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We generalize the Wannier interpolation of the electron-phonon matrix elements to the case of polar-optical
coupling in polar semiconductors. We verify our methodological developments against experiments, by
calculating the widths of the electronic bands due to electron-phonon scattering in GaAs, the prototype polar
semiconductor. The calculated widths are then used to estimate the broadenings of excitons at critical points
in GaAs and the electron-phonon relaxation times of hot electrons. Our findings are in good agreement with
available experimental data. Finally, we demonstrate that while the Fröhlich interaction is the dominant scattering
process for electrons/holes close to the valley minima, in agreement with low-field transport results, at higher
energies, the intervalley scattering dominates the relaxation dynamics of hot electrons or holes. The capability
of interpolating the polar-optical coupling opens new perspectives in the calculation of optical absorption and
transport properties in semiconductors and thermoelectrics.

DOI: 10.1103/PhysRevB.92.054307 PACS number(s): 63.20.kg, 63.20.dk, 71.38.−k, 71.35.−y

I. INTRODUCTION

Electron-phonon coupling plays a fundamental role in
the relaxation of photoexcited electrons, thus affecting the
performance of photovoltaic [1] and other semiconductor-
based devices [2,3]. In many cases, the electron-phonon
coupling determines the magnitude of the lifetimes of elec-
tronic states inside the band gap, and the widths of the
corresponding absorption peaks [4–6]. It is also responsible
for shifts and broadenings of the interband critical points in
semiconductors [7,8]. The interpretation and analysis of the
(ultra)fast dynamics of relaxation of photoexcited electrons
is particularly difficult, because many relaxation processes
are present simultaneously, and disentangling their respective
contributions requires ad hoc information on their relative
importance and order of magnitude [9].

At the same time, ab initio calculations provide an ef-
fective tool to estimate electron-phonon coupling strength in
metals [10–12] and semimetals such as graphene [13–16] or
bismuth [17,18]. In the case of semiconductors, the predictive
capability of calculations based on density functional pertur-
bation theory (DFPT) [19,20] for the electron-phonon matrix
elements has been demonstrated in a number of semiconduc-
tors [21–23], alloys [24,25], and nanostructures [23,26].

Recently, a method to interpolate the electron-phonon
coupling matrix elements using Wannier fuctions has been
introduced [11,27,28], providing a computationally efficient
method to calculate electron-phonon matrix elements on
extremely fine grids in the Brillouin zone (BZ) of metals.
This has proved to be crucial to predict various material
properties such as, for example, nonadiabaticity [27] or
superconductivity [29,30].

*jelena.sjakste@polytechnique.edu

The method [11,27] has also been used to increase the
precision of integrals related to electron-phonon scattering
times and scattering rates in semiconductors [31], being,
however, limited to nonpolar semiconductors. Indeed, in
polar semiconductors, a long-wavelength longitudinal optical
(LO) phonon induces an electric field, and the interaction
of electrons with this macroscopic electric field—the polar-
optical coupling or Fröhlich interaction—is divergent when
the phonon wave vector tends to zero. As the electron-phonon
matrix elements related to the Fröhlich interaction are not
localized in the Wannier basis, these matrix elements cannot
be properly interpolated with the method of Refs. [11,27].

In this work, we extend the method [11,27] to take into
account polar-optical coupling, and apply it to GaAs, which is
an archetype of a polar semiconductor. First, we present the
theoretical background of our method, which we validate by
comparing the Wannier interpolated electron-phonon matrix
elements with that obtained by direct calculation within DFPT.
Next, we calculate band broadenings due to the electron-
phonon interaction for the highest valence and lowest con-
duction states. The calculated broadenings represent the total
probability of the momentum relaxation of the hot electrons or
holes due to electron-phonon interaction, in good agreement
with recent pump-probe experiments [32]. We analyze the
role of the Fröhlich interaction in the relaxation of excited
electrons in GaAs, and we find that the Fröhlich interaction
is responsible for the quasitotality of the electron-phonon
relaxation rates at low excitation energies, while representing
only 10% of the electron-phonon relaxation rates for hot
electrons or holes. The calculated data have then been used
to estimate the broadenings of the E1 and E2 critical points
in GaAs. For E1, the calculated broadening is in very good
agreement with the experimental results of work [7] and
with previous calculations [7]. Finally, for E2, the calculated
broadening is in satisfactory agreement with experimental
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results, in contrast with the previous calculation with the
empirical pseudopotential method [7].

II. THEORY

A. Electron-phonon matrix element

The matrix element ds
mn(k,k + q) of the periodic part

of the static and self-consistent response potential for a
monochromatic perturbation of q wave vector, uqs , reads

ds
mn(k,k + q) = 〈kn|δvSCF

δuqs

|k + qm〉, (1)

where |kn〉 stands for the periodic part of the Bloch wave func-
tion of the initial electronic state, i.e., |ψk,n〉 = eikr|kn〉/√Nk .
The vector k is the electronic wave vector, q is the phonon wave
vector, and n and m are the band numbers of the initial and
final states. Nk is the number of points in the k grid on which
ψk,n are generated, the periodic part of the wave function being
normalized in the unit cell. uqs is the Fourier transform of the
phonon displacement of atom s. The quantity δvSCF/δuqs is
the periodic part of the (static and self-consistent) response
potential.

The electron-phonon matrix element gν
nm reads

gν
nm(k,k + q) =

∑
s

esν(q)ds
mn(k,k + q)/

√
2Msωqν . (2)

We have used esν(q) for the phonon eigenvector (s labels
the atoms in the unit cell, ν labels the phonon mode), ωqν is
the phonon frequency, and Ms is the atomic mass.

In analogy with our previous works [33,34] and the
original work [35], the deformation potential for an individual
transition is defined as a quantity proportional to the absolute
value of the electron-phonon matrix element of Eq. (2):

Dν
nm(k,k + q) =

√
2ρ�ωqν

�

∣∣gν
nm(k,k + q)

∣∣. (3)

Here, ρ is the mass density of the crystal, and � is the crystal
volume. In the case of several initial and/or final electronic
bands, we define the total deformation potential as

Dν
tot =

√
�nm

(
Dν

nm

)2
. (4)

The Wannier interpolation of electron-phonon matrix ele-
ments was first introduced in Ref. [11]. Implementation of the
Wannier interpolation procedure into the QUANTUM ESPRESSO

package [20], which we have used in this work, was described
in Ref. [27]. In this work, we repeat only the part of the
comprehensive description of Ref. [27] that is necessary for
an understanding of the extension to polar-optical coupling
introduced in the next section.

A set of Wannier functions centered on site R is defined by
the relation

|Rm〉 = 1√
Nk

∑
kn

e−ikRUnm(k)|ψkn〉. (5)

A transformation matrix, Umn(k), is determined by the Wan-
nierization procedure (see Ref. [27]).

The matrix elements ds
mn(k,k + q) are calculated within

DFPT. As emphasized in Ref. [27], the periodic parts |kn〉
and |k + qm〉 have to be exactly the same wave functions

used for the Wannierization procedure. This allows one to
fix their arbitrary phases appearing in the |kn〉’s because of
the numerical routine used for the diagonalization of matrices
containing complex numbers, or other numerical reasons [27].

The matrix element d in the Wannier function basis is
obtained by Fourier transform as

ds
mn(R,RL) = 1

Nk

Nk∑
k,q

∑
m′,n′

e−ikR+iqRL d̃s
m′n′(k + q,k)

(6)

with

d̃s
m′n′(k + q,k) = U ∗

mm′(k + q)ds
m′n′ (k + q,k)Un′n(k).

(7)

Finally, when the localization conditions are verified on
ds

mn(R,RL) (see Ref. [27]), one can obtain, by a slow Fourier
transform, ds

mn(k + q,k) with k and q being any points in
Brillouin zone:

ds
mn(k + q,k) = 1

(Nk)2

∑
L

∑
R

∑
m′n′

eikR+iqRL

×Um′m(k + q)ds
m′n′(R,RL)U ∗

nn′(k). (8)

In this work, GaAs is described within the local density
approximation, and with the same pseudopotentials as in our
previous works [34,36]. For the electronic density calculation,
we used an energy cutoff value of 45 Ry and a Monkhorst-
Pack grid of 12 × 12 × 12 points in the BZ. The Wannier
interpolation of the structure was carried out using 6 × 6 × 6
and 8 × 8 × 8 k-point grids centered at 	, with ten Wannier
functions and 45 density functional theory (DFT) Bloch
wave functions. The large number of Wannier functions and
DFT bands, as well as the rather dense k-point grids, are
related to the costly disentanglement procedure necessary to
satisfactorily reproduce the lowest conduction bands of GaAs.

The same 6 × 6 × 6 and 8 × 8 × 8 grids centered at 	

were used as initial grids to calculate electron-phonon matrix
elements within DFPT, which were then Wannier interpolated
using the interpolation method extended to polar-optical
coupling described in the next paragraph.

B. The long-range Fröhlich interaction

The Fröhlich interaction is long range, and thus the electron-
phonon matrix elements for long-wavelength longitudinal
optical phonons in polar materials are not localized in the
real-space Wannier basis. A proof is given in Fig. 1, where the
interpolation method of Refs. [11,27] is shown to fail for the
LO phonon as q → 0. Indeed, as one can see from Fig. 1, at
large |q| vectors, the character of the electron-phonon matrix
elements is completely short range for all phonon branches
including the LO branch and is well reproduced by the standard
interpolation method [27]. At small |q| vectors however,
instead of the characteristic 1/|q| behavior, the interpolation
method of Ref. [27] yields the same values of deformation
potentials for the LO and TO branches. This is because, for
the highest valence bands, the electron-phonon interaction
with long-wavelength LO phonons at k = 	 contains both
long-range (Fröhlich) and short-range contributions [37]. At
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FIG. 1. (Color online) GaAs. Deformation potentials for the total
contribution of the three highest valence bands [see Eq. (4)]. The
initial electronic state is at k = 	, and the phonon wave vector q
is varying along high symmetry lines in the BZ. Black line: Direct
DFPT calculation. Gray squares: Wannier interpolation extended to
polar-optical coupling. Circles: Standard Wannier interpolation for
metals and nonpolar semiconductors.

vanishing |q|, the short-range contribution is the same for the
LO and TO phonons.

The absence of LO/TO splitting within a standard Wannier
interpolation procedure is in analogy with the LO/TO splitting
of phonon frequencies in polar semiconductors. Indeed, if
dynamical matrices are interpolated with a real-space cut-
off [20,38], the LO/TO splitting of the phonon modes is absent,
and the long-range part of the dynamical matrix needs to
be subtracted before Fourier interpolation into the real space
and reintroduced afterwards in order to reproduce the LO/TO
splitting [20,38]. We apply a similar scheme in the case of
electron-phonon matrix elements, with the nonlocal part of
the electron-phonon interaction represented by the Vogl model
described in the next paragraph.

C. The Vogl model

The electron-phonon matrix element of the interaction
of electrons with the macroscopic electric field induced by
long-wavelength longitudinal optical phonons (the Fröhlich
interaction) was derived by Vogl in Ref. [39], for long-
wavelength phonons (q → 0). The leading contribution, in
terms of ascending powers of q, to the intraband electron-
phonon matrix element, is given by the interaction with a dipole
potential (∝ 1

|q| ) screened by the high-frequency dielectric
tensor ε∞ [see Eq. (3.12) of Ref. [39]], and reads

gν
diel(q) = 4πie

q · ←→ε ∞ · q

∑
s

∑
λ′

qλ
′ Zλ′λsesν

λ (q)/
√

2Msωqν .

(9)

The corresponding deformation potential then becomes

Dν
diel(q) =

√
2ρ�ωqν

�

∣∣gν
diel(q)

∣∣. (10)
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FIG. 2. GaAs. LO deformation potentials for the initial electronic
state with k = X and the phonon wave vector changing along the
(100) direction: q = (qx,0,0)2π/a, for qx � 0.01. Panel (a): Defor-
mation potentials calculated within DFPT for the lowest conduction
band (dashed line) and two lowest valence bands [dot-dashed line,
visible in panel (b)], compared with the deformation potentials
calculated from the model of Eq. (9) (solid line). Panel (b): The
difference between the deformation potentials calculated with DFPT,
and the model of Eq. (9).

In Eq. (9), e is electronic charge, Zλ
′
λs is the Born effective

charges tensor for atom s, and λ,λ′ denotes the Cartesian
components. Among other approximations, it was assumed,
in Ref. [39], that

〈k + qm|kn〉 = δmn + O(q2). (11)

Note that such a relation assumes a smooth and analytic
relative phase relation among the |k,n〉 and |k + q,m〉 states.
Such a requirement is satisfied by the phase choice giving the
localized Wannier functions, but not by the arbitrary phase
given by the diagonalization procedure. Furthermore, Eq. (11)
is the reason why the expression (9) does not depend on
the electronic wave vector k nor on the band indexes of
the initial and final electronic states (which are assumed to
be the same). Nevertheless, expression (9) describes well the
asymptotic behavior of the electron-phonon matrix elements
in polar semiconductors as q → 0, as one can see in Fig. 2,
where the behavior of the electron-phonon matrix elements
for the lowest conduction band (dashed line) and for the
highest valence bands (dot-dashed line) of GaAs calculated
within DFPT are compared with Eqs. (9) and (10) of the
model for the Fröhlich interaction along the (100) direction
in the Brillouin zone (solid line). At large qx , the short-range
character of the electron-phonon matrix elements is different
for the conduction band and the valence bands, and cannot
be described with the model of Eq. (9). At small qx , on
the contrary, the asymptotic behavior of the electron-phonon
matrix elements for the valence bands and the conduction band
becomes similar, and this behavior is extremely well described
by the model of Eq. (9).
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D. Wannier interpolation extended to polar-optical coupling

The method we propose in order to extend the interpolation
method of the electron-phonon matrix elements to polar
semiconductors is similar to the one described in Ref. [38] for
the interpolation of the force constants in polar materials. The
idea is that the long-range contribution to the electron-phonon
matrix elements, described with the model of Eq. (9), has to be
subtracted from the electron-phonon matrix elements before
the Fourier transform to real space in Eq. (6) and restored after
the Fourier transform back to the reciprocal space in Eq. (8).

We use the Ewald sum in order to take into account the
periodicity properties of the crystal [38] and define

ddiel
λs (q) = 4πie

∑
λ

′

∑
G

e−(q+G)2/4α

(q + G) · ←→ε ∞ · (q + G)

×Zλ′λs(qλ
′ + Gλ

′ ). (12)

Here, α is a convergence parameter [we used α = 5 ( 2π
a

)2

in this work], and G’s are the reciprocal lattice vectors. The
dielectric term, Eq. (12), depends only on the phonon wave
vector q, and on material characteristics such as the Born
effective charges Zλ

′
λs and the dielectric constant ε∞, which

are calculated within linear response theory [20].
Then we subtract ddiel

λ (q) from the intraband Fourier
transform of the deformation potential in the optimally smooth
subspace, namely, we define

D̃λs
m′n′ (k + q,k) = d̃λs

m′n′(k + q,k) − δm′,n′ddiel
λs (q). (13)

We then carry out the transformation in Eq. (8) on the matrix
D̃s

m′n′ (k + q,k),

Ds
mn(k + q,k) = 1

(Nk)2

∑
L

∑
R

∑
m′n′

eikR+iqRL

×Um′m(k + q)D̃s
m′n′ (R,RL)U ∗

nn′ (k), (14)

where D̃s
m′n′ (R,RL) is obtained via Eq. (6) with d̃s

m′n′(k + q,k)
replaced by D̃s

m′n′(k + q,k).
Finally we add back ddiel

λs (q) where now q is any phonon
wave vector in the Brillouin zone, namely,

dλs
mn(k + q,k) = Dλs

mn(k + q,k) + ddiel
λs (q)δm,n. (15)

In Fig. 1, the results obtained with the method of Wannier
interpolation extended to polar-optical coupling are shown
in gray squares. The behavior of deformation potentials
corresponding to LO phonons is well reproduced by the
Wannier interpolation extended to polar-optical coupling, in
contrast with the standard Wannier interpolation method.

In Fig. 3, we show the total deformation potentials for the
three highest valence bands of GaAs (n,m = 2,3,4), multiplied
by the modulus of the phonon wave vector |q|, for all six
phonon modes of GaAs. The crystal momentum of the initial
electronic state was taken to be k = 	, while the wave vector
of the final electronic state k + q changes as the phonon wave
vector q varies along high symmetry lines in the BZ. We chose
to multiply deformation potentials by the modulus of q, as, due
to the Fröhlich interaction, the deformation potential for the LO
phonon tends to infinity as 1

|q| and thus the values are very high
close to 	. In black are represented reference DFPT values,
and in gray squares are shown the deformation potentials
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FIG. 3. (Color online) GaAs. Deformation potentials for the total
contribution of the three highest valence bands [see Eq. (4)] multiplied
by the modulus of the phonon wave vector |q|. The initial electronic
state is at k = 	, and the phonon wave vector q is varying along
high symmetry lines in the BZ. Black line: Direct DFPT calculation.
Gray squares: Our results obtained with the Wannier interpolation
extended to the polar-optical coupling.

which were interpolated using our Wannier interpolation
method extended to polar-optical coupling. As one can see,
the agreement between DFPT calculations and the Wannier-
interpolated deformation potentials is excellent. The nonzero
value of the deformation potential multiplied by q at q = 	 is
due to the diverging LO-phonon Fröhlich interaction, which is
now properly described.

In conclusion, the method of Wannier interpolation ex-
tended to polar-optical coupling yields interpolated electron-
phonon matrix elements with the same precision as the
“standard” one at large phonon q vectors, but, in contrast to
the standard method, it enables us to correctly describe the
diverging LO-phonon Fröhlich interaction at vanishing q.

III. RESULTS

A. Scattering rates and role of the Fröhlich interaction

The method of interpolation of the electron-phonon matrix
elements in the Wannier space is necessary when one has
to calculate integrals involving many q points, as it allows
one to significantly reduce the computational cost, compared
to direct DFPT calculation. We have applied the method
described in previous section to calculate the total probabilities
of the electron-phonon scattering for an electron initially in the
lowest conduction band of GaAs, and for a hole initially in the
highest valence band of GaAs.

In Fig. 4, we show the full width at half maximum 	 due
to the electron-phonon coupling, which was calculated for the
lowest conduction band and the highest valence band of GaAs
as a function of the k vector of the initial electronic state, at a
temperature of 300 K:

	nk = 2π

�

∑
n′

∑
ν

∫
BZ

dq|gν
nn′ (k,k ± q)|2

× δ(εn′k±q − εnk ∓ �ωqν)

{
Nq

Nq + 1

}
. (16)
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FIG. 4. (Color online) GaAs. Panel (a): Highest valence and low-
est conduction bands broadened by the electron-phonon interaction.
The broadening is due to all electron-phonon interaction processes.
For the sake of visibility, the calculated broadening 	k of the
electronic bands has been multiplied by 5 in this panel. For panels
(b)–(d), the black solid line describes the behavior of the initial
electronic state in the highest valence band and the gray solid line is
that of the initial state in the lowest conduction band. Panel (b):
Broadening 	k due to electron-phonon interaction, as a function
of the k vector of the initial electronic state. Panel (c): Electronic
density of the final states allowed by conservation laws, as a function
of the k vector of the initial electronic state. Panel (d): Relative
contribution of the Fröhlich interaction only to the total broadening.
The calculations were done at T = 300 K.

Here, εnk are the electronic eigenenergies, and Nq is the
phonon occupation number which is described by the Bose-
Einstein distribution function. Upper and lower symbols refer
to absorbtion and emission, respectively.

In practice, the delta function in Eq. (16) was replaced
by a Gaussian function in order to calculate numerically
the integral in Eq. (16). The integration was performed on
a 48 × 48 × 48 q-point grid in the BZ. The calculation was
converged with respect to the Gaussian broadening starting
from 15 meV broadening. As the pseudopotentials used here
reproduce well the respective positions of the minima of the
conduction band of GaAs [34], the Kohn-Sham band structure
values at equilibrium were used to calculate the integral (16).

As one can see, the broadening due to electron-phonon
coupling varies from a few meV at the bottom of the conduction

band or at the top of the valence band (i.e., for k close
to 	 point of the BZ), to several tenths of meV at high
initial electron energies for the conduction states, or low
initial hole energies for the valence band. The behavior of
the total electron-phonon scattering probability is similar to
that of the density of the final electronic states allowed by
the energy and momentum conservation laws [panel (c)], as
the probability grows when more final states are available for
the electron-phonon scattering. However, it is not exactly the
same, as the electron-phonon matrix elements are not constant
over the Brillouin zone.

The contribution due to the Fröhlich interaction is of a few
meV and does not change much over the Brillouin zone. It
is, however, the dominant scattering process for the electron
close to the bottom of the 	 or L valleys, and for the hole
close to the top of the valence band, as one can see from the
panel (d) of Fig 4. Away from the band extrema, the intervalley
electron-phonon scattering mechanism rapidly becomes the
dominant scattering mechanism. This result is in agreement
with available literature for low-field transport [40]. Indeed, at
ambient temperatures, the Fröhlich interaction is the dominant
scattering mechanism which determines the low-field transport
in GaAs [40]. At high fields, however, the Fröhlich interaction
no longer plays the main role, and the intervalley scattering
is expected to determine the relaxation dynamics of electrons
and/or holes, as can be deduced from Fig. 4. In this respect,
GaAs behavior in similar to that of nonpolar semiconductors,
i.e., silicon or germanium [41].

B. Relaxation times related to electron-phonon coupling

The widths of the electronic levels due to electron-phonon
coupling presented in Fig. 4 can be used to estimate the
relaxation times of hot electrons related to electron-phonon
scattering. Recently, the relaxation time of hot electrons
excited in the conduction band (CB) of GaAs close to 	

at excess energy εex = 0.78 eV with respect to the CB
bottom was found to be 22 ± 3 fs at 293 K [32]. We find
the electron-phonon scattering time τk = �

	k
to be 30 fs at

εex = 0.78 eV, in satisfactory agreement with the experimental
result of Ref. [32].

C. Broadenings of some critical points

The widths of the conduction and valence bands presented
in Fig. 4 can be also used to estimate the temperature-
dependent broadenings of excitons at critical points in GaAs,
attributed mostly to electron-phonon scattering. In principle,
one should rely on the many-body excitonic wave function
to obtain the excitonic lifetime. The latter consists in a
combination of products of electron and hole quasiparticle
(QP) wave functions �e�h, linearly mixed through the ex-
change operator—the electron-hole interaction [42]. Obtaining
a precise knowledge of the QP wave functions and of the
coefficients of the linear combination is out of the scope of
this work. Instead, following Ref. [7], we model the excitonic
wave function using the DFT wave functions of the lowest
conduction band for the electron (respectively, highest valence
band for the hole) and take �k=ki

ψkcψkv as our excitonic wave
functions, with the sum limited to a few representative points
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ki . We then approximate the excitonic lifetime by the sum
of the electron and hole lifetime, 	kc + 	kv . For the critical
point E1, the width 	kc (respectively, 	kv) of the electronic
(respectively, hole) level are obtained via Eq. (16) with four
points ki equal to L, 3

4L, 1
2L, and 1

4L, as done in Ref. [7]. In
the case of E2, only one representative point k = 2π/a( 3

4 , 1
4 , 1

4 )
was used in Ref. [7]. The region in the k space where valence
and conduction bands are parallel and which contributes to the
E2 point was described in Ref. [43]. In this work, we decided
to take into account three points ki : ( 3

4 , 1
4 , 1

4 ), (1, 1
8 , 1

8 ), and U

which belong to the region which contributes to E2 [43].

1. Broadening of the E1 critical point

The resulting broadening 	kc + 	kv , is reported as a
function of temperature for the critical point E1 (Fig. 5). As
one can see, broadenings of the critical point E1 calculated in
this work are in satisfactory agreement with the experimental
results of Ref. [7]. In the case of our calculation, the agreement
is best with the experimental data obtained by fit with the
Fano-type excitonic shape, whereas the previous theoretical
result of Ref. [7] privileged the fit with a two-dimensional
critical point model [8]. The question to discriminate between
the two methods of fit of the experimental data is, however,
out of the scope of present work. Indeed, here we only
demonstrate that the calculated widths due to electron-phonon
scattering allow one to correctly estimate the magnitude of the
broadenings of critical points, within the experimental error
bar.
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FIG. 5. (Color online) GaAs. Broadening (meV) of the critical
point E1 as a function of temperature. Points: Experimental data of
Ref. [7] obtained by fit with the Fano-type excitonic line [8]. Squares:
Experimental data of Ref. [7], fit with the two-dimensional critical
point model [8]. Solid black line: This work, Wannier interpolation
method extended to polar-optical coupling. Dashed-dotted line:
Theoretical calculation from Ref. [7] with empirical pseudopotential
method. Both theoretical broadenings are due to electron-phonon
coupling only and are calculated as the sum of the broadenings of
the lowest conduction and highest valence bands, averaged over the
four points along the � direction as explained in the text. The inset
represents the same experimental and theoretical results of Ref. [7] as
the main figure, with the same notations. Gray solid line on the inset
figure: This work, Wannier interpolation method without extension
to polar-optical coupling.

0 200 400 600 800
T (K)

0

100

200

300

Γ 
(m

eV
)

FIG. 6. GaAs. Broadening (meV) of the critical point E2 as a
function of temperature. Squares: Experimental data of Ref. [7], fit
with the two-dimensional critical point model [8]. Dashed-dotted line:
Theoretical calculation from Ref. [7] with empirical pseudopotential
method. Solid black line: This work, Wannier interpolation method
extended to polar-optical coupling, sum of the broadenings of the
lowest conduction and highest valence bands, averaged over three
points (see text).

In the inset of Fig. 5, we show the result of the calculation of
the same broadening of E1, but with the standard interpolation
method. As one can see, the broadening of E1 is slightly lower
if the Fröhlich coupling is omitted, however, the overall result
is very similar, confirming the statement of the previous section
that the scattering of the electrons/holes away from valley
minima is dominated not by the Fröhlich, but by the intervalley
scattering.

2. Broadening of the E2 critical point

In Fig. 6, we have estimated the broadening of the critical
point E2 in GaAs. In the case of E2, our results (solid line)
are very different from the theoretical result obtained with the
empirical pseudopotential method [7], and yield a much better
agreement with experiment, showing that the experimentally
measured broadening of the E2 point can be attributed to the
electron-phonon scattering. It must be noted, however, first
that only experimental results extracted with the fit with the
two-dimensional critical point model are available in this case.
Second, the experimental behavior of the broadening beyond
500 K differs from that predicted by the calculation.

With the dotted line, we show the broadening of the
critical point E2 estimated in our work with only one point
k = 2π/a( 3

4 , 1
4 , 1

4 ) as was done in Ref. [7]. As one can see,
the broadening reported with the dotted line is similar to that
obtained with three representative points, showing that the
result does not depend crucially on the method of averaging
and that it remains widely different from that obtained with
empirical pseudopotential.

IV. CONCLUSION

In conclusion, we have presented a description of the
extension to polar-optical coupling of the method which allows
one to interpolate the electron-phonon matrix elements in the
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space of maximally localized Wannier functions. The extended
method is based on Vogl’s model of the Fröhlich component
of the electron-phonon coupling, and allows one to interpolate
the electron-phonon matrix elements calculated within DFPT
in polar semiconductors with excellent precision. We have
applied the extended method of interpolation in the case
of GaAs, and calculated the widths of the electronic levels
due to the electron-phonon coupling for highest conduction
and lowest valence band. We have demonstrated that the
obtained widths of the electronic levels can be used to estimate
the relaxation times of hot electrons and the broadenings
of the critical points due to electron-phonon scattering, in
good agreement with various experiments. Finally, we have
shown that, although the Fröhlich interaction is the dominant
scattering process for electrons/holes close to the valley
minima, in agreement with low-field transport results, at higher

energies, the intervalley scattering is expected to dominate the
relaxation dynamics of hot electrons or holes.
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