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Electron self-energy and generalized Drude formula for infrared conductivity of metals

Philip B. Allen
Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA

(Received 19 June 2015; published 12 August 2015)

Götze and Wölfle (GW) [Phys. Rev. B 6, 1226 (1972)] wrote the conductivity in terms of a memory function
M(ω) as σ (ω + iη) = (ine2/m)[ω + M(ω + iη)]−1, where M(ω + iη) = i/τ in the Drude limit. The analytic
properties of −M(ω + iη) are the same as those of the self-energy � of a retarded Green’s function. In the
approximate treatment of GW, −M closely resembles a self-energy with differences, e.g., the imaginary part is
twice too large. The correct relation between −M and � is known for the electron-phonon case and is conjectured
to be similar for other perturbations. When vertex corrections are ignored there is a known relation. A derivation
using Matsubara temperature Green’s functions is given.
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I. PRELIMINARIES

Holstein [1] used elementary arguments to show that in
the infrared properties of metals there can be quantum effects
(outside of the semiclassical Boltzmann approach) when the
temperature is low enough and the probing frequency ω is
degenerate with nonelectronic excitations, such as phonons.
Such effects have been seen experimentally [2,3]. Götze and
Wölfle (GW) [4] gave a nice simplified way to compute
such effects in the optical response of metals using truncated
equations of motion to compute the “memory function”
M(ω + iη) defined as

σ (ω + iη) = ine2/m

ω + M(ω + iη)
. (1)

In the dc limit, their formulas correctly reproduce lowest-
order variational solutions of the corresponding Boltzmann
transport theories. Unfortunately, a systematic perturbation
theory for M(ω + iη) is not known, and the GW approximation
is therefore hard to improve. The GW results are slightly
less accurate than the corresponding lowest-order results of
Green’s function theories.

The function −M(ω + iη) has causal analytic properties
and, not surprisingly, bears a close resemblance to an electron
self-energy �(�k,ω + iη) for �k points averaged over the Fermi
surface. However, the imaginary part of � is −1/2τ whereas
the imaginary part of −M must be −1/τ . This is not the
only difference between −M and �. Since the analogy
between −M and � is sometimes used for analysis of infrared
spectra [5], it is important to understand just how good it
actually is. A full formula seems not to have been derived and
is beyond the ambition of this paper. A reasonable conjecture
is that when anisotropy with k around the Fermi surface is not
too important, then

σ (ω + iη)

= ine2

mω

∫ ∞

−∞
dω′ f (ω′) − f (ω′ + ω)

ω − �ir(ω′ + ω + iη) + �∗
ir(ω

′ + iη)
,

(2)

where f (ω′) = [exp(βω′) + 1]−1 is the Fermi-Dirac function.
Here �ir is a modified version of �, averaged over the
Fermi surface, but with an extra weighting factor, similar to
the familiar transport factor 1 − cos θ . The actual weighting

factor (in the solved electron-phonon case [6,7]) is found from
a frequency-dependent nonlinear integral equation. Replace-
ment of the weight factor by 1, turning �ir into an ordinary but
�k-averaged self-energy, should work fairly well in most cases.
Scher [8] performed a numerical study which tends to confirm
that the difference between �ir and � is small. Sometimes the
anisotropy of � around the Fermi surface is large. A modified
version of Eq. (2) that deals approximately with such cases is
presented at the end of the paper.

Equation (2) implies a relation between −M(ω + iη) and
the self-energy which becomes more direct at low frequencies.
Keeping the lowest order (in ω) terms, one gets a derivative
of the Fermi-Dirac function −∂f (ω′)/∂ω′, which can be
approximated by the Dirac δ(ω′),

σ (ω + iη) ≈ ine2

m

∫ ∞

−∞
dω′

(
− ∂f (ω′)

∂ω′

)

× 1

ω[1 − d�ir,1(ω′)/dω′] + 2i�ir,2(ω′)

≈ ine2/m

ω − ω d�ir,1(ω)/dω + 2i�ir,2(ω)
. (3)

Therefore the real part of −M at low frequencies is
ωd Re �ir(ω)/dω, and the imaginary part is −2 Im �ir(ω). If
the interesting part of Re � is odd in ω and approximately
linear, then M at very low ω is a lot like � except for the factor
of 2 in the imaginary part.

In the dc limit, the result σ = ne2τ/m is retrieved with
1/τ = −2 Im �ir(ω → 0). There are minor differences be-
tween this and the more exact result found from a solution
of the Boltzmann transport equation. These differences arise
from �k dependence and disappear when the electron scattering
is isotropic.

II. KUBO FORMULA

The starting point is the Kubo [9] formula for the
conductivity. In an external electric field �E(t) = �E cos(ωt),
the current operator j = −e

∑
k vkxc

†
kck acquires an expecta-

tion value of 〈j (t)〉 = Re[σ (ω + iη) exp(−iωt)]E where the
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linear-response coefficient σ (ω + iη) is

σ (ω + iη) = i

ω

[
r(ω + iη) + ne2

m

]
, (4)

r(ω + iη) = i

∫ ∞

0
dt eiωt−ηt 〈[j (t),j (0)]〉. (5)

The Hamiltonian H = H0 + H1 has the noninteracting part
H0 = ∑

k εkc
†
kck . The label k is short for the Bloch wave vector

and other quantum numbers (�knσ ). The state k has energy εk

and group velocity �vk .
To obtain a Wick-ordered perturbation theory we use an

imaginary time (0 � σ � β = 1/kBT ) version of r(ω),

r(iωμ) = −
∫ β

0
dσ eiωμσ 〈T̂ j (σ )j (0)〉, (6)

where j (σ ) = exp(σH)j exp(−σH). Angular brackets de-
note a canonical ensemble temperature average, and the
overbar indicates, if necessary, an average over an ensemble of
randomly distributed impurities. The Matsubara frequency ωμ

is 2πμ/β, and μ is an integer. When analytically continued
from iωμ to ω + iη just above the real ω axis (η is a
positive infinitesimal) r(iωμ) becomes r(ω + iη), the retarded
correlation function needed for the Kubo formula.

All Feynman graphs for r(iωμ) are formally summed in
terms of the exact electron Green’s function,

G(k,iων) = 1

iων − εk − �(k,iων)
, (7)

and the exact vertex function �(k,k′,iωμ,iων), where ων =
2π (ν + 1/2)/β. The exact answer is

r(iωμ) = −e2

β

∑
kk′ν

vk′x�(kk′,iωμ,iων)

×G(k′,iων + iωμ)G(k,iων). (8)

Neither � nor � can be calculated exactly. A linearized
Boltzmann equation is obtained when lowest-order results for
� and � are treated consistently.

An explicit formula relating σ to � occurs when � is
replaced by its lowest-order term,

�(kk′,iωμ,iων) → �0 = vkxδ(k,k′). (9)

The corresponding answer for σ (ω + iη), denoted by σ0(ω +
iη) after continuing to the real frequency axis and averaging
away the k dependence of �(k,ω + iη) is

σ0(ω + iη)

= ine2

mω

∫ ∞

−∞
dω′ f (ω′) − f (ω′ + ω)

ω − �(ω′ + ω + iη) + �∗(ω′ + iη)
.

(10)

This is the desired approximation, a simplification of the
conjectured version Eq. (2). It is not particularly original.
A derivation for a “local Fermi liquid” is given by Berthod
et al. [10]. It seems worthwhile to present a simpler and more
general discussion. A careful derivation of Eq. (10) is given in
the next section.

Unlike the conjectured version Eq. (2), the approximation
of Eq. (9) does not correctly reproduce the Boltzmann dc

conductivity because of the omission of vertex corrections.
This is related to the fact that the quasiparticle scattering
rate 1/τ = −2 Im � differs from the transport scattering rate
1/τtr = −2 Im �ir by a factor of the type 1 − cos θ . The
“cos θ” correction (omitted if the integral equation part of
the Boltzmann equation is neglected) takes into account that
small angle θ scattering events (�k → �k′) do not degrade the
current efficiently and make smaller contributions to 1/τtr than
to 1/τ . The difference, except at low temperatures, is likely
to be numerically small since small-angle scattering does not
usually play a dominant role. The version of this, applicable
to electron-phonon-coupled superconductors, was given by
Nam [11].

III. DERIVATION OF EQ. (10)

Starting by inserting Eq. (9) into Eq. (8),

r0(iωμ) = −e2

β

∑
k

v2
kxG(k,iων + iωμ)G(k,iων). (11)

This approximation, labeled r0, keeps in principle arbitrarily
complicated self-energy graphs in G.

The spectral function is defined as

G(k,iων) =
∫ ∞

−∞
dω

A(k,ω)

iων − ω
, (12)

A(k,ω) = − 1

π
Im G(k,iων → ω + iη), (13)

where G(k,ω + iη) is the retarded Green’s function,

G(k,ω + iη) = 1

ω − εk − �(k,ω + iη)
, (14)

and �(k,ω + iη) = �(k,ω) − i/2τ (k,ω) has imaginary part
1/2τ non-negative. The approximate correlation function r0

becomes

r0(iωμ) = −e2

β

∑
k

v2
kx

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2A(k,ω1)A(k,ω2)

×
∑

ν

[
1

iων + iωμ − ω1

1

iων − ω2

]
. (15)

The Matsubara sum can be performed exactly,

− 1

β

∑
ν

[
1

iων + iωμ − ω1

1

iων − ω2

]
= f (ω2) − f (ω1)

ω2 − ω1 + iωμ

.

(16)
The correlation function now is

r0(iωμ) = −e2
∫ ∞

−∞
dε

∑
k

v2
kxδ(ε − εk)

∫ ∞

−∞
dω1

×
∫ ∞

−∞
dω2A(k,ω1)A(k,ω2)

f (ω2) − f (ω1)

ω2 − ω1 + iωμ

,

(17)

where a gratuitous factor of 1 = ∫
dε δ(ε − εk) was inserted.

From Eqs. (13) and (14), the spectral function has a rapid εk

dependence,

A(k,ω) = −(1/π )Im[ω − εk − �(k,ω + iη)]−1. (18)
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But because of the δ function in the k sum,
∑

k

v2
kxδ(ε − εk)A(k,ω1)A(k,ω2), (19)

it is allowed to replace εk in the denominators of the spectral
functions by ε. The rapid ε dependence in A(k,ω) must be
treated carefully, but the remaining weak k dependence of
�(k,ω + iη) in the denominator of A(k,ω) can often be treated
less carefully. For many metals, the self-energies �(k,ω +
iη) in the spectral functions −(1/π )Im(ω − ε − �)−1 vary
weakly with �k and can be replaced by their k average over the
Fermi surface,

�(ω + iη) =
∑

k

�(k,ω + iη)δ(εk)

/ ∑
k

δ(εk). (20)

In “conventional” s-wave superconductors, for example,
anisotropy of the gap function �(k,ω) is often surprisingly
small, and the gap can be approximated well as �(ω). The gap
�(k,ω) is a superconducting extension of the normal-state
self-energy. Serious anisotropy is not forbidden and is known
to occur in the Tc = 39-K superconductor MgB2 [12], for
example. A modified formula applicable to such cases is given
at the end of the paper. Using Eq. (20), the k sum is

∑
k

v2
kxδ(ε − εk) = 1

�2

∑
k

∂εk

∂kx

(
− ∂f

∂kx

)

= 1

�2

∑
k

∂2εk

∂k2
x

f = [n/m]eff(ε). (21)

Here the δ function was replaced by −∂f/∂εk . An inte-
gration by parts was used to obtain the inverse effective
mass (∂2εk/∂k2

x)/�
2 summed over all states lower in energy

than ε.
The range of the remaining ε integration is nominally

(−∞,∞). However, the factors A(k,ω) are peaked at ε ≈ ω1

and ε ≈ ω2. Thus the integrand is large only if ω1 and ω2

have similar values. Because of the factor [f (ω2) − f (ω1)],
they must both lie near the Fermi energy (one below and one
above.) Therefore the ε integral is dominated by ε near the
Fermi energy. The value of [n/m]eff(ε) at the Fermi energy is
[n/m]eff , the number of electrons divided by the effective mass
averaged over all states below the Fermi energy. An equivalent
formula is

[n/m]eff =
∑

k

v2
kxδ(εk) = N (0)

〈
v2

x

〉
. (22)

The current correlation function now is

r0(iωμ) =
[

n

m

]
eff

e2
∫ ∞

−∞
dε

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

×A(ε,ω1)A(ε,ω2)
f (ω2) − f (ω1)

ω2 − ω1 + iωμ

. (23)

It is necessary to integrate ε carefully over the Lorentzian
peaks of A(ε,ω1)A(ε,ω2). Cauchy’s theorem can be used after
closing the ε contour by an arc going to infinity in either
the upper or the lower half-plane. The result is expressed by

another identity,
∫ ∞

−∞
dε

(
1

π

)
Im

(
1

ω1 − ε − �1

)(
1

π

)
Im

(
1

ω2 − ε − �2

)

= −
(

1

π

)
Im

(
1

ω1 − ω2 − �1 + �∗
2

)
. (24)

The proof is elementary but tedious. The current correlation
function is now

r0(iωμ) =
[

n

m

]
eff

e2

π

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

f (ω2) − f (ω1)

ω2 − ω1 + iωμ

×Im

(
1

ω1 − ω2 − �1 + �∗
2

)
. (25)

The function r0(ω + iη) is now just r0(iωμ) with iωμ

replaced by ω + iη. The only complex quantity in the formula
for r0(ω + iη) is the factor (ω2 − ω1 + ω + iη)−1, so the real
part Re σ0(ω + iη) = Im r0(ω + iη)/ω [Eq. (4)] is

Re σ0(ω + iη)

=
[

n

m

]
eff

e2

ω

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2[f (ω2) − f (ω1)]

×δ(ω2 − ω1 + ω)Re

(
i

ω1 − ω2 − �1 + �∗
2

)

=
[

n

m

]
eff

e2
∫ ∞

−∞
dω′

[
f (ω′) − f (ω′ + ω)

ω

]

×Re

(
i

ω − �(ω′ + ω + iη) + �∗(ω′ + iη)

)
. (26)

The function σ0(ω + iη) is specified by the requirements of
being analytic for Im ω > 0, vanishing sufficiently rapidly
as ω → ∞, and agreeing with Eq. (26). It is necessary and
sufficient to remove the real part designator from both sides.
This is the derivation of Eq. (10).

Here is a modification of Eq. (10) that does not ignore
the anisotropy of �(k,ω + iη) as �k varies around the Fermi
surface,

σ0(ω + iη)

= ie2

ω

∫ ∞

−∞
dω′[f (ω′) − f (ω′ + ω)]

×
∑

k

v2
kxδ(εk − εF )

ω − �(k,ω′ + ω + iη) + �∗(k,ω′ + iη)
. (27)

To derive this, go back to Eq. (17), but do not use the isotropic
form Eq. (20) for �, and do not make use of Eq. (21). The
factor [n/m]eff no longer appears outside the integrals, but∑

k v2
kxδ(εk − ε) appears inside the dε integral in Eq. (23). It

is no longer possible to use Eq. (24), unless an approximation is
made, namely, that the �k dependence of v2

kx and of �(k,ω + iη)
is not too rapid. There can be a large variation in both v2

kx and
�(k,ω + iη) as �k moves around the Fermi surface. However,
the variation perpendicular to the Fermi surface as εk changes
on the scale of the relevant infrared ω’s must be small. Then
one can ignore the ε dependence of both v2

kx and �(k,ω + iη)
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and recover the use of Eq. (24). Then Eq. (27) follows. A
version of this approximation was used by Hussey et al. [13]
for analysis of the normal state of cuprates.
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