers labeling points in the (λ,f ) plot denote successive numbers
of modes ordered with increased frequency. Profiles of the modulus
of the x component of magnetization along the structure are plotted
in insets above the main plot. The region of the selected band in (a)
is magnified in the separate inset. Gray areas denote magnonic gaps
of the widest width.

quasiperiodically within the MQ, and (iii) the neighborhood
of each stripe can differ for MQs, while it is always the same
for MC. In the considered, higher-frequency range, modes
are concentrated in selected single- or double-Py stripes in
MQs. The first group of modes above the extended mode
range consists of modes with the amplitude concentrated in
some double-width Py stripes with one nodal point in each Py
stripe. Then there is a group of modes with two nodal points
in the double-Py stripe, i.e., a second harmonic of the double
stripe (e.g., modes 109 and 118 in Fig. 4) and then group of
modes concentrated in a few single-Py stripes with one nodal
point within the Py stripe, e.g., mode 133.

Each of the above-discussed localized bulk modes is located
at given sets of positions (single- or double-Py stripes), mostly
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FIG. 4. (Color online) The profiles of the modulus of the
x component of magnetization in S12 Fibonacci MQs for the bulk
modes 109, 118, and 133, labeled in Fig. 3(a). The gray and green
bars in the background mark the regions of Py and Co, respectively.
The letters A, B, C, and D denote the areas (marked with dashed
lines) of SW localization with similar surroundings. For mode 133
the amplitude from the B area is zoomed in and shown on the white
background.

because of the similarities between surroundings of positions
of SW amplitude localizations. For a selected frequency, at
most a few Py stripes with very similar surroundings are able
to hold the same excitation. In Fig. 4 we analyze in detail the se-
lected profiles of those bulk modes (modes 109, 118, and 133),
localized within the S12 MQ, as they are the modes of higher
frequencies (18.37, 18.47, and 19.13 GHz, respectively). The
highest amplitude for mode 109 is observed in the double-
width Py stripes. We mark the two locations A and B with
the highest amplitude of the SWs. By zooming in less intense
excitation at location B we noticed that it has the same spatial
profile as the most intense excitation from location A. This
similarity can be explained by inspecting the neighborhood
of these two locations. For location A the following sequence
of single- (s) and double- (d) width Py stripes can be found:
|sdsddsdsddsddsAsddsdsddsddsdsdsddsdd. The symbol
| denotes the surface of the structure. By swapping the left and
right surroundings of B the following sequence of stripes could
be found: dsddsddsdsddsddsBsddsdsddsddsdsdsddsds.
It is easy then to notice that the sequences of stripes in the
neighborhoods of locations A and B differ at very far positions
(i.e., at positions 14 and 19 from the positions of A and
B), which are marked with bold letters in the sequences. A
similar discussion can be conducted for modes 118 and 133. It
also could be noted that mode 118 is concentrated in the two
double-Py stripes separated by the single Co stripe, whereas
mode 133 is concentrated within one single Py stripe.

It was shown that for photonic and electronic structures
the localization of the modes in the Fibonacci structures is
supposed to be weaker than exponential and is governed by
a power-law dependence [33,34]. This property makes them
substantially different from either defect modes in disordered
structures resulting from Anderson localization or surface
modes in periodic systems induced by termination of the
structure. We expect that these “chaotic” modes [21] will have
self-similar properties [34] also for magnonic systems.

We discuss now the modes with amplitude localized at the
surface of the structure, i.e., the surface states, found in MC
and MQ spectra. Occurrence of surface modes is determined
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mostly by the element placed on the surface of the crystal
(in our case it is the single stripe of Py) and its frequency
overlapping with the gap [35]. Only up to two surface modes
structured on the basis of the excitation with fixed quantization
in the surface stripe (i.e., with fixed number of nodes in
the Py stripe) can occur. The SW spectrum of the finite
Fibonacci structure contains many surface modes which exist
in frequency gaps, appearing in large numbers in comparison
to the periodic structure. Additionally, it is important to notice
that the amplitude of surface waves penetrate to the inside
of the structure, which also has an impact on the properties
of excitation. Because of that, surface modes appearing in
MCs and MQs could differ, regardless of the same surface
element and amplitude distribution in this element. In MC we
have found only one surface mode up to 20 GHz [mode 73 in
Fig. 3(b)] but in MQs, many surface modes can be identified
[e.g., mode 55 shown in Fig. 3(a)]. They have λ < −4, which
exceeds the factor of bulk modes. For some modes with a
frequency near the end of the bunch of bulk modes (e.g., mode
102) distinguishing between the bulk and surface characters
can be ambiguous. We can point out that the strength of the
localization of the surface modes increases if its frequency is
located in the center of the gap, when this gap is wider, and
when its frequency is high.

Finally, we discuss the long-wavelength part of the spectra.
In the low-frequency limit, both periodic and Fibonacci
structures exhibit similar properties: much of the same profiles
[see the insets in Figs. 3(a) and 3(b) for modes 1 and 2],
frequencies, and localization factors of the SWs [compare
Figs. 3(a) and 3(b)]. In this limit both systems can be treated
as metamaterials characterized by effective magnetic proper-
ties [36]. It is worth noting that, in this limit, the IDOS(f )
spectra of MQs and MCs have features characteristic for the
Damon-Eshbach wave in homogeneous film [19,20].

We have proposed the MQ composed of Py and Co
stripes suitable for experimental study of fractal properties in
magnonics. Indeed, the magnonic band structure has already
been investigated in MCs composed of Py or Co and Py
stripes with periodicity ∝500 nm and interesting physical
properties, like magnonic band gaps and reprogrammability,
have been demonstrated [19,37–39]. Brillouin light scattering
(BLS) to measure dispersion relations of SWs, micro-BLS
spectroscopy [40], and time-resolved magneto-optical Kerr
effect (TR-MOKE) microscopy [41,42] with spatial resolution
down to 250 nm, to visualize profiles of SW excitations, have
been used. These techniques can be directly implemented to
study SWs in MQs to confirm predicted properties. The area of
SW localization in the MQs under investigation spreads over a
few Py stripes [e.g., modes 55, 102, and 109 in Fig. 3(a)],
which is above the limits of the spatial resolution in the
BLS and TR-MOKE microscopes. Such direct studies of SW
localization are extremely difficult for layered systems but can
be performed for considered structures of in-plane periodicity.
Moreover, properties of SWs in MQs presented above preserve
also in larger structures, i.e., with stripe width extended up to
few hundred nm. To confirm this we present, in Fig. 5, IDOS
as a function of frequency calculated for MQs composed of
250 nm width Py and Co stripes, i.e., the size that exactly
matches the stripes of the MCs studied in Ref. [19]. The
obtained spectrum is shifted to frequencies lower than in the
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FIG. 5. (Color online) IDOS of the Fibonacci sequence S14 com-
posed of wide Py and Co stripes of 250 nm width and 30 nm
thickness. Gray areas mark the most pronounced magnonic gaps.
The inset presents the magnified region of IDOS plot where the
complex band-gap structure is visible. The Hausdorff dimension of
the spectrum is equal to DH = 0.9413.

case of MQs with stripes of 91 nm width [Fig. 2(a)]. It has the
same fractal structure, which is confirmed by a slightly smaller
Hausdorff dimension, DH = 0.9413.

IV. SUMMARY

We have theoretically investigated periodic and quasiperi-
odic planar magnonic systems suitable for experimental real-
ization. Fibonacci and periodic structures which consist of thin
Py and Co stripes where considered. We have shown that the
spectrum of IDOS for MQ systems exhibits a complex, multi-
level structure of frequency gaps with finer details revealed for
long Fibonacci sequences. Calculated magnonic spectra form a
fractal set with a self-similarity property characterized by the
Hausdorff dimension DH = 0.9602. Computed localization
factors allow us to discuss quantitatively the strength of
localization of SWs in MQs. We have shown the localization of
the bulk modes in quasiperiodic systems and its enhancement
for higher frequencies, where the spectrum of Fibonacci
structures becomes substantially complex. The presence of
multiple magnonic gaps supports also the existence of surface
SWs that are observed numerously in MQs. In the long-
wavelength limit both MQs and MCs preserve similar effective
properties. Obtained results show that quasicrystal structures
can be investigated in magnonics with standard experimental
techniques and their fractal properties can be explored.
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