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Thermal conductivity in large- J two-dimensional antiferromagnets: Role of phonon scattering
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Motivated by the recent heat transport experiments in two-dimensional antiferromagnets, such as La2CuO4,
where the exchange coupling J is larger than the Debye energy �D , we discuss different types of relaxation
processes for magnon heat current with a particular focus on coupling to three-dimensional phonons. We
study thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann
formalism within the relaxation-time approximation and memory-function approach. Within these approaches,
a close consideration is given to the scattering of magnons by both acoustic and optical branches of phonons. A
remarkable accord between the two methods with regards to the asymptotic behavior of the effective relaxation
rates is demonstrated. Additional scattering mechanisms, due to grain boundaries, impurities, and finite correlation
length in the paramagnetic phase, are discussed and included in the calculations of the thermal conductivity κ(T ).
Again, we demonstrate a close similarity of the results from the two techniques of calculating κ(T ). Our
complementary approach strongly suggests that scattering from optical or zone-boundary phonons is important
for magnon heat current relaxation in a high-temperature window of �D � T � J .
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I. INTRODUCTION

After almost three decades of intensive studies, cuprates
continue to attract significant interest because of their out-
standing properties and due to the continued research effort in
high-temperature superconductivity [1–7]. In particular, their
magnetic properties remain inspirational, both as potentially
responsible for the mechanism of superconductivity [2] and in
their own right as relevant to a larger class of low-dimensional
antiferromagnets and as a test case for various theoretical
models [7,8]. However, understanding of some of the prop-
erties of the magnetic excitations in layered cuprates remains
incomplete. This concerns interactions of such excitations with
themselves and various other perturbations, as well as the role
of such interactions in observable spectroscopic and transport
phenomena.

Earlier studies of thermal conductivity in La2CuO4 [9,10]
have demonstrated large contribution of magnetic excitations
to the in-plane thermal transport, thus offering a unique
window into their properties which are not easily accessible
by other methods. More recent experimental advances [11]
call for a deeper theoretical insight into the mechanisms of
magnon heat current dissipation. This interest goes beyond
a particular material and highlights a broader importance of
general understanding of the transport phenomena in a wider
class of antiferromagnets. While scattering of magnons among
themselves and due to fluctuations of the order parameter in
the paramagnetic state has received significant attention in the
past [12], the impact of phonons on magnon lifetime and other
properties of magnetic excitations has only recently begun
receiving attention [13].

In this context, this work focuses on the physics of magnon
scattering and its role in magnetic thermal transport of quantum
antiferromagnets. While our approaches are generic, our anal-
ysis is strongly motivated by La2CuO4 and related cuprates.
Therefore, we concentrate on the case of two-dimensional
(2D) magnons and superexchange coupling J large compared
to the Debye energy �D , for temperatures T � 0.4J , where

the validity of a magnon description is well established [14].
Moreover, most of our work is devoted to the magnon-phonon
scattering to clarify the role of this less-studied relaxation
mechanism. Additional effects, such as grain boundary and
impurity scattering and the role of finite correlation length, are
discussed less extensively.

In addition to investigation of the transport properties of
layered cuprates, we also contribute to the formal development
of transport theory by contrasting the results from two com-
plementary methods: the Boltzmann theory and the memory-
function technique. For the relaxation-time approximation
within the Boltzmann approach, we take advantage of the
large energy scale of magnetic excitations and thus operate
with asymptotic, long-wavelength expressions augmented by
appropriate cutoffs and some well-justified modeling of the
optical phonon spectra. For the magnon-phonon scattering we
advocate the use of a simplified “effective phonon density of
states (DOS)” approach, which allows for straightforward yet
fairly realistic calculations. In the memory-function approach,
on the other hand, we maintain microscopic expressions
for the magnon spectra valid in the entire Brillouin zone,
while using coupling to a single dispersive phonon branch
with a model dispersion, which introduces scattering on both
acoustic and optical-like zone-boundary modes. The final
results from both approaches, i.e., the thermal conductivities
versus temperature, are found to be remarkably similar.
Moreover, a complete agreement between both approaches on
the power-law asymptotic regimes, controlled by the optical
and acoustic phonons, is also demonstrated.

The paper is organized as follows: We begin with a general
discussion of the qualitative features of the magnon-phonon
scattering in Sec. II followed by intuitively clear details of
Boltzmann approach and calculations of κ(T ) within it in
Sec. III. We continue with the exposition of the memory-
function approach and its results for the effective relaxation
rates and thermal conductivity in Sec. IV. A brief discussion
of other scattering mechanisms and of their respective roles
is given in the corresponding sections devoted to the thermal
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conductivity calculations. Technical details, discussion of the
physical range of spin-phonon coupling, etc., are delegated to
several Appendixes.

II. MODEL AND QUALITATIVE CONSIDERATIONS

Generally speaking, a spin system on a lattice can always be
described by a Hamiltonian consisting of spin-only and lattice-
only parts Hs and Hph, respectively, in addition to a coupling
between them, which we will assume to be of magnetoelastic
nature Hs-ph:

H = Hs + Hph + Hs-ph = H0 + Hs-ph. (1)

Having in mind La2CuO4 and related cuprates, we take a
simple, nearest-neighbor-dominated Heisenberg model with
the superexchange constant J on a square lattice to be a faithful
description of the 2D antiferromagnet of interest. Appendix A
offers the standard linear spin-wave treatment of it leading to
the free-magnon Hamiltonian

Hs ⇒
∑

k

εkβ
†
kβk, (2)

where εk is the magnon energy and �=kB =1 from now on.
The full phonon spectrum of La2CuO4 is representative of

that of the other cuprates and comprises 3 acoustic and 18
optical modes. With a typical bandwidth of each branch from
50 to 400 K, together they span the range of energies reaching
900 K [15]. While in what follows we will model them in a
simplified fashion, one can write their Hamiltonian as

Hph ⇒
∑
q,�

ωq,�a
†
q�aq�, (3)

where � numerates branches of phonon excitations.
A straightforward derivation yields the lowest-order

magnon-phonon coupling in the following general form (see
Appendix B for details)

Hs-ph =
∑

k,k′,q

∑
�

{
V �

k,k′,qβ
†
k′βk

+ 1

2
V

od,�
k,k′,q(β†

k′β
†
−k + H.c.)

}
(a†

q� + a−q�), (4)

where V �
k,k′,q and V

od,�
k,k′,q are the “normal” and “anomalous”

spin-phonon coupling vertices. For the coupling to acoustic
and optical (or zone-boundary) phonons, they assume different
asymptotic forms, discussed in the next section and in
Appendix B.

Since we are interested in the thermal transport by magnons,
the following generic consideration is useful. Because the
phonon Debye energy (�D ≈ 400 K) is much smaller than
the magnon bandwidth (2.2J > 3000 K), phonons can be
assumed to be in thermal equilibrium, i.e., playing the role of
a “bath.” This is well justified for temperatures comparable to
or above half of the phonon Debye energy T � �D/2, which
is about 200 K in most cuprates. Then, neither the momentum
nor the energy of a magnon is conserved in the processes of
magnon-phonon scattering or, in other words, the momentum
and energy are transferred from the magnon flow to the phonon

(b)

k kk’

q(a)

k kk’

q

q

(c)
k kk’

FIG. 1. (Color online) Magnon-phonon scattering diagrams.
Solid lines are magnons, wavy lines are phonons. (a) Decay (phonon
emission), (b) recombination (phonon absorption), (c) anomalous
process (absorption of magnon).

bath. In that case, magnon relaxation time and transport times
can be treated as the same.

Thus, in contrast to the intermagnon scattering, the magnon-
phonon scattering channel is free from many restrictions of
the former and does not have the limitations on the phase
space inherent to an umklapp scenario. While the spin-lattice
coupling constant may be small, phonons at temperatures T >

200 K are abundant in the materials of interest.
Another qualitative consideration, elaborated on in Sec. III,

is that magnetic excitations are confined to lower dimensions
than phonons (i.e., 2D versus 3D). In this case, momentum
of phonons perpendicular to the 2D planes is not conserved,
which also leads to fewer restrictions on the kinematics of the
magnon-phonon scattering.

III. BOLTZMANN APPROACH

A. Relaxation rates

Within the Boltzmann approach, the key element is the
calculation of the scattering rates. As is argued above, transport
and quasiparticle relaxation rates of magnons due to scattering
on phonons should be the same. Then, in the lowest order of
spin-phonon coupling, the problem is reduced to evaluation of
the diagrams in Fig. 1, which yield magnon relaxation rate by
the standard diagrammatic method

1

τk
= π

∑
k′

∑
q‖

∑
q⊥

×{|Vk,k′,q|2(nq + nk′ + 1)δk,k′+q‖δ(εk − εk′ − ωq)

+ |Vk′,k,q|2(nq − nk′)δk′,k+q‖δ(εk′ − εk − ωq)

+ ∣∣V od
k,k′,q

∣∣2
(nk′ − nq)δk′+k,q‖δ(εk′ + εk − ωq)

}
, (5)

with the first term corresponding to the diagram in Fig. 1(a),
in which phonon is emitted, and the second to Fig. 1(b), in
which phonon is absorbed. The third term is due to anomalous
process [Fig. 1(c)], in which two magnons are absorbed and
the phonon is emitted. We drop summation over the phonon
branch index � here, thus considering one branch of phonons
at a time.

The magnon-phonon vertices in Eq. (5) are the same as
in Eq. (4) and for the first two terms they are related by a
permutation of the initial and final states of the magnon. Note
that the 2D momentum conservation in Eq. (5), explicated
by the δ1,2+3’s, concerns only the in-plane momentum of the
phonon q‖, while the component perpendicular to the plane q⊥
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is not conserved. This is natural as magnons have infinite mass
in the q⊥ direction. This feature is important for the future
consideration and we separate sums over the components of
phonon momenta q = (q‖,q⊥) in Eq. (5) explicitly.

B. Approximations

There are two approximations for La2CuO4 and related
cuprates that follow from the fact that all relevant energies T

and �D are much smaller than the magnon bandwidth W ≈
2.2J : (i) magnon energies can be linearized

εk ≈ v|k| (6)

because for all practical purposes T � J and hence |k| ∼
T/J � 1, (ii) similarly, magnon-phonon vertices for the
optical and acoustic phonons are (V od

k′,k,q ≈Vk,k′,q):

Vk,k′,q ≈ gopt
sp

√
|k||k′|, (7)

Vk,k′,q ≈ gac
sp

√
|k||k′| · |q‖|√|q| , (8)

where v is the magnon velocity (v = 1.158
√

2J , lattice
constant a = 1), and both g

opt
sp and gac

sp are O(J )< J (see
Sec. III F and Appendixes B and C for details) [16]. For
the acoustic case, the phonon dispersion in the vertex is also
linearized, in line with the Debye approximation.

While magnon-phonon vertices in Eqs. (7) and (8) can
be proposed on general grounds, they can also be derived
from realistic microscopic models of spin-phonon coupling,
an exercise deferred to Appendix B. The same Appendix also
deals with the role of polarization of the three-dimensional
(3D) phonons in the coupling to spins. The asymptotic
k,k′,q → 0 form of these microscopic vertices agrees with (7)
and (8), aside from some additional angular dependence that
does not affect the results. The typical magnitude of coupling
constants gsp’s will be discussed in Sec. III F.

We also make a note that coupling to the optical mode
should typically involve a large in-plane momentum transfer
q‖, in which case a zone-boundary phonon from the nominally
acoustic phonon branch is equivalent to the optical phonon.
Such processes result in the scattering of a magnon from,
e.g., the branch near k → 0 to another branch near the AF
ordering vector k′ → QAF [=(π,π )]. Thus, in the following we
do not distinguish between the optical and the zone-boundary
phonons.

The next line of approximations requires some qualitative
kinematic consideration. The linearization of magnon energies
in Eqs. (6)–(8) is well justified for a typical εk ∼T and
already allows for some simplification in Eq. (5). Naturally,
the “typical” range of momenta of magnons involved in the
heat transport at relevant temperatures is limited by �T/v,
which is �π and concerns a small fraction of the Brillouin
zone. Then, the typical in-plane component of the phonon
momenta |q‖| = |±k ∓ k′| for the phonons involved in the
magnon scatterings in Fig. 1 must also be limited to the
same range |q‖|�T/v (see the sketch in Fig. 2). Note that
if (acoustic) phonons would also be confined to 2D, this would
imply that their typical energy needs to be much less than the
energy of magnons: ωq ≈c|q‖|∼ (c/v)T �T .

0 k(q)

εk (ωq)

ω0 + αq2

c|q|

v|k|

k
k‘q||

FIG. 2. (Color online) Qualitative sketch of the magnon (εk =
v|k|) and acoustic and optical phonon dispersions (ωq’s) in the
limit vc. Magnon and acoustic phonon energies are linearized.
Schematics of the magnon (momentum k) absorbing a phonon
(in-plane momentum q‖) is also shown.

However, for the 3D phonons the situation is radi-
cally different. The energy conservations in Eq. (5) imply
ωq =|v(|k| ± |k′|)|, so for the typical magnon energy T , the
typical energy of a phonon is also T . This, in turn, implies that
the out-of-plane component of the phonon momentum is much
larger than the in-plane one q⊥ |q‖|. This is particularly easy
to see for the acoustic phonon, for which the combination of
the (in-plane) momentum and energy conservations yields [17]

c2(|k ± k′|2 + q2
⊥) = v2(|k| ± |k′|)2, (9)

so for |k|,|k′|,|q‖|∼T/v it follows that q⊥ ∼T/c|q‖|. For
the optical phonon, ωq ≈ω0+α(q̃2

‖ + q2
⊥), the argument is

simply that the typical |q̃‖|∼T/v�1 while q⊥ does not
have such restrictions. Note that for the optical phonon
q̃‖ =q‖±QAF is shifted by the in-plane AF-ordering vector.

Altogether, this begs for the following approximation:

ωq ≈ ωq⊥ , (10)

simply neglecting the dependence of the phonon energy on the
(small) in-plane momentum transfer |q‖|. This approximation
immediately simplifies Eq. (5) as the integral over q‖ simply
removes the in-plane momentum delta functions, while the
rest of the expression is independent of it (see a slightly more
involved treatment of the case of the acoustic phonon later).
Then, the integration over k′ in Eq. (5) is simply removed
by the energy conservation using linearized magnon energies.
Lastly, the remaining integration over q⊥ can be rewritten by
introducing an effective DOS for phonons. Thus, one of the
main results of this work is the development of an “effective”
approach in which k and T dependencies of the relaxation rates
in Eq. (5) are given by simple one-dimensional (1D) integrals.
A very close precision of this approach is demonstrated in
Appendix D by a comparison with the direct integration in
Eq. (5) without approximation of Eq. (10).

C. Effective phonon DOS

After using Eq. (10), the dependence of the integrand in
Eq. (5) on q⊥ is only through ωq⊥ , so it is natural to introduce
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FIG. 3. (Color online) Qualitative pictures of the effective DOS
for the optical phonons D⊥(ω) [Eq. (11)]. (a) Model I is the constant
with the minimal energy ω0, (b) Model II, same with a more realistic
square-root singularity at ω0, (c) Model III is for the “flat” mode at
ω0 [Eqs. (12)–(14), respectively].

an “effective” density of states of phonons

D⊥(ω) =
∑
q⊥

δ(ω − ωq⊥ ). (11)

We would like to clarify that the “effective” DOS is not the
full phonon DOS, but a 1D version of it, which corresponds to
the DOS of phonons with the vanishing in-plane momentum.

1. Optical

Given that the phonon spectrum of cuprates has more than
a dozen of optical modes, covering the range from 100 to
900 K [15], we reserve the right to model them in a more
straightforward fashion. A sketch of such “model” densities
of states is shown in Fig. 3. The first model, which will be
referred to as “Model I,” is just a constant DOS with the gap
that corresponds to the lowest optical mode

D⊥
I (ω) = �(ω − ω0)

ωmax − ω0
. (12)

“Model II” [Fig. 3(b)] corresponds to the optical mode in the
sketch in Fig. 2 with dispersion ωq =ω0+αq2 and includes
a more realistic square-root singularity at ω0 due to the 1D
nature of the “effective DOS” in Eq. (11):

D⊥
II (ω) = �(ω − ω0)

2π
√

α(ω − ω0)
, (13)

with α= (ωmax−ω0)/π2 from normalization. Model III

D⊥
III(ω) = δ(ω − ω0), (14)

corresponds to the “flat” optical mode. We would like to note
that the results for the thermal conductivity discussed later are
remarkably insensitive to the choice of the specific model for
the phonon DOS.

2. Acoustic

The effective phonon DOS for the dispersion ωq⊥ =cq⊥ is
a constant, same as the Model I in Eq. (12), but with no gap
and an upper cutoff being �D(∼c)

D⊥
ac(ω) = 1

πc
�(�D − ω). (15)

The validity of (15) is also restricted from below by ωmin =
(c/v)εk at which q⊥ ≈|q‖|, as we will discuss later.

D. Scattering on the optical phonon

The case of optical phonon is straightforward since
magnon-phonon coupling within the approximation (7) does
not depend on the phonon momentum. Using linearized form
of magnon dispersion and magnon-phonon vertex from (6)
and (7), approximation of Eq. (10), and replacing

∑
k′ with

1
π

∫
k′dk′ which takes into account two magnon modes per

Brillouin zone of the square lattice, yields

1

τk
≈

(
g

opt
sp

v

)2(
εk

v2

) ∫ ωmax

0
dω D⊥(ω)

×{�(εk − ω)(εk − ω)2(n(ω) + n(εk − ω) + 1)

+ (εk + ω)2(n(ω) − n(εk + ω))

+�(ω − εk)(ω − εk)2(n(ω − εk) − n(ω))}, (16)

where the first term is from the phonon-emission diagram
in Fig. 1(a), the second is due to phonon-absorption in
Fig. 1(b), and the third is the anomalous term in Fig. 1(c),
first, second, and third terms in Eq. (5), respectively. For the
phonon-emission term, the phonon energy is limited from
above by the energy of the magnon that emits it εk, and in
the anomalous term the situation is reversed as the phonon
energy must exceed that of the magnon, so the integration is
limited from below. in Eq. (16), ω is also restricted implicitly
through the DOS by ω0, the lowest energy of the optical
mode, and by ωmax, the highest energy of phonon bands.
It is assumed that εk < ωmax. Thus, after all the legitimate
approximations discussed above are implemented, we have
a compact expression of the relaxation rate in terms of 1D
frequency integrals [Eq. (16)]. Note that for the Model III (flat
phonon mode) of the effective phonon DOS this integral in
Eq. (16) is trivially removed and the relaxation rate is given
by a compact analytical expression, presented in Appendix D.

In the limit of low temperatures T ,εk �ω0, phonon-
emission term in 1/τ in Eq. (16) is strictly zero as the
magnon with εk <ω0 cannot emit an optical phonon, and
the two remaining terms are exponentially small ∼e−ω0/T .
For higher temperatures T � �D , using the hierarchy of
scales T >εk >ω0 (see Ref. [18]) and n(ω)�T/ω yields the
asymptotics for the first two terms in Eq. (16):

1

τ
(1)
k

∝ T ε3
k

v2ω0
,

1

τ
(2)
k

∝ T 2ε2
k

v2ω0
, (17)

where we used g
opt
sp ∼ v. This is valid for Models I and II

of the effective phonon DOS discussed above, while for the
Model III (flat phonon), 1/τ (2) has the same asymptotics
1/τ (1). Although it is natural to expect that the heat is
conducted largely by thermalized magnons with a “typical”
εk ∼T , this is not exactly so in our case because the
distribution of the heat-conducting magnons “leans” towards
lower energies as we shall discuss later. Nevertheless, it is
worth pointing out that “on a thermal shell,” i.e., at εk = T ,
where the memory-function and Boltzmann approaches can
be consistently compared with each other, both expressions in
Eq. (17) yield the same

1

τ opt
∝ T 4

v2ω0
. (18)
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FIG. 4. (Color online) T dependence of the magnon relaxation
rate on the optical phonons [Eq. (16)] for εk =T and using effective
phonon DOS models in Eqs. (12)–(14). The results are normalized to
the high-temperature asymptotic behavior (18) (T 4/v2ω0). Parame-
ters are as discussed in text and indicated in the graph, ωmax =950 K
for Models I and II. The vertical axis is in units of (gopt

sp /v)2.
Inset shows individual contributions of the three terms in Eq. (D1)
(diagrams in Fig. 1) for Model III. The results for the relaxation rate
due to acoustic phonons [Eq. (21)] are also shown for a representative
choice of the Debye energy �D =400 K. J =1500 K.

This coincides with the results of the memory-function
approach discussed later. We note that the phonon-emission
is always subleading to the absorption term [18], and the
anomalous term is negligible at high T .

Our Figs. 4 and 14 demonstrate these asymptotic trends
explicitly. They also show a close quantitative similarity
of the magnon relaxation rates obtained from Eq. (16)
using three different models for the effective phonon DOS
[Eqs. (12)–(14)]. In Fig. 4, the T dependence is shown for the
relaxation rate for εk =T , i.e., on the thermal shell. The results
are normalized to T 4/v2ω0 to make the high-temperature
asymptotic behavior of (18) apparent. The vertical axis is in
units of (gopt

sp /v)2. Inset shows individual contributions of the
three terms in Eq. (16) for the Model III (14). For this model,
the contributions of the phonon-emission and anomalous terms
[first and third in Eq. (D1)] are explicitly limited by the step
functions, resulting in a kink at T =ω0, while for the other
models these are smoothed out. For the sake of a comparison
with the acoustic phonons in the next section, we also note that
the results for the scattering on the optical phonon in Figs. 4
and 14 likely underestimate the effect by a numerical factor
about 2, due to scattering of magnons between k → 0 and
k → QAF branches.

E. Acoustic phonon

In the following, we demonstrate that the effective phonon
DOS approach can be successfully extended to the considera-
tion of magnon scattering off the acoustic phonons. The crucial
difference of the acoustic phonon scattering is the form of the
magnon-phonon coupling in Eq. (8), which leads to an extra
factor |q‖|2/|q| in the scattering probability compared with
the optical phonon case. A naı̈ve power counting together

with the kinematic consideration in Sec. III B suggest that
the typical |q‖|∼T/v while |q|≈q⊥ ≈ (v/c)|q‖|, translating
this extra factor into cT /v for the relaxation rate. Using that
the phonon sound velocity c∼�D ∼ω0, this would yield the
“thermal shell” estimate for the relaxation rate 1/τ ac ∼T 5/v4,
to be contrasted with the asymptotic expression for the optical
case (18). The situation is more delicate, however, as the
scattering in the present case is, in fact, dominated by the low-ω
phonons. Technically, the integral over the phonon energies
diverges as 1/ω and must be cut off at ωmin = (c/v)εk, where
q⊥ becomes ≈|q‖|. Altogether, assuming gac

sp ∼v, this gives
the thermal shell estimate for the acoustic case as

1

τ ac
∝ T 5

�Dv3
, (19)

which is valid for both T >�D and T <�D . Note that the
result (19) is the same as in the memory-function consideration
(Sec. IV).

A rigorous derivation of this result from Eq. (5) needs a
slightly more delicate treatment of the magnon-phonon cou-
pling. We use |q‖|2 =|k′−k|2 and, according to approximation
in Eq. (10), |q|≈q⊥. Then, the extra factor |q‖|2/|q| in the
scattering probability reads as

|k′|2 + |k|2 − 2|k′||k| cos ϕ

q⊥
⇒

(
c

v2

)(
ε2

k′ + ε2
k

ωq⊥

)
, (20)

where ϕ is the angle between k′ and k and, because of the
approximation of Eq. (10), the term with cos ϕ averages to
zero upon the integration over this angle. With the result in
Eq. (20) and using the effective DOS model for the acoustic
branch introduced in Eq. (15), we rewrite the relaxation rate
in Eq. (5) as

1

τ ac
k

≈
(

gac
sp

v

)2(
c εk

v4

) ∫ �D

ωmin

dω
D⊥

ac(ω)

ω

{
�(εk − ω)

×(
(εk − ω)4 + ε2

k(εk − ω)2)(n(ω) + n(εk − ω) + 1)

+ (
(εk + ω)4 + ε2

k(εk + ω)2
)
(n(ω) − n(εk + ω))

+�(ω − εk)
(
(ω − εk)4 + ε2

k(ω − εk)2
)

×(n(ω − εk) − n(ω))
}
, (21)

where the three terms are the phonon-emission, phonon-
absorption, and anomalous terms in Figs. 1(a)–1(c) and in
Eq. (5), and ωmin = (c/v)εk as before.

We first note that the contribution of the anomalous term
in the acoustic phonon case of Eq. (21) is by a factor of c/v

smaller than that of the other two terms. The subtle reason for
that is in the threshold nature of the process: the lowest possible
phonon energy is εk, not ωmin, which gives the thermal-shell
estimate 1/τ (3) ∼T 5/v4, much less than the result in Eq. (19).
We, therefore, give the asymptotic consideration only to the
first two terms.

Because the integral over the phonon energy in Eq. (21)
is infrared divergent and thus is dominated by the low-energy
phonons, the asymptotic behavior of both terms is the same
at low and high temperatures (T <�D and T >�D). For εk
being of the same order as T , both terms in Eq. (21) yield an
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estimate of the relaxation rate

1

τ
(1)
k

≈ 1

τ
(2)
k

∼
(

gac
sp

v

)2(
T ε4

k

v3c

)
, (22)

which is in accord with the thermal-shell answer (19). As we
discuss in the following, the phonon-absorption term has a
more complicated εk dependence for εk �T .

The asymptotic result (19) should be compared with
the high-temperature (T >ω0 ∼�D) estimate for the optical
phonon case (18). The ratio of (19) to the latter is T/v, which
should imply that the contribution of the scattering on acoustic
phonons is a relatively minor effect in this temperature regime.
A direct comparison is provided in Fig. 4, where the black line
is obtained from (21), without the use of the asymptotics.
This line clearly indicates that the asymptotic consideration
of Eqs. (19) and (22) is correct and that the relaxation rate on
thermalized acoustic phonons follows T 5 power law.

On a closer inspection of Fig. 4 we should note, first, that
the dominance of the acoustic phonon scattering in the low-T
regime concerns a really small region of T ��D/4 and is
unlikely to be seen in the thermal conductivity of La2CuO4 as
this regime is known to be dominated by the grain-boundary
scattering [9]. Second, at the higher T , the relaxation rate by
acoustic phonons seems to exceed the one by optical phonons,
at least for some of the models of their DOS. This is likely
to be due to a neglect of the numerical factor difference in
the coupling strength to acoustic and optical phonons in our
effective vertices (8) and (7), and an underestimate of the
optical phonon scattering rate by a numerical factor mentioned
in Sec. III D.

F. Summary of the phonon-scattering mechanisms

Here, we would like to summarize our considerations of
the magnon-phonon scattering and to take a broader view of
its implication for the thermal conductivity.

1. Smallness of g’s

First, while the perturbative character of our treatment
of magnon-phonon scattering is implied by the use of the
lowest Born approximation in Fig. 1 and Eq. (5), we would
like to make it explicit that the physical range of the
phenomenological magnon-phonon constants we introduce in
Eqs. (7) and (8) is gsp/v�1. At first glance, this may be
surprising as the dependence of the superexchange constants
on the interatomic distance is often rather sharp and is governed
by some high power of the distance, leading to estimates
∂J/∂a≈γ J with γ ∼10–20 (see Ref. [16]). However, this
largeness is offset by the smallness of a characteristic atomic
displacement associated with phonons [16] 1/

√
m�D ∼1/100

(see Appendixes B and C on how the two factors appear
together within a microscopic approach).

2. k dependence

Second, we note the importance of the εk dependence of the
relaxation time. For bosons with εk ≈v|k|, one can estimate
thermal conductivity as [17,18]

κ ∝
∫ T/v

0
τkdk. (23)

According to the preceding sections, in magnon-phonon 1/τk
the lowest power is k2. In a similar situation in 1D [17], this
leads to a strong infrared divergence of the spin component
of the thermal conductivity. This means that the spin-phonon
scattering is not sufficient to render conductivity finite and one
needs to take into consideration other scattering mechanisms.
In 2D, the integral in Eq. (23) still has a weak (logarithmic)
divergence for τ ∼k−2, so the (grain-)boundary scattering is
sufficient to mitigate it. One of the implications of this is that
the distribution of magnons that carry the heat most effectively
is not centered at energies of order T , but is shifted toward
lower energies. More importantly, this consideration means
that with the εk dependence of the relaxation rates obtained
in Secs. III D and III E, magnon-phonon scattering cannot be
the only scattering mechanism and thus must be accompanied
by a boundarylike scattering in order to render magnon heat
conductivity finite.

3. Effective 1/τ

Lastly, given how close the results for different models
of the phonon spectra conform to the asymptotic expressions
for 1/τk in Eqs. (17) and (22), it is tempting to introduce a
simplified, “effective” expression for the magnon relaxation
rate on optical and acoustic phonons that contains a minimal
number of parameters

1

τ eff
k

≈
∑

i

a
opt
i �̃(T − ω̃0,i)

T 2k2

ω0,i

+ aac vT k4

�D

, (24)

where aac ≡ (gac
sp/v)2 and a

opt
i ≡ (gopt

sp,i/v)2 are the dimension-
less coupling constants to the acoustic and the ith optical mode
which has the (lowest) energy ω0,i . The “pseudo”-step function
�̃(x) is introduced to mimic [19] the exponential “turn-on” of
the scattering on optical modes at the temperatures T around
ω̃0,i =ω0,i/2, as in Fig. 4.

We remark that thermal conductivity obtained with this
effective 1/τk and appropriate set of parameters can be made
virtually indistinguishable from the ones using more elaborate
expressions from Secs. III D and III E.

G. Other scattering mechanisms

1. Grain boundary

As is discussed in the preceding section, boundary scat-
tering is essential to mitigate residual infrared divergence of
magnon κm if only scattering on phonons is considered. One
can expect that in a 2D magnetic lattice even relatively weak
dislocationlike defects are likely to act as strong boundaries
for magnon propagation, similarly to the effect of crystal grain
boundaries on phonons. Experimentally, the grain-boundary
scattering is known to dominate entirely the low-temperature
(T �200 K) magnon thermal conductivity of La2CuO4 [9].
The corresponding relaxation rate is simply

1

τ b
k

≈ v

L
, (25)

where L is the characteristic size of the grain. The typical
grain size quoted in Ref. [9] is L∼150 lattice spacings and is
in agreement with the other measurements in La2CuO4.
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2. Correlation length

In the paramagnetic state above the Néel temperature,
which is nonzero in most unfrustrated 2D AFs because of
the interplane interactions and/or small anisotropies, finite
spin-spin correlation length can be expected to represent a
natural “cutoff” boundary for magnon propagation because
magnons are the spin flips in an ordered structure. This
expectation is in agreement with a number of studies which
have pointed out that the dynamics of the antiferromagnets
is fully diffusive at scales beyond the correlation length
ξ (T ), i.e., that the propagating magnons are overdamped
by fluctuations at distances λ�ξ (T ) [20–23]. In effect, the
correlation length acts a temperature-dependent size of an
order-parameter domain for magnon propagation.

The exponential dependence of the 2D correlation length
on J/T has been verified experimentally in La2CuO4 and
in the other 2D antiferromagnets [1,24,25], and is supported
by extensive theoretical and numerical quantum Monte Carlo
(QMC) calculations [21,26,27]. An approximate analytical
expression of it for the spin- 1

2 , nearest-neighbor Heisenberg
antiferromagnet on a square lattice is [8]

ξ (T ) = 1.13J

2.26J + T
e1.13J/T , (26)

in units of lattice spacings. While it was argued that the
characteristic length scale that defines magnon lifetime should
also contain a temperature-dependent prefactor [21,23,24,26]
as well as correctional factors [27], we simply suggest the
following scattering rate by interpreting correlation length as
a mean-free path:

1

τ
ξ

k

≈ v

ξ (T )
. (27)

These seemingly naive expressions and expectations are
supported by the studies of the T dependence of the magnon
linewidth in copper-formate-tetradeuterate (CFTD), another
model spin- 1

2 square-lattice antiferromagnet, by inelastic
neutron scattering and QMC [25]. In fact, the relaxation rate
in the form of Eq. (27) has been suggested in Ref. [25], which
has demonstrated that in both experiment and QMC results the
magnon linewidth is well described by (27) at T �0.2J .

Another effect of the finite correlation length is an effective
gap �ξ =v/2ξ in the magnon spectrum [14]

εk ≈ v
√

k2 + ξ−2(T )/4, (28)

which, obviously, affects the contribution of the long-
wavelength excitations to thermal conductivity.

3. Lattice disorder

In a recent study [13], the following scenario has been
put forward. Since the ionic motion in the cuprates is much
slower than the superexchange processes among spins, the
former must cause a significant variation of couplings J due
to zero-point and thermal lattice fluctuations. The effect was
estimated from the high-resolution neutron diffraction and the
zero-point motion was found responsible for the distribution of
the width δJ ∼0.1J [13]. In a sense, this implies that magnons
propagate in a medium with the velocity that is randomly
varying around the mean value with a distribution given by

δJ (T ). One can approximate this effect by the T -dependent
static random lattice disorder with the lowest-order magnon
relaxation rate due to this mechanism given by

1

τ lat
k

≈ δJ 2(T )

J
k3, (29)

where the temperature-dependent disorder strength can be
modeled as δJ (T )=δJ (0)

√
1 + 4T/�D to interpolate be-

tween the amplitude of zero-point and temperature-induced
lattice fluctuations within the Debye approximation [13,28].

Related to this mechanism are two other possible sources
of magnon scattering at high temperatures that are harder
to estimate. First is specific to La2CuO4, which exhibits
orthorhombic-to-tetragonal structural phase transition at about
525 K associated with a softening of a phonon mode [1].
This transition may have a direct impact on the values of
superexchange constants and also enhance magnon-phonon
scattering involving the mode that is being softened. However,
it is hard to quantify both without a microscopic insight.

Second is a significant decrease and eventual collapse of
J at high enough temperatures, advocated in Ref. [16] as an
ultimate result of the thermal expansion. With the large value
of J and an apparent insignificant impact of the expansion on
the average value of J in the 0–300 K range [13] in La2CuO4,
it is hard to estimate at what T such dramatic effects can be
expected to onset.

4. Magnon-magnon scattering

Last but not the least is the effect of magnon-magnon scat-
tering. Since this requires an explicit momentum dissipation
to contribute to conductivities, the standard umklapp process
leading to a scattering of a typical low-energy magnon with
the momentum k must involve a high-energy magnon with the
energy εmax ≈2.2J . Then, one can suggest an ansatz

1

τ
m-m,U
k

≈ Jk e−2.2J/T . (30)

This can be seen as an upper limit estimate for the standard
umklapp scattering rate as it neglects possible smallness of the
matrix element and only takes into account the smallness of k

from the initial state.
There exists a possibility of an unconventional “low-energy

umklapp” because magnons in La2CuO4 have two branches,
at k = (0,0) and (π,π ), so that some of the scattering between
these branches may carry away large momenta. This logic
seems to be implied in a recent calculation in Ref. [29]. In
that case, the corresponding relaxation rate can be expected to
display a power-law behavior, similar to the “normal” magnon-
magnon scattering [12]

1

τm-m
k

∼ T 2k

v
, (31)

which, on thermal shell, differs by a factor T/ω0 from
the magnon-phonon estimate in Eq. (18). This implies that
for sufficiently high temperatures T  ω0, magnon-phonon
scattering must be more important than the intermagnon
scattering.

Moreover, this expression must carry a small prefactor as it
neglects the smallnesses of the fraction of the umklapp versus
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FIG. 5. (Color online) Magnon relaxation rates from Eqs. (24),
(25), (27), (29), and (30) normalized to T 4/v2�D [Eq. (18)]
at εk =4T . Parameters are as described in text.

normal processes and of the phase space for scattering. The
apparent inability of the magnon-magnon scattering theory of
Ref. [29] to fit the data for La2CuO4 from Ref. [9] beyond
the boundary-controlled regime can be seen as an indirect
evidence of the relative unimportance of this type of scattering
for the magnon thermal conductivity in large-J materials. We
thus exclude it from the subsequent consideration.

5. Comparison

To gain a qualitative expectation for the relative con-
tribution of the discussed scattering mechanisms in dif-
ferent temperature regimes, we compile the results from
Eqs. (24), (25), (27), (29), and (30) in our Fig. 5, which
shows relaxation rates normalized to the high-T asymptote of
the optical-phonon scattering in Eq. (18) (1/τ opt =T 4/v2�D),
as in Fig. 4. For the magnon-phonon scattering (24) we
have dimensionless coupling constants a

opt
1 =aac =0.1 and

a
opt
2 =0.3 with ω0,1 =�D =400 K and ω0,2 =900 K. For the

boundary scattering (25), the scattering length is L=300
lattice spacings, and for the correlation length effect (27)
we use the expression for ξ (T ) in Eq. (26). Temperature-
dependent lattice disorder coupling in Eq. (29) is chosen
with δJ (0)=0.1J to roughly match the results of Ref. [13].
J =1500 K as before and magnon energy εk is chosen to be
εk =4T , the value of energy which roughly corresponds to the
maximum of the thermal population of magnons at a given T .

One can see in Fig. 5 that the scattering at low T (T ��D/2)
is controlled entirely by the grain boundaries. We note that the
magnon-phonon scattering and the lattice-disorder scattering
have a substantial dependence on εk and thus lead to a
stronger scattering for magnons with εk >T , but to a weaker
scattering for εk <T . Thus, in Fig. 5 at intermediate and
high T (T ��D/2), the dominant contribution is due to
finite correlation length and phonons. The magnon-phonon
scattering is at least as strong as the scattering due to correlation
length at intermediate T and even exceeds it for the higher T

for the given choice of εk. While lattice disorder effect is
also significant, it remains secondary and, given its nearly
perfect T 4 asymptotic behavior, may be incorporated into the

magnon-phonon coupling to an optical mode. Thus, while
the lower-energy magnons are scattered almost exclusively
by the boundaries and finite correlation length, at T ��D the
higher-energy magnons are strongly scattered by phonons.

Altogether, grain-boundary, correlation length, and
magnon-phonon scatterings are the leading mechanisms of
magnon energy relaxation and, therefore, have to be included
in the consideration of thermal conductivity offered next.

H. Thermal conductivity

Within the Boltzmann formalism thermal conductivity by
bosonic excitations in 2D is

κ =
∑

k

(cos ϕ vk)2

(
εk

T

)2(
n2

k + nk
)
τk, (32)

where ϕ is the angle between vk and the current. Using the
linearized form of magnon dispersion (6) and the fact that
all of the discussed relaxation rates are isotropic in k we can
simplify (32) to a 1D integral

κ ≈ T 2

2π

∫ xmax

0
dx

x3 ex

(ex − 1)2
τ (x,T ), (33)

where x =εk/T and xmax =εmax/T with εmax =v
√

2π , in
which we used the Debye-type approximation for magnons
and also accounted for two magnon modes in the Brillouin
zone.

At finite correlation length ξ , the magnon spectrum opens
a gap [14] according to (28), which results in a modification
of the expression for the thermal conductivity

κ ≈ T 2

2π

∫ xmax

xmin

dx

(
1 − x2

min

x2

)
x3 ex

(ex − 1)2
τ (x,T ), (34)

where xmin =�ξ/T with �ξ =v/2ξ (T ).

1. Comparison

Finally, we present the results of our calculations of magnon
thermal conductivity in Figs. 6 and 7, in which we demonstrate
the effects of boundary scattering (25) together with the
finite correlation length and/or magnon-phonon relaxation
mechanisms. In Fig. 6, the upper solid curve shows κ(T ) for the
case when the scattering is only by the grain boundaries (25)
with L=300 and by phonons (24) with the same coupling
parameters as in Fig. 5. The middle solid curve is for κ(T ) due
to grain boundaries (25) and the correlation length (27). The
corresponding dashed lines are for the same cases, but with an
additional effect of the finite-T gap in the magnon spectrum
�ξ due to finite correlation length [Eq. (34)]. The effect is
minimal on the middle curve, but is rather dramatic in the
phonon-scattering case. This is due to strong εk dependence of
the magnon-phonon scattering discussed in Sec. III G, which
changes substantially the magnon population contributing to
the heat current. Namely, in the “boundary+ξ (T )” case, the
typical magnon in Eq. (34) is a thermalized one, εk ∼T , so
the exponentially small gap �ξ (T ) of (28) does not affect it.
In the “boundary+phonon” case, the high-energy magnons
are scattered strongly by phonons (see Fig. 5), while the
heat-conducting population of magnons leans strongly to the
low energies, hence a dramatic impact of opening the gap.
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FIG. 6. (Color online) Magnon κ(T ) for the scattering by the
grain boundaries, L=300, and either the correlation length (middle
curves) [Eq. (27)] or phonon scattering (upper curves) [Eq. (24)].
Lower curves combine the effects of all three, grain-boundary,
phonon, and correlation length scattering mechanisms. Parameters
for the phonon scattering are as in Fig. 5. Dashed lines show the
effect of the gap in magnon spectrum (34).

Lower curves shows the result of combining all three,
the grain-boundary, the phonon, and the correlation length
scattering mechanisms. Clearly, the phonon relaxation mech-
anism leads to a stronger scattering at the higher-εk part
of the heat-conducting magnon population, reducing the
overall conductivity, while the longer-wavelength part is now
controlled by the correlation length, evidenced by a weak
sensitivity of κ(T ) to the gap in the magnon spectrum (dashed
curves).

Figure 7 complements this study with the consideration of
three different scenarios: the magnon-phonon coupling is to
(i) two optical modes, one at ω0,1 =400 K and the other at
ω0,2 =900 K (an analog of the high-energy stretching mode),
(ii) to an acoustic branch of phonons only, and (iii) to both
(same curve as in Fig. 6). One can see that the overall effect
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FIG. 7. (Color online) Magnon κ(T ) with all three key scatter-
ings, same as in Fig. 6. For the magnon-phonon scattering, results for
coupling to only optical, only acoustic, and to both are shown.

on κ(T ) is very similar in all three cases. This is natural
in the light of the preceding discussion that points to the
significant scattering effect by phonons at higher energies,
which can be expected to be comparable regardless of the
nature of the phonon branches. We would also like to point
out that we have performed the same calculation of κ(T ) in
Eq. (34) using not the “effective” magnon-phonon relaxation
rate, proposed in Sec. III F in Eq. (24), but the relaxation rates
in Secs. III D and III E [Eqs. (16) and (21)], using different
effective phonon DOS models, previously matched to a direct
numerical integration in Eq. (5). Aside from the adjustments
of the magnon-phonon coupling constants needed in the cases
when phonon spectral weight is spread over a substantial
energy range, these calculations have produced the results that
are virtually identical to the ones in Figs. 6 and 7.

Altogether, magnon thermal conductivity in La2CuO4

should be largely controlled by the “boundarylike” scatterings,
coming from either the real grain boundaries or the 2D
correlation length, with a substantial correction from the
magnon-phonon scattering, affecting κ(T ) at intermediate and
high temperatures.

2. Remarks

For the latter regime, there are two additional remarks that
need to be made. First, according to Eq. (26), at 800 K (≈0.5J )
the correlation length is of order of three lattice spacings.
Is the magnon picture still applicable and is it realistic to
expect further reduction of the mean-free path by a phonon
scattering? We believe that although the magnon description
at T �0.5J may be an extrapolation, such a correlation length
corresponds to a “patch” of about 30 spins, which is known to
be well described by the spin waves in finite-cluster studies.
A somewhat more relevant quantity is the effective gap in the
magnon spectrum at this temperature, �ξ ≈J/4, which is still
considerably smaller than the magnon bandwidth (2J ). Given
that the magnon-phonon scattering mostly affects magnons
with εk >T , it seems perfectly legitimate that the phonons are
the source of a further shortening of the mean-free path in this
regime.

Second, the use of the bosonic description of the thermo-
dynamics of spin excitations of the S = 1

2 Heisenberg model
on a square lattice is limited by the temperatures of order
0.6J , at which the specific heat shows a broad maximum [30],
while within the bosonic description specific heat saturates at
a somewhat higher T . For a comparison of our results with
experimental data, this implies that the high-temperature tail
of our κ(T ) should only serve as an upper-limit estimate of the
reality.

IV. MEMORY-FUNCTION APPROACH

We now turn to the memory-function approach, which does
not proceed via one-particle excitations, but focuses on the
dynamics of the current directly, as we will sketch next. We
start from the magnon heat current in terms of Bogoliubov
quasiparticles

j =
∑

k

εkvkβ
†
kβk, (35)
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where vk = ∇kεk is the velocity of the magnon. Following
the memory-function method [31], the dynamical thermal
conductivity tensor at frequency z = ω + i0+ is

V T κμν=
〈
jμ

∣∣∣∣ i

z − Ljν

〉
=

(
i

z − M(z)χ−1
χ

)
μν

, (36)

where V is the volume, and L = Ls + Lph + Ls-ph = L0 +
Ls-ph is the Liouville operator LA = [H,A], comprising
spin, phonon, and spin-phonon parts [see Eq. (1)]. 〈A|B〉 =∫ β

0 〈A+(λ)B〉dλ − β〈A+〉〈B〉 is the Mori scalar product with
A(λ) = eλHAe−λH and β = 1/T is the inverse temperature. χ
is the isothermal heat current susceptibility, χμν = 〈jμ|jν〉, and
Mμν(z) = 〈Ljμ|(z − QL)−1QLjν〉 is the memory-function
matrix. Q is a projector perpendicular to the heat current in
terms of Mori’s product Q = 1 − ∑

μν |jμ〉χ−1
μν 〈jν |.

We will evaluate (36) for ω → 0 to order O(H2
s-ph). Within

perturbation theory [31] to the leading order in the spin-phonon
coupling, the memory matrix is given by

Mμν(z) =
〈
[Hs-ph,jμ]

∣∣∣∣ 1

z − L0
[Hs-ph,jν]

〉
0

, (37)

where the subscript 0 refers to Mori’s product and thermal
averaging with respect to the canonical ensemble of the system
at zero coupling Hs-ph = 0. This subscript will be dropped
hereafter. Since Mμν ∼ O(H2

s-ph) already, the static current
susceptibility is needed only for Hs-ph = 0. With [H0,jμ] = 0
and 〈jμ〉 = 0

χμν = δμν

T
〈jxjx〉 = δμν

2T

∑
k

ε2
kv2

kn(εk)[1 + n(εk)], (38)

where n(εk) = 1/(eεk/T − 1) is the Bose function.

A. Relaxation-time approximation

The relaxation-time approximation corresponds to replac-
ing M(z)/χ by −i/τ with a phenomenological scattering time
τ . In that case, (36) reads as

κ = 1

2T 2

∑
k

ε2
kv2

kn(εk)[1 + n(εk)] τ, (39)

with κμν = δμνκ . This is identical to the standard result from
kinetic theory. For T � J , Eq. (39) yields κ ∝ T 2, as expected
for bosons in 2D. While the case T  J is unphysical, we note
that then κ ∝ const.

We note that (39) is completely identical to (32) for
a momentum-independent scattering rate. In principle, the
memory-function approach in Eq. (36) can be formulated with
a particle-hole type of observable jkq = εkvkβ

†
kβk+q in order

to explicitly analyze momentum-dependent current relaxations
rates. We will not pursue this direction here.

B. Spin-phonon relaxation rate

Here, we would like to restrict ourselves to the case of
acoustic phonons. This reduces the problem to a monoatomic
Bravais lattice with ionic masses m where magnetoelastic cou-
plings result from stretching of the nearest-neighbor exchange

FIG. 8. (Color online) Force-force susceptibility diagrams. Solid
lines are magnons, wavy lines are phonons. (a) Normal contribution
(magnon emission absorption), (b) anomalous contribution [two-
magnon emission (absorption)]. Filled circles in (a) are normal and
in (b) anomalous force -vertices.

bonds along the in-plane bond directions, the case considered
in detail in Appendix B. Lattice deformations perpendicular to
the bond direction lead to higher-order couplings.

First, we use explicit form of Hs-ph in Eq. (4) to find the
commutator [Hs-ph,jμ], which has a meaning of a force

[Hs-ph,jμ] = 1

2N

∑
kq,�

B
†
k′ F�μ

k,q Bk (a†
−q� + aq�), (40)

where k′ = k + q‖ imposed by the conservation of the in-plane
component of the momentum, � numerates acoustic phonon
branches, B

†
k = (β†

k,βk), and the matrix

F�μ

k,q = (
e
μ

k − e
μ

k+q‖

)
V�

k,k+q‖,q, (41)

where we have introduced the shorthand notation for the
energy current of a single magnon mode ek = εkvk and
used inversion symmetry ε−k = εk, v−k = −vk. The 2 × 2
“vertex matrix” V�

k,k′,q is built from the diagonal elements
responsible for the “normal” scattering processes V �

k,k′,q given

in Eq. (B5), and the off-diagonal, “anomalous” terms V
od,�

k,k′,q
given in Eq. (B6).

As usual [31], (37) can be rewritten as
z Mμν(z) = χF

μν(z) − χF
μν , where χF

μν(z) is the retarded
dynamical force-force susceptibility, resulting from
analytic continuation of the imaginary-time Green’s
function χF

μν(τ ) = 〈Tτ {[Hs-ph,jμ]+(τ )[Hs-ph,jμ]}〉, and
χF

μν = 〈[Hs-ph,jμ]|[Hs-ph,jμ]〉 is the isothermal force-force
susceptibility. Due to tetragonal symmetry, all of these
quantities are diagonal with respect to μ,ν.

For thermal transport, we focus on the dc limit ω→0.
Since Re[Mμν(i0+)] = 0 and ImχF

μν = 0, we have to calculate
Im[χF

μν(z = i0+)] only. This can be done using the two
diagrams in Fig. 8, which comprise normal magnon emission-
absorption and anomalous two-magnon emission (absorption)
processes, i.e., χFn

μν (z) and χ
Fa1,2
μν (z). After some algebra, we
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get

Mμν(i0+) = −i
πδμν

T

∑
k,q,�

n
(
ω�

q

)(
2
∣∣g�μ

kq;n

∣∣2
n(εk)[1+n(εk+q‖)]

×δ
(
εk−εk+q‖+ω�

q

) + ∣∣g�μ

kq;a

∣∣2
[1+n(εk)]

×[1+n(εk+q‖ )]δ
(
εk+εk+q‖+ω�

q

))
, (42)

where the “force vertices” g
�μ

kq;n(a) refer to the normal (subscript
n) and anomalous (subscript a) processes

g
�μ

kq;n = (
e
μ

k − e
μ

k+q‖

)
V �

k,k+q‖,q, (43)

g
�μ

kq;a = (
e
μ

k − e
μ

k+q‖

)
V

od,�
k,k+q‖,q, (44)

with the explicit expressions for vertices given in Eqs. (B5)
and (B6). We note that Im[Mn(a)

μμ (i0+)] ≤ 0 separately for both
normal and anomalous contributions, as to be expected from
causality.

C. Phonon dispersion

In the following sections, we provide a discussion of
several aspects of thermal conductivity obtained from the
memory-function approach. We are going to discuss orders-of-
magnitude estimates for the cuprates, the asymptotic behavior
of the scattering rate, and the results from the numerical
evaluation of the memory function. Whenever of interest,
explicit reference will be made to parameters relevant to
La2CuO4. In what follows, we parametrize phonon excitations
that are relevant for spin-phonon coupling as given by two
degenerate modes that are polarized in-plane and have the
dispersion

ω�
q = �D

√√√√∑
α

sin

(
qα

2

)2

. (45)

�D is the Debye energy for phonons as before. Since we
set � = kB = 1 and also assume all lengths in units of lattice
constant unless mentioned otherwise, �D/2 and the sound
velocity c will be used interchangeably.

D. Asymptotic scattering rates

For the “normal” emission absorption of acoustic phonons
in Fig. 8(a) we expect four asymptotic temperature regimes,
which are determined in part by the kinematics of the magnon-
phonon scattering. (i) For T � �D , thermalized magnon-
phonon scattering involves only long-wavelength excitations.
(ii) As T is increased, scattering from the zone-boundary,
optical-like phonons with ωq � T and a high density of
states begin to contribute with the Arrhenius-type, activated
T dependence. For the dispersion in Eq. (45), such phonons
occur at the corners of the BZ at q ∼ QAF = (π,π ). (iii) For
ωQAF,q⊥ � T � J , magnons can be scattered by thermalized
phonons from k= (0,0) to QAF. (iv) Finally, one can consider
a regime T  J in Eq. (42), which however is unphysical
regarding the definition of magnons.

1. Acoustic phonon regime

First, we consider the normal scattering processes and
T � �D . For that we may use the long-wavelength limit
|k + q‖|,|k|,|q‖|�1 for all the in-plane wave vectors. As
discussed in detail in Appendix B, the in-plane modulation
of J will only couple to the two out of three phonon
branches, whose in-plane polarization can be always chosen
as |ξ �

q|≈1. We also approximate ω�
q ≈c|q|=c

√|q‖|2 + |q⊥|2,
with a sound velocity much less than the magnon velocity, i.e.,
c � v. Expanding in Eq. (43) to lowest order in |k + q‖|, |k|,
and |q‖|, the memory function reads as

Mμν(i0+) = −i δμν

2π
(
gac

sp

)2

T

×
∑
k,q,�

|q‖|2|k||k + q‖|
(
e
μ

k − e
μ

k+q‖

)2√|q‖|2 + |q⊥|2

×n
(
ω�

q

)
n(εk)[1+n(εk+q‖ )]δ

(
εk−εk+q‖+ω�

q

)
,

(46)

where gac
sp =Sλ/(2

√
mc) with λ=∂J/∂r [see Appendix B and

Eq. (B8)]. First, the magnon and phonon distribution functions
n(εk) and n(ω�

q) in Eq. (46) imply that |k|∼T/v and |q|∼T/c.
From this and using energy conservation εk+q‖ =εk+ω�

q, we
conclude that the in-plane phonon momentum is of magnitude
|q‖|∼T/v, i.e., the dominant contribution of the phonon
momentum is out of plane. This coincides with the conclusion
reached in Sec. III B after Eq. (9). In turn, |k + q‖|∼T/v

and (eμ

k − e
μ

k+q‖ )
2 ∼v2T 2. Then, a naı̈ve power counting,

accounting also for factors of magnon and phonon velocities v

and c, and keeping in mind that the δ(. . .) function in Eq. (46)
replaces one k integration by a factor of 1/v, suggests that
M ∼ (gac

sp)2T 8/v6. However, this approach misses one subtle
detail, i.e., that the q⊥ integration is singular with∫ T/c

0
dq⊥

n
(
ω�

q

)√|q‖|2 + |q⊥|2 ∼
∫ T/c

T /v

dq⊥
T

cq2
⊥

∼ v

c
, (47)

which introduces an additional factor of (v/c) and finally leads
to

Mn
μν(i0+) ∝ −i δμν

(
gac

sp

)2 T 8

cv5
. (48)

From (38) we have χμν ∼ T 3 with a dimensionless prefactor
of order unity. Therefore, using c ∼ �D , the scattering rate is

1

τn
ac

∝ T 5

�Dv3
, (49)

with the dimensionless prefactor (gac
sp/v)2. This result is

identical to our Eq. (19) and the discussion is completely in
line with the consideration given in Sec. III E.

2. Zone-boundary phonon regime and others

We now consider the normal scattering processes from the
optical-like, zone-boundary phonons with q‖ ≈ (π,π ). First,
we focus on temperatures J T ω0 ≈�D . Calculations
are simplified by shifting the zero of the planar component
of the phonon momentum to the edge of the BZ, i.e.,
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q‖ → q‖ + (π,π ), and therefore q → q + (π,π,0). Since T �
J , one can still expand in Eq. (43) with respect to small
momenta |k + q‖| and |k| near their respective k points in the
BZ, while for phonons one can set ω�

q ∼ω0 for all q involved in
the scattering. Using this expansion for vertices as discussed
in Appendix B, one can easily see that it leaves the structure
of the expression for the memory function in Eq. (46) almost
intact, with the only difference that both q and q‖ are large.
Then, the power counting proceeds the same way as above
with all the variables related to magnons governed by the
same smallness of the typical momentum k ∼ T/v, while for
the phonon occupation number we now have n(ω�

q)∼T/ω0

and the summation over q⊥ has no restrictions. Altogether,
this yields

Mn
μν(i0+) ∝ −i δμν

(
gzb

sp

)2 T 7

ω0v4
, (50)

where gzb
sp =4Sλ/

√
2m�D as given in Eq. (B12). Similarly to

the acoustic case, this implies the following scattering rate:

1

τn
opt

∝ T 4

ω0v2
, (51)

in a complete agreement with the relaxation rate obtained in
Sec. III D, Eq. (18).

Without repeating similar considerations for the anomalous
scattering in Fig. 8(b), we simply note that the numerical
evaluation to be presented in the next subsection shows
that for experimentally relevant temperatures T � 0.1�D its
contribution is smaller by several orders of magnitude as
compared to normal scattering.

Finally, we note that in the unphysical regime of T J ,
the memory function scales as M ∼ T 2 due to the three
distribution functions and the prefactor of 1/T . Together
with χμν ∼ T for this regime, this yields a relaxation rate
of τ−1 ∝ T .

E. Numerical analysis of the memory function

Figure 9 sheds light on our asymptotic analysis of relaxation
rates from an unbiased numerical point of view. The memory
function has been evaluated using Eqs. (42) and (45) for three
representative Debye energies �D . The numerical integration
has been set up to satisfy the energy-conserving delta function
exactly through the numerical solution of εk+q = εk + ω�

q
for each integrand call. This leaves a four-dimensional (4D)
integration with a nontrivial integrand. Evaluation of the
latter has been performed for the temperatures shown by
the dots in Fig. 9. It shows a numerical approximation to
∂ ln[Mμν(i0+)]/∂ ln T , the quantity which allows to clearly
identify the temperature ranges where the memory matrix
follows a power law Mμν(i0+) ∝ T n. These ranges can
be seen as plateaus with the heights directly giving the
exponent n.

We would like to stress several points. First, as predicted, a
clear T 8 regime, corresponding to τ−1 ∝ T 5, can be observed
for T � �D . However, comparing with the energy scales
appropriate for La2CuO4, such a regime is unlikely to be
observed in the current experimental studies of it, because
the scattering in this temperature range is dominated by the
grain boundaries [9]. Second, while this may be an artifact of

FIG. 9. (Color online) Difference quotient n = � ln[Mμν(i0+)]/
� ln T obtained from numerical evaluation of Mμν(i0+) versus T

(dots) for various �D (lines are guides to the eye). Error bar
is an estimated maximum “error”: n − ∂ ln[Mμν(i0+)]/∂ ln T . For
reference note that for J = 1550 K, �D = 0.1J corresponds to a
maximum phonon energy of approximately 270 K.

our scheme of modeling the optical phonon scattering by the
phonon spectrum with a single phonon branch, for a robust
T 7 (τ−1 ∝ T 4) regime to occur, the Debye energy needs to
be low enough compared to J . This is evident from the set
of data in Fig. 9 with �D = 0.1J where clear indications of
the T 7 range can be observed. However, it is obvious from
the results for �D = 0.2J and 0.3J , that this regime rapidly
merges with the onset of thermalization of the high-energy
magnons, where no well-defined exponent can be observed.
Third, the increase of the exponent between the T 8 and the T 7

regimes is consistent with an exponential increase of Mμν(i0+)
with temperature. This is exactly the signature of the Arrhenius
(activated) behavior mentioned as regime (ii) in Sec. IV D.
Finally, as expected for T  J we get Mμν(i0+) ∝ T 2.

F. Thermal conductivity

In this section, we combine the memory-function analysis
of the spin-phonon coupling with the scattering mecha-
nisms discussed in Sec. III G that are most significant for
magnon thermal transport in large-J antiferromagnets such
as La2CuO4. Moreover, we will use parameters that may
provide a reasonable description of the experimental thermal
conductivity data, e.g. of Ref. [9]. To leading order, addi-
tional scattering mechanisms can be added according to the
Matthiessen’s rule, i.e., summing their respective momentum-
independent relaxations rates as in Sec. IV A.

1. Grain boundaries

Grain-boundary scattering is described in complete analogy
with Sec. III G 1, i.e., the results for thermal conductivity
trivially follow from Eq. (39) with the relaxation time τgb =
lgb/v, where lgb is the typical grain size and the magnon
mean-free path [see Eq. (25)]. As was established in Ref. [9],
this scattering dominates thermal conductivity of La2CuO4 at
T �200 K and one can show that Eq. (39) with lgb of order of
a few hundred lattice spacings and appropriate choice of J and
lattice parameters gives an excellent quantitative description
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FIG. 10. (Color online) Renormalization factor of the inverse
mean-free path due to grain boundaries from spin-phonon scattering
for various �D and g, J = 1550 K (lines are guides to the eye).

of the experimental κgb(T ) in this regime. For the remainder,
we choose lgb = 300 lattice constants as in Sec. III H 1.

2. Grain boundaries and phonons

We now would like to test if the magnon-phonon scattering
can have a significant impact on the magnon mean-free path
and thermal conductivity. For that, we calculate numerically
the spin-phonon current relaxation rate [M(i0+)/χ ]μν =
δμν/τsp from (42) as discussed above and neglecting anoma-
lous scattering. Then, the spin-phonon transport mean-free
path is defined as lsp = vτsp and can be combined with
the grain-boundary mean-free path lgb to see the effect
of the former. To make such a comparison, we also need to
introduce a dimensionless spin-phonon coupling constant. In
line with the discussion of the asymptotic limits in Sec. IV D
above and in accord with the results of Appendix B, such a di-
mensionless coupling can be written as g=4Sλ/(J

√
2m�D).

The range of its typical values is discussed in Sec. III F
and Appendix C and it is concluded that it may not exceed
unity [16].

Figure 10 displays the ratio of the inverse magnon
mean-free paths with and without the spin-phonon scattering
l−1
gb /[l−1

gb + l−1
sp (T )] for a range of reasonable spin-phonon

coupling constants and Debye temperatures. This figure clearly
demonstrates that phonons can be expected to be the dominant
scatterers for T � 200 K in large-J antiferromagnets with a
modest spin-phonon coupling.

In Fig. 11, the thermal conductivity is shown for the scenario
when only grain boundaries and phonons are involved in
magnon scattering and for several representative sets of �D

and g. The latter are chosen to yield the same maximal value of
κ(T ) at fixed lgb, with J and other parameters fixed to loosely
match La2CuO4. Hereafter, all plots of the thermal conduc-
tivity display absolute values of κ . These follow from our
calculations, scaling the 2D conductivity to the 3D material [9],
and using lgbJkB/(�acz) � 645 W/(Km), for J � kB1550 K
and lgb � 300a, with intraplane (interplane) lattice constants
a (cz) from [1]. We emphasize that the magnitude of κ shown
in Fig. 11 is within the typical range for La2CuO4 [9,10].
The figure shows that the spin-phonon coupling constants
necessary to effectively suppress the conductivity at T � �D

are well within the acceptable values. Moreover, the figure

FIG. 11. (Color online) Magnon thermal conductivity for the
scattering by grain boundaries and phonons for various experimen-
tally reasonable values of �D and g, J = 1550 K (lines are guides to
the eye).

demonstrates that a rather natural temperature range for the
maximum conductivity to occur in La2CuO4 and related
materials is of the order of �D . Comparing with Fig. 9, one can
see that the decrease of κ versus T occurs in the temperature
regime where no well-defined power law exists for τ−1

sp (T ),
independently of the choice of the Debye energy.

Figure 11 should also be compared with the upper curve in
Fig. 6, which is obtained from the effective 1/τ approximation
within the Boltzmann formalism. Taking into account the
differences between the 1/τ approximation in Boltzmann
approach and the memory function calculations, different
types of modeling of the phonon bath, and keeping in mind
differences in Debye energies and spin-phonon coupling
constants, the close similarity of the overall shape and other
features of the κ(T ) curves from the Boltzmann and the
memory-function approaches in Figs. 6 and 11 are remarkable.

3. Grain boundaries, phonons, and finite correlation length

Next, we take into account scattering due to the finite
spin-spin correlation length in the paramagnetic phase above
the ordering Néel temperature, analogous to the discussion
in Sec. III G. Similar to the Boltzmann approach, a formally
proper treatment of its effects is beyond this study. A
qualitative description, however, can be obtained readily. First,
a finite correlation length implies a mass gap in the magnon
dispersion, discussed in Sec. III G [see Eq. (28)] [14]. Second,
since the notion of magnetic order is meaningful only within
patches of linear dimension ∼ξ (T ) [Eq. (26)], the system
consists of effective “grains” with a temperature-dependent
size lgb(T ) ≈ min[lgb,ξ (T )], the sentiment expressed earlier
in Sec. III. Once again, Matthiessen’s rule is used to yield
a smooth crossover between the two grain-boundary regimes
as a function of temperature and to include the spin-phonon
scattering with the inverse mean-free path given by l−1(T ) =
l−1
gb + ξ−1(T ) + l−1

sp .
Recalculating κ within the relaxation-time approxima-

tion (39), with a constant scattering time τ and the mass gap
due to the correlation length in the magnon dispersion (28),
affects κ only weakly and only at higher temperatures, in a
broad agreement with the conclusions reached in Sec. III H.
For brevity, we will not study the impact of the mass gap on
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FIG. 12. (Color online) Magnon thermal conductivity for the
scattering off the effective grain boundary due to temperature-
dependent correlation length and phonons for various experimentally
reasonable values of �D and g, J = 1550 K (lines are guides to the
eye).

the memory function. In turn, the main effect of the correlation
length on the thermal conductivity is from the limiting of the
mean-free path by ξ (T ). For the parameters relevant to the
cuprates, the correlation length gets short enough to likely
dominate dominate the thermal conductivity for T � 250 K.

Our Figs. 12 and 13 display the combined effect of
spin-phonon and effective boundary scattering, discarding the
magnon mass gap. Figure 12 shows that at high temperatures,
in contrast to the rather slow decrease of thermal conductivity
in Fig. 11, κ(T ) is dominated by the exponential decrease
of the effective grain size ξ (T ). This figure also shows that
small differences in the results (Fig. 11) due to differences
in coupling constants and Debye energies are completely
suppressed by inclusion of ξ (T ). Figure 13 contrasts the
various scattering mechanisms against each other. This figure
clearly demonstrates that while the spin-spin correlation length
seems to provide the major limit on κ(T ) at higher tempera-
tures, magnon-phonon scattering still contributes significantly
to the suppression of the magnon heat current up to high
temperatures.

FIG. 13. (Color online) Contrasting impact of different scatter-
ing mechanisms on the thermal conductivity. Phonons and crystalline
grain boundary (upper curve), correlation length and crystalline grain
boundary (middle curve), phonons, correlation length, and crystalline
grain boundary (lower curve).

Once more, we emphasize the close similarity of the
combined results from the memory-function method in Fig. 13
with those from the Boltzmann theory in Fig. 7. Given
that these results have been obtained independently from
two distinct theoretical approaches, this agreement strongly
corroborates our main conclusions.

V. SUMMARY

To summarize, we have considered relaxation mechanisms
of 2D magnons in large-J antiferromagnets such as La2CuO4

with the goal of providing a basis for quantitative calculations
of thermal transport by spin degrees of freedom in this class of
materials. We conclude that the magnon thermal conductivity
in these and related systems is limited by three key scat-
tering mechanisms: grain boundaries, 2D correlation length,
and magnon-phonon scattering, the latter being effective at
intermediate and high temperatures T ��D . Impuritylike
lattice-induced disorder and magnon umklapp scattering have
been found to be less important.

The bulk of our consideration has been devoted to the
scattering of 2D magnons on 3D phonons, with acoustic
and optical phonon branches examined in detail. Within
the Boltzmann approach and 1/τ approximation we have
advocated the use of a simplified “effective” phonon DOS
approach, which allows for straightforward yet fairly realistic
calculations yielding an effective expression for the magnon
relaxation rate on optical and acoustic phonons that contains
minimal number of parameters. We have also employed the
memory-function approach, in which we have retained the full
microscopic expressions for the magnon and phonon spectra,
with the only approximation being the coupling of spins to
only a single dispersive phonon branch.

Within both approaches, we have closely analyzed the
power-law asymptotic regimes of the magnon relaxation rates
involving acoustic and optical, or zone-boundary, phonons.
Not only have such investigations proven very instructive
in the analysis of which part of the magnon population is
affected most strongly by phonons, but also have demonstrated
a remarkable accord between the two very different theoretical
approaches to the transport problem.

In both Boltzmann and memory-function approaches, we
have demonstrated that having a modest spin-phonon coupling,
well within a reasonable range of parameters, phonons can
have a significant impact on the magnon mean-free path and
thermal conductivity. Taking into account other scattering
mechanisms within the thermal conductivity calculations,
we have concluded that magnon thermal conductivity in
large-J antiferromagnets should be largely controlled by the
“boundarylike” scatterings, coming from either the real grain
boundaries or the 2D correlation length, with a substantial
correction from the magnon-phonon scattering, affecting κ(T )
at intermediate and high temperatures T ��D . We have also
demonstrated that the results of both approaches on thermal
conductivity are remarkably similar.
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APPENDIX A: SPIN MODEL

For the spin system we consider the two-dimensional,
nearest-neighbor, spin- 1

2 Heisenberg antiferromagnet on a
square lattice

Hs = J
∑
〈ij〉

Si · Sj , (A1)

where summation is over the nearest-neighbor bonds and J

is the exchange coupling constant. We treat this model using
standard linear spin-wave theory. For the bipartite lattice, we
transform from the laboratory to the rotated frame for spins
and bosonize spin operators according to

S
z0
i = eiQri Sz

i , S
x0
i = eiQri Sx

i , S
y0
i = S

y

i ,
(A2)

Sz
i = S − b

†
i bi, S+

i = (S−
i )† ≈ bi

√
2S,

where Q = (π,π ) is the antiferromagnetic ordering vector.
Then, within the 1/S approximation, one needs to retain only
quadratic terms in the Hamiltonian (A1)

Si · Si+δ ⇒ S{b†i bi + b
†
i+δbi+δ − b

†
i+δb

†
i − bi+δbi}. (A3)

After the Fourier transform, the subsequent treatment of (A1)
involves Bogoliubov transformation of magnons given by

bk =ukβk+vkβ
†
−k, (A4)

with

uk =
√

1 + νk

2νk
, vk = sign(γk)

√
1 − νk

2νk
, (A5)

where νk =
√

1 − γ 2
k is related to the magnon energy via

εk =4JSνk and γk = (cos kx +cos ky)/2. Finally, the spin-wave
Hamiltonian is given by

H(2)
s =

∑
k

εkβ
†
kβk. (A6)

At long wavelength εk ≈ vk with the spin-wave velocity v =√
2J .

APPENDIX B: MICROSCOPIC DERIVATION OF
SPIN-PHONON HAMILTONIANS: VERTICES,

POLARIZATIONS, ETC.

1. Spin-phonon Hamiltonian: Bravais lattice

For an isotropic, nearest-neighbor interaction of spins and
considering the lattice of only magnetic ions, the most natural

source of the spin-phonon coupling is from the modifications
of the superexchange due to local stretching or compression
of the bond length [32]

Hs-ph =
∑
〈ij〉

δJ (rj − ri)Si · Sj

≈ λ

2

∑
i,δ

(δ · �Ui,δ)Si · Si+δ, (B1)

where λ=a∂J/∂r , with a being the lattice constant, δ runs
over the nearest neighbors, δ are the corresponding unit vectors
of the lattice, �Ui,δ ≡ (Ui+δ−Ui), and Ui is the displacement
vector of the ith ion. While the Hamiltonian in Eq. (B1) is
rather general, one can see it as describing a single 2D plane
of spins on a square lattice, representative of a CuO2 plane of
La2CuO4. Following, we will extend this picture to a tetragonal
array of magnetically decoupled planes to take into account
the 3D nature of phonons. Note that while the displacement
of ions are described by 3D vectors, in Eq. (B1) only their
projections on the in-plane bonds (δ) matter.

After bosonizing spin operators according to (A3), using the
symmetry of the square lattice, Fourier transform, and some
algebra, we obtain

Hs-ph = 4iλS
∑

q,k,k′

∑
δ

(δ · Uq) sin

(
k − k′

2
δ

)

×
{

cos

(
k − k′

2
δ

)
b
†
k′bk − 1

2
cos

(
k + k′

2
δ

)
× (b†k′b

†
−k + b−k′bk)

}
, (B2)

where q= (k − k′,q⊥) and the summation over the directions
of the bond now takes the values of only two unit vectors, δ= x̂
and ŷ. In derivation of (B2) we have performed summation over
the sites of the tetragonal lattice of magnetically decoupled
planes. It is natural that the in-plane component of the phonon
momentum (in the index of Uq) is tied to the magnon momenta
via momentum conservation q‖ =k − k′, while the component
of the phonon momentum perpendicular to the plane q⊥ is
not conserved and is an independent variable in the sum in
Eq. (B2). This is because the 2D magnons have zero coupling
between the planes (infinite mass in that direction) and thus
provide no restriction on q⊥.

The subsequent treatment of (B2) involves Bogoliubov
transformation of magnons as in Eq. (A4) and rewriting the
displacement operators in terms of phonons. For the Bravais
lattice, the q’s Fourier component of the lattice displacement
is given by

Uq =
∑

�

ξ �
q√

2mω�
q

(a†
q� + a−q�), (B3)

where � = 1,2,3 numerates one longitudinal and two trans-
verse phonon polarizations, ξ �

q are the polarization unit vectors,
m is the mass of the unit cell, and ω�

q and aq� are the
energies and operators of the corresponding phonon branches,
respectively.
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Applying (B3) and (A5) to (B2) we obtain

Hs-ph =
∑

k,k′,q⊥

∑
�

{
V �

k,k′,qβ
†
k′βk

+ 1

2
V

od,�
k,k′,q(β†

k′β
†
−k + H.c.)

}
(a†

q� + a−q�), (B4)

where “normal” and “anomalous” magnon-phonon vertices
are

V �
k,k′,q = 4Sλ√

2mω�
q

∑
α=x,y

ξ �,α
q sin

qα
−
2

×
{

cos
qα

−
2

(uu′ + vv′) − cos
qα

+
2

(uv′ + vu′)
}
, (B5)

V
od,�

k,k′,q = 4Sλ√
2mω�

q

∑
α=x,y

ξ �,α
q sin

qα
−
2

×
{

cos
qα

−
2

(uv′ + vu′) − cos
qα

+
2

(uu′ + vv′)
}
, (B6)

where we have absorbed i in the definition of phonon operators,
ξα and qα

± are the x and y projections of the corresponding
vectors, and we have introduced shorthand notations q± =
k±k′, u(′) =uk(′) , and v(′) =vk(′) .

2. Asymptotics and polarizations

Of interest, of course, is the asymptotic behavior of
these vertices in the vicinity of k,k′ →�,Q as the momenta
of magnons are confined to these regions at not too high
temperatures.

Expanding (B5) for magnon momenta k,k′ →� (or Q),
which also corresponds to q‖ →0, gives α = x,y components
of the vertex

V
�,α

k,k′,q ≈ Sλ ξ�,α
q√

4mω�
q

qα
‖
√

|k||k′|
(

1 + 2kαk′α

|k||k′|
)

, (B7)

and expansion of (B6) yields V
od,�,α

k,k′,q = −V
�,α

k,k′,q.

In general, three polarization vectors ξ �
q in Eq. (B3) should

be obtained as solutions of the dynamical matrix equation
for the lattice vibrations of the tetragonal Bravais lattice for
each q vector. However, in the long-wavelength limit q→
0, these solutions can be classified as in the continuum as
one longitudinal and two transverse modes. For the former,
ξ (3)

q ≈q/|q| is along the momentum of the phonon, while the
latter can be chosen freely as an orthogonal pair in the plane
perpendicular to q. For instance, a convenient choice is ξ (1)

q ≈
y × q/|y × q|, which ensures that it is orthogonal to the y-q
plane. Since in Eqs. (B5)–(B7) we are interested only in x and
y projections of the polarization vectors, this choice leaves
nonzero only ξ

(1),x
q component.

However, the situation is even simpler because, according
to the discussion in Sec. III B, in a typical scattering process
component of the phonon momentum perpendicular to the
plane is much larger than the in-plane component |q⊥|
|q‖|. This means that the in-plane projections of the longi-

tudinal phonon polarization vector are negligible ξ
(3),x(y)
q ≈

q
x(y)
‖ /q⊥ �1. In turn, this means that the polarizations of the

two transverse modes lie almost entirely in the x-y plane
and the corresponding vectors can simply be chosen along
the x and y axes with ξ

(1),x
q ≈ξ

(2),y
q ≈1 and ξ

(1),y
q ≈ξ

(2),x
q ≈0.

Therefore, it is the transverse phonons with the momentum
largely orthogonal to the antiferromagnetic planes that couple
most strongly to the spin excitations. As a result, summation
over � in Eq. (B4) should concern only them. We note that the
same arguments have been used previously for the spin-phonon
coupling in 1D spin chains (see Ref. [17]).

Thus, using ω
(1)
q ≈ω

(2)
q ≈c|q| for the transverse branches,

the magnon-phonon coupling with the acoustic phonons is
reduced to just two nonzero terms

V
(1),x

k,k′,q ≈ gac
sp

qx
‖√|q|

√
|k||k′|

(
1 + 2kxk′x

|k||k′|
)

,

(B8)

V
(2),y

k,k′,q ≈ gac
sp

q
y

‖√|q|
√

|k||k′|
(

1 + 2kyk′y

|k||k′|
)

,

where gac
sp =Sλ/2

√
mc and the results are the same for the

anomalous coupling V
od,�,α

k,k′,q .
Since the vertices in Eq. (B8) couple to different but degen-

erate phonon branches, they will contribute independently to
the scattering probability, so that |Vtot|2 =|V (1),x |2+|V (2),y |2.
Then, it is natural to introduce an effective coupling to just one
phonon branch that would lead to the same scattering rate

V eff
k,k′,q ≈ gac

sp
|q‖|√|q|

√
|k||k′|, (B9)

in which we simply ignored the angular dependence in the
brackets in Eq. (B8) (second terms). This is equivalent only
to a quantitative (order of 1) change in the effective coupling
constant. Needless to say, the result in Eq. (B9) is identical
to the coupling proposed in Eq. (8) and used throughout the
paper.

With that, the effective Hamiltonian for magnon-phonon
coupling becomes

Heff
s-ph =

∑
k,k′,q⊥

V eff
k,k′,q

{
β
†
k′βk+ 1

2
(β†

k′β
†
−k+H.c.)

}
(a†

q�+a−q�),

(B10)

3. Zone-boundary phonon

Yet another asymptotic consideration is relevant for the
magnon-phonon coupling on a Bravais lattice. It concerns
scattering of a magnon between two branches, from the vicinity
of � point to the gapless branch at the antiferromagnetic
ordering vector Q or vice versa. Therefore, of interest are the
limits k→� and k′ →Q for vertices in Eqs. (B5) and (B6).
Importantly, the phonon involved in such a process has a
large momentum with the in-plane component q‖ ≈−Q, which
corresponds to a zone-boundary excitation with the energy of
order �D and is similar to the optical modes considered next.
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Expansion of the “magnon part” (content of the curly
brackets) in Eqs. (B5) and (B6) gives

V �
k,k′,q = 4Sλ√

2mω�
q

∑
α

ξ�,α
q

{
k′α|k| − kα|k′|

2
√|k||k′|

}
,

(B11)

V
od,�

k,k′,q = 4Sλ√
2mω�

q

∑
α

ξ�,α
q

{
kα|k′| + k′α|k|

2
√|k||k′|

}
,

where we have shifted k′ →Q+k′ and also used that
sin(qα

‖ /2)≈−1 for q‖ ≈−Q. Focusing now on the “normal”
vertex and following the same choice of polarization vectors
as above leads to two nonzero vertices

V
(1),x

k,k′,q ≈ gzb
sp

k′x |k| − kx |k′|
2
√|k||k′| ,

(B12)

V
(2),y

k,k′,q ≈ gzb
sp

k′y |k| − ky |k′|
2
√|k||k′| ,

with the coupling constant to the zone-boundary phonon
gzb

sp =4Sλ/
√

2m�D . Combining the two couplings to different
phonon branches into one effective vertex gives

V eff
k,k′,q ≈ gzb

sp

√
|k||k′| sin(ϕ/2), (B13)

where ϕ is the angle between k and k′ and anomalous vertex is
the same with sin→cos. The only difference of the effective
coupling in Eq. (B13) from the coupling to the optical phonon
proposed in Eq. (7) is the additional angular dependence. It is
easy to see that when calculating the scattering probabilities
with |V |2, the latter will be averaged to an additional factor
1
2 and thus corresponds to a simple change of the effective
coupling constant.

4. Optical phonons

To introduce optical phonons into the spin-lattice coupling
model, one needs to depart from the Bravais picture of (B1).
For that, keeping in mind cuprates, mutual displacement of
copper ions �Ui,δ ≡ (Ui+δ−Ui) should now be recognized as
involving the complete set of phonon normal modes. That
is, the summation over � in Eq. (B3) should now be treated
as involving not only three acoustic branches of the Bravais
lattice, but the entire group of optical modes as well. In that
sense, the general form of the spin-coupling Hamiltonian in
Eq. (B2) and the entire consideration of it remains valid with
the magnon-phonon coupling constants and optical phonon
energies used accordingly.

It is then clear that the small-q‖ scatterings involving
optical branches should be less important than the ones
involving acoustic modes, while the large q‖ do not carry
additional smallness of |q‖|∼T/v and should be important.
Therefore, a consideration of the leading effect of the optical-
phonon coupling is very similar to that of the zone-boundary
phonon above. Thus, without going into consideration of
the details of the crystal structure of specific materials and
neglecting nonessential angular dependence similarly to the
cases considered above yields

V eff
k,k′,q ≈ gopt

sp

√
|k||k′|, (B14)

with g
opt
sp ≈4λS/

√
2mω0 where ω0 is the energy of the optical

branch. Thus, the form of the magnon-phonon interaction
proposed in Eq. (7) is verified. While, obviously, the coupling
strength must depend on the type of the optical model involved,
one can suggest [13] the so-called “stretching mode” at high
energies as a strong candidate for a significant spin-phonon
coupling.

APPENDIX C: MAGNITUDE OF SPIN-PHONON
COUPLING

All three effective magnon-phonon coupling constants, to
acoustic, to zone-boundary, and to optical modes, introduced
in Eqs. (B8), (B12), and (B14), respectively, have very similar
structure: gsp ∝λ/

√
2m�D with a coefficient of order of unity.

Here, λ=a∂J/∂r ≈γ J is the response of the superexchange
constant to the atomic displacement. It has been argued [16]
that because the superexchange is very sensitive to the inter-
atomic distance, the typical values of γ are ∼10–20. However,
this largeness is offset by the smallness of a characteristic
scale associated with phonons [16] 1/

√
m�D ∼1/100. This is,

actually, the same parameter that characterizes the smallness
of the typical magnitude of the zero-point atomic displacement
relative to the interatomic distance [28] or the smallness of the
typical velocity of an atom in a lattice relative to the sound
velocity. Thus, the physical range of the magnon-phonon
constants is gsp/J ∼0.1.

To make a closer estimate of the spin-phonon coupling
constants as related to the cuprates, we use m = mCu and
a typical phonon Debye energy �D = 400 K. The largest
uncertainty is in the value of ∂J/∂r = γ J/a with γ �
O(3 . . . 14) [13,33]. Therefore,

4Sλ�√
2ma2kB�D

≡ gJ ∼ O(0.05 . . . 0.3) J, (C1)

where we have used a � 3.8 Å, as in La2CuO4. This defines
the dimensionless spin-phonon coupling constant g and
demonstrates that spin-phonon coupling in the cuprates, while
significant, is still within the bounds to justify the use of
perturbation theory.

APPENDIX D: VERIFICATION OF THE “EFFECTIVE
PHONON DOS” APPROACH

Here, we complement the discussion of Secs. III D and III E
by providing more verifications of the effective DOS approach
advocated in this work.

1. Optical phonons

For the Model III in Eq. (14) (flat phonon mode) of the
effective phonon DOS the integral in Eq. (16) is trivially
removed and the relaxation rate is given by a compact
analytical expression

1

τk
≈

(
g

opt
sp

v

)2(
εk

v2

)
×{�(εk − ω0)(εk − ω0)2(n(ω0) + n(εk − ω0) + 1)

+ (εk + ω0)2(n(ω0) − n(εk + ω0))

+�(ω0 − εk)(ω0 − εk)2(n(ω0 − εk) − n(ω0))}. (D1)
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FIG. 14. (Color online) Magnon relaxation rate on the optical
phonons [Eq. (16)] vs εk for a representative T =400 K and for
effective phonon DOS Models II and III in Eqs. (13) and (14). The
results are normalized to the high-temperature asymptotic behavior of
the phonon-absorption term τ

(2)
k [Eq. (17)] (T 2ε2

k/v
2ω0). Parameters

are indicated in the graph. The vertical axis is in units of (gopt
sp /v)2.

Dashed line is the result of the direct numerical integration in Eq. (5)
for the dispersive optical phonon in Fig. 2 without the approximation
of Eq. (10). Inset shows individual contributions of the three diagrams
in Fig. 1 for both the effective DOS approach (16) with the Model II
and the direct numerical integration.

An identical expression can be obtained directly from Eq. (5)
for the optical phonon energy ωq =ω0 and linearized magnon
energy and magnon-phonon vertex in Eqs. (6) and (7). Thus,
in this case, the effective phonon DOS approach is exact.

Figure 4 shows the expected activated and high-temperature
asymptotic behavior of the scattering rate versus T from (18).
Figure 14 demonstrates the validity of another aspect of the
asymptotic consideration in Eq. (17): the dependence of 1/τk
on εk at T >ω0. The results in Fig. 14 are normalized to
the high-temperature asymptotic behavior of the phonon-
absorption term 1/τ

(2)
k in Eq. (17), T 2ε2

k/v
2ω0. Clearly, for

εk <T such a behavior is confirmed (finite intersect of the
vertical axis), while the phonon-emission term 1/τ

(1)
k carries

higher power of εk, also in agreement with Eq. (17). In
addition, the results of a direct 3D numerical integration in
Eq. (5) for the dispersive optical phonon in Fig. 2, ωq ≈
ω0+αq2, without the approximation of Eq. (10) are shown by
the dashed line. Inset shows individual contributions of three
diagrams in Fig. 1 for both the effective DOS approach (16)
with the Model II and the direct numerical integration. One can
see a very close agreement of the effective DOS method with
the direct numerical integration in Eq. (5), which is achieved
at a fraction of numerical cost as the former approach requires
only a 1D integration in Eq. (16).

2. Acoustic phonons

With the help of our Figs. 15 and 16, we provide a
demonstration of the accuracy and numerical efficiency of
the effective phonon DOS approach. In them, the T and
εk dependencies of the relaxation rate by acoustic phonons
from (21) are compared with an explicit numerical 3D
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1/τ tot
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FIG. 15. (Color online) T dependence of the magnon relaxation
rate on the acoustic phonons [Eq. (21)] for εk =T and using effective
phonon DOS model in Eq. (15). The results are normalized to the
asymptotic behavior (19) (T 5/v3ω0). Parameters are as discussed
in text, Debye energy �D =400 K. The vertical axis is in units of
(gac

sp/v)2. Individual contributions of the first two terms in Eq. (21)
[diagrams in Figs. 1(a) and 1(b)] are indicated. Dashed lines are the
result of the direct numerical 3D integration in Eq. (5) for the acoustic
phonon without the approximation of Eq. (10).

integration in Eq. (5) with the magnon-phonon vertex from (8)
and without the use of approximation (10). These figures also
offer an additional confirmation of the asymptotic trends of
Eqs. (19) and (22).

In Fig. 15, the T dependence is shown for the relaxation
rate (21) for εk =T , i.e., on “thermal shell.” The results are
normalized to T 5/v3�D to make the asymptotic behavior
of (19) apparent. The vertical axis is in units of (gac

sp/v)2.
We also show individual contributions of the first two terms
in Eq. (21), while the third is negligible as discussed above.
The results of a direct 3D numerical integration in Eq. (5) for
acoustic phonon (within the Debye approximation) without
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FIG. 16. (Color online) Magnon relaxation rate [Eq. (21)] vs εk

for a representative T =400 K and for effective phonon DOS model
in Eq. (15). The results are normalized to the asymptotic behavior (22)
(T ε4

k/v
3�D). Inset: same with the normalization by T 2ε3

k/v
3�D .
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the approximation of Eq. (10) are shown by dashed lines. One
can see a very close quantitative agreement of the effective
DOS method with the direct numerical integration. At very
low T , the direct numerical procedure becomes unreliable due
to very small k′ and q space of integration relevant for the
scattering. Again, the high-accuracy results of the effective
DOS approach are achieved at a fraction of the numerical cost
of the direct integration.

Figure 16 shows the dependence of 1/τk on εk at a
representative T =400 K. The results in Fig. 16 are normalized
to the asymptotic behavior in Eq. (22), T ε4

k/v
3�D . Clearly,

for 1/τ (1) such an asymptote is essentially precise for all
the energies, while for the phonon-absorption term substantial
deviations occur at lower energies, the feature also emphasized
in the inset of Fig. 16. This can be analyzed by a more careful
asymptotic treatment of Eq. (21) in the εk �T regime, which
show that the smallness of the subleading terms by c/v gets
compensated by the largeness of T/εk for small enough εk,
and the ultimate asymptotic behavior of this term in the εk �T

regime is 1/τ (2) ∼T 3ε2
k/v

4. As in Fig. 15, Fig. 16 shows a very
close quantitative agreement of the effective DOS method with
the direct numerical integration.
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