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46730 Grao de Gandia, Spain

Lluı́s M. Garcı́a-Raffi
Instituto Universitario de Matemtica Pura y Aplicada, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València, Spain
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We report the propagation of high-intensity sound beams in a sonic crystal, under self-collimation or reduced-
divergence conditions. The medium is a fluid with elastic quadratic nonlinearity, where the dominating nonlinear
effect is harmonic generation. The conditions for the efficient generation of narrow, nondiverging beam of second
harmonic are discussed. Numerical simulations are in agreement with the analytical predictions made, based
on the linear dispersion characteristics in modulated media and the nonlinear interaction in a quadratic medium
under phase matching conditions.
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I. INTRODUCTION

The beams of different kind of waves, such as electro-
magnetic or sonic, experience diffraction and broaden as
they propagate in a homogeneous medium. This spreading of
energy in space diminishes the wave amplitude of the beam in
the axis along propagation, unless the spreading is balanced by
some focusing mechanism. Still, it is possible to prevent this
fundamental wave propagation property and create nondiverg-
ing beams. Among the beam patterns without divergence the
most popular are the linear Bessel beams [1], and the nonlinear
solitonic or self-trapped beams [2]. Recently, another method
for creating linear nondiverging beam was proposed, for waves
propagating in a periodic medium. Such beams have been
named self-collimated beams, and were first proposed for light
beams in photonic crystals [3], and later extended to other type
of waves. The phenomenon of self-collimation has attracted
much attention, as a technique to propagate optical, acoustical,
or even matter wave beams at long distances without a sensible
loss of amplitude. Self-collimation is highly sensitive to the
frequency: the divergence of beams can be reduced or even
suppressed only at particular frequencies, those presenting
particular dispersion characteristics, namely flat regions in
the isofrequency contours [3]. The size of the self-collimated
beam is also limited by the extension of such flat region
in angular space. Self-collimation of low amplitude (linear),
monochromatic acoustic waves has been demonstrated in 2D
[4] and 3D [5] sonic crystals. More recently, the simultaneous
self-collimation of two beams of different frequencies was also
demonstrated experimentally [6]. These results show that the
conditions for self-collimation can be achieved also for non-
monochromatic beams; in particular the case of the superpo-
sition of beams of one frequency and its second harmonic was
considered in [6]. The latter results are valid in linear regime;
actually in [6] both frequency components were present in the

input beam, and the corresponding beams propagated in the
crystal without nonlinear interaction between them.

In the linear case, the propagation of light and sound beams
obey similar equations, and similar propagation characteristics
are expected. The similarities between photonic and sonic
crystals are well established [7], and have motivated many
studies, where analogous effects in both systems have been
investigated. The analogy, however, breaks for high amplitude
waves, where nonlinear effects appear. For example, second
and higher harmonic generation processes may be essentially
different in optics and acoustics. One reason is the absence
of intrinsic dispersion for acoustic waves propagating in
homogeneous media. Nonlinear acoustic waves in nondis-
persive media as homogeneous fluids, eventually generate
shock waves, which are not observed in optics. Also, the
type and strength of nonlinearity may be different. While
most common optical nonlinearities are cubic (Kerr-type),
in fluids and homogeneous solids, quadratic nonlinearity is
dominant in acoustics. Even nontraditional acoustic nonlinear-
ities (power law, hysteretic, etc.) are typical of some complex
or microstructured acoustic media. In this sense, nonlinear
effects of acoustic waves in periodic media, and in particular
the self-collimation problem considered here are not a direct
extension of the same effects in the optical case. Furthermore,
the propagation of nonlinear acoustic beams in sonic crystals
has never been addressed before.

The basic effect in nonlinear acoustics is harmonic gen-
eration [8]. It is known that efficient harmonic generation is
only possible under fulfillment of phase matching conditions.
For acoustic waves in fluids, this condition is rather natural,
being always fulfilled for all harmonics due to the absence of
dispersion; however, in optics this requires special materials
and special phase matching techniques [9].

Acoustic harmonic generation has been studied in a variety
of highly dispersive nonlinear media, as bubbly liquids, or
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acoustic waveguides [8], and weakly dispersive media as
elastic plates [10,11], nonlinear porous-elastic media [12], and
in granular media [13]. It has been proven as a useful effect in
different applications, as material characterization [14,15], ul-
trasound imaging and echography [16], biological tissue char-
acterization [17], and other medical ultrasound applications.

The purpose of this paper is to study nonlinear propagation
of high intensity sound beams in periodic media, and in
particular to demonstrate the formation of nonlinear self-
collimated acoustic beams, and discuss the conditions under
which this process occurs with maximal efficiency. A sonic
crystal is designed, by using an iterative method, to fulfill
the three conditions for optimal energy transfer between
harmonics: flatness of isofrequency contour for each harmonic,
phase matching, and large overlap between distributions of
the interacting Bloch modes. The predictions are checked by
FDTD simulations of the nonlinear problem that demonstrate
the efficient generation of fundamental and second harmonic
acoustic narrow beams.

II. NONLINEAR SOUND PROPAGATION MODEL

Several models can be used to describe nonlinear sound
wave propagation through a fluid medium, with different
levels of accuracy. An accurate description, when thermal and
viscous effects are negligible, follows from the conservation
laws of mass and momentum, can be written, respectively, in
a Eulerian form [8]:

∂ρ

∂t
= −∇ · (ρv), (1)

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p, (2)

where v is the particle velocity vector, p is the acoustic
pressure, ρ is the total density field that can be expressed as
ρ = ρ0 + ρ ′, where ρ0 the ambient fluid density, and ρ ′ is the
acoustic density. The system is closed by the equation of state
of the fluid, that under our assumptions is a pressure-density
relation, p = p(ρ). A commonly used expression is obtained
after Taylor expansion, keeping nonlinear terms up to second
order. Then

p = c2
0ρ + c2

0

ρ0

B

2A
ρ2, (3)

where B/A is the nonlinear parameter of the medium (which
is known for most of materials; see, e.g., Ref. [18]) and c0

the sound speed in the medium. Note that Eqs. (1) and (2)
also contain nonlinearities related to (1) mass and momentum
advection, or (2) geometrical nonlinearities. However, for the
second harmonic generation they are of minor importance
compared with the nonlinear terms in the equation of state,
Eq. (3).

The above formulation of the nonlinear propagation
problem remains valid when the propagating medium is
inhomogeneous, including the case of sonic crystals where
inhomogeneity is periodically distributed in space. In such a
case, the medium parameters c0 and ρ0 are space dependent,
represented by periodic functions. To our knowledge, the
propagation of acoustic beams in periodic media has been

only studied in the linear regime; the corresponding nonlinear
problem is addressed here.

III. SELF-COLLIMATION OF INTENSE
ACOUSTIC BEAMS

We consider a narrow, intense acoustic beam incident on
a 2D sonic crystal made of cylindrical scatterers of radius r

embedded in a fluid, arranged in a square-lattice with lattice
constant a. The corresponding filling fraction is f = π (r/a)2.
The beam width is roughly six lattice periods. For the sake of
simplicity the scatterers are considered perfectly rigid (the
sound field is totally reflected from the wall of scatterer).
Assuming water as a host fluid, the material parameters are
ρ0 = 1000 kg/m3 and c0 = 1490 m/s.

The special conditions required for a sound beam to
propagate without diffraction are presented in this section.
The problem of self-collimation has been already discussed
for linear, monofrequency [4,19], and bifrequency [6] beams.
Since a nonlinear beam is composed by a fundamental
frequency component and its high frequency harmonics, self-
collimation of the nonlinear beam requires self-collimation
of its constituent frequency components. We recall that in
self-collimation regime the sonic beam does not spread
diffractively because Bloch wave vectors lying on the flat
segment of the spatial dispersion curve have equal longitudinal
components and thus do not dephase mutually in propagation.
In general, this flatness of the dispersion curve appears at a
particular frequency, but as shown in [6] it can be also obtained
for a wave and its second harmonic regarded they propagate
in different propagation bands.

To illustrate this case, we show in Fig. 1 the dispersion
diagram of the sonic crystal for small-amplitude excitations,
obtained using the plane wave expansion (PWE) method
on a linearized version of Eqs. (1)–(3). Although the PWE
method, which assumes perfectly rigid scatterers, may be
inaccurate when considering propagation in a solid/liquid
mixture [20], the dispersion relations obtained with PWE
and a finite element method (FEM) with scatterers made of
realistic material (steel), differ in less than 1% and do not
affect significantly the reported results. Then, for simplicity,
rigid scatterers have been considered in this work and band
diagrams have been obtained with PWE. The conventional
form of the band diagram is represented on the trajectory along
the principal directions of the crystal, �-X-M-�, which are
the boundary of the irreducible Brillouin zone (BZ). Figure 1
(top) shows the dispersion diagram for �-X direction. The
red line in Fig. 1 denotes the second propagation band. The
fundamental (driving) field lies on this band. Its frequency �

is chosen such that the corresponding isofrequency contour
contains flat regions. The blue line in Fig. 1 denotes the
eighth propagation band. The second harmonic frequency,
2�, lies in this band for the particular crystal parameters
considered. As shown in [6], for a given crystal, it is possible to
choose the fundamental frequency such that the isofrequency
contours for both frequencies present flat regions. In our
particular crystal, this happens when � = 0.125 [these are
dimensionless frequencies, related to physical frequencies ω as
ω = �(2πc0/a)]. Similarly, a normalized Bloch wave vector
is defined as K = kx(a/π ).
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FIG. 1. (Color online) Top: band structure (left) of a square
lattice of rigid cylinders with r = 0.11a, where a is the lattice
constant, immersed in water (right). Red and blue lines mark the bands
(second and eighth) for which simultaneous self-collimation for both
fundamental and second harmonic searched, along �-X direction.
Bottom: isofrequency contours for the second (left) and eighth bands
(right). Points denote the wave vectors for both waves, lying on flat
segments, respectively.

Such condition is necessary to achieve self-collimated
propagation of the nonlinear beam. In order to obtain an
efficient generation of the second harmonic, together with
simultaneous self-collimation for both waves two additional
geometric conditions must be fulfilled, related to the wave
number and spatial shape of the interacting beams. These
conditions have been discussed for photonic crystals [21,22].

A. Phase matching conditions

It is well known from nonlinear optics [9] that a proper
phase relationship between the fundamental and second
harmonic waves must be satisfied for an efficient nonlinear
frequency conversion along the propagation direction. In a
dispersive medium, the wave numbers of first harmonics do
not combine to result precisely in wave vector of second
harmonics, and a phase mismatch �K = 2K(�) − K(2�)
occurs. As a consequence, the second harmonic field is
limited in amplitude: it does not grow linearly but oscillates
in propagation, with a characteristic period given by the
coherence length lc = π

�k = a
�K [9].

The conversion efficiency into second harmonics generally
is smaller in optics than in acoustics, because of the inherent
material dispersion for light waves (absent for sound waves in
fluids) that causes the fundamental and second harmonic waves
to travel along the crystal with different phase velocities. Thus,
the presence of the scatterers is the only important source of
dispersion in the acoustic case.

Phase matching corresponds to �K = 0. Figure 2 shows
that it can be actually achieved for the pair of frequencies where
self-collimation occurs, as follows from the previous analysis.
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FIG. 2. (Color online) Dispersion curves involved in simultane-
ous self-collimation for the fundamental (red line) at the second
band and second harmonic (blue line) at the eighth band. The
“doubled” dispersion curve is represented (dashed red line) to identify
phase matching of harmonics. The intersection denotes the frequency
presenting phase matching. A closest view (inset) shows that for the
self-collimated second harmonic, two solutions (modes A and B, with
distinct K) are found, phase and nonphase matched, respectively.

There, we represent the dispersion branches involved in self-
collimation, along �-X direction, as in Fig. 1. Fundamental
and second harmonic modes correspond to the crossings of
the dotted horizontal lines with the corresponding dispersion
branches. For a given fundamental frequency �, in order
to check the fulfillment of the phase matching condition,
the curve corresponding to the “double” of the second band
dispersion curve, 2�(2K), has been represented in Fig. 2 as a
red dashed line. Phase matching is satisfied at the intersection
between this curve with the corresponding curve at the eighth
band. This corresponds to the mode labeled A in Fig. 2, which
is phase-matched with the fundamental mode.

Note that due to the concavity of the eighth band, at
frequency 2� a second mode labeled with B in Fig. 2 can
be also excited. This solution presents a large phase mismatch
with the fundamental mode, and its contribution to the second
harmonic field is negligible.

The simultaneous fulfillment of both conditions is obtained
by an iterative procedure, which implies a redesign of the
crystal parameters. The procedure is as follows: we start from
a pair of frequencies (�,2�) showing self-collimation for a
given crystal parameter. Around this doublet, we seek the
closest pair of frequencies �′ = � + δ� and 2�′ showing
phase matching. Then the isofrequency curves (Fig. 1) are
again calculated in order to evaluate the deviation of flatness
in the isofrequency contours. The sonic crystal parameters
are then modified, e.g., by a slight variation of the filling
fraction, in order to tune the dispersion relations to get
again self-collimation conditions. The process is repeated
again until both conditions (flatness and phase matching) are
simultaneously satisfied. We note that, despite this is out of
the scope of this paper, optimization techniques as genetic
algorithms can be applied here in order to find an optimal
structure.
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B. Nonlinear coupling of Bloch modes

Efficient energy transfer between harmonics requires also
a strong mode coupling, which depends on the spatial
overlapping between the two interacting waves. For plane
waves in a homogeneous medium a perfect spatial nonlinear
coupling between first and second harmonic is assured, since
mode overlapping is maximal. The propagation eigenmodes
in a periodic medium are Bloch waves, whose amplitudes
are spatially modulated and do not necessarily overlap. If
two modes do not overlap in space, the energy transfer is
less efficient even if they are phase matched. The amount of
energy transfer can be estimated evaluating the spatial overlap
between the envelopes of the corresponding Bloch modes.
Let B1 and B2 be the spatial envelopes of the Bloch modes
of the fundamental and second harmonic waves, respectively.
The nonlinear coupling coefficient is calculated as the cross-
correlation between the functions B2

1 and B2 normalized in
such a way that unity would correspond to the perfect matching
of the modes [21]. We define the coupling coefficient as

κ = |∫
M

(
B2

1 B∗
2

)
dr|√∫

C
|B1|4 dr

∫
C

|B2|2 dr
, (4)

where the upper integral is calculated in the nonlinear medium
from one unit cell, while the lower integrals are taken over
the entire unit cell. To calculate B1 and B2 we solve the
eigenvalue problem for the pressure field by means of the
PWE method, which converts the differential equation to an
infinite matrix eigenvalue problem that can be truncated and
solved numerically. For that, we follow the same procedure
as in [19]; however, the problem is solved inversely, i.e., for
a given frequency, the corresponding wave vectors, satisfying
the phase matching condition, are obtained. Then B1 and B2

are obtained as the eigenvectors corresponding to fundamental
and second harmonic frequencies, respectively. In Fig. 3 we
plot the spatial distributions of B1 and B2, respectively, for the
selected final design where a coupling coefficient of κ = 0.85
is obtained. This value is of the same order as the coupling in
homogeneous media, κ = 1, and therefore sufficiently large
for an efficient harmonic generation.

C. Numerical simulation

A full-wave nonlinear simulation was performed, using
the FDTD method, to validate the efficiency of the second
harmonic generation in the proposed structure. The crystal
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FIG. 3. (Color online) Spatial distribution of the pressure field for
the Bloch modes of the fundamental (left) and the second harmonic
(right) waves. The coupling coefficient is estimated to be κ = 0.85.
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FIG. 4. (Color online) Pressure distributions obtained by FDTD
simulations. Normalized intensity cross section of fundamental (a)
and second harmonic (b) at x = 80a propagating in the crystal
(continuous line) and in a homogeneous (water) medium (dashed
lines). Beam spatial distribution for simultaneously self-collimated
harmonics in the sonic crystal (c),(d) and in homogeneous fluid (e),(f).
Pressures are normalized to the maximum pressure.

parameters, obtained after the iterative procedure describe
above, are as in Figs. 1 and 2. The source is a plane piston with
a width of 6a, located near the crystal, and radiating a harmonic
wave with normalized frequency � = 0.125. In order to
minimize numerical dispersion a computational grid with
Nλ = 45 elements per wavelength was used, and a Courant-
Friedrich-Levy number of S = 0.95. In Fig. 4 we present the
numerically obtained spatial distributions of the fundamental
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FIG. 5. (Color online) Normalized field amplitude along the
acoustical axis y = 0, for the fundamental, second, and third har-
monic beams. The dashed lines represent the analytical solutions for
harmonic evolution on a plane wave propagating in a nondispersive
medium.

and its nonlinearly generated second harmonic. As predicted,
both beams are nearly collimated. For comparison, the beam
spatial distribution calculated for an homogeneous material
(removing the crystal) are represented in Figs. 4(e) and 4(f),
where the diffractive broadening of the beams is visible.
Transversal intensity distributions are shown in Figs. 4(a) and
4(b) for a distance 80a, where beam widths are compared with
the reference beams in the homogeneous medium, broadened
by diffraction.

The pressure amplitudes along the beam axis are shown
in Fig. 5 for each harmonic. Here, the analytic solution
for a nonlinear plane wave propagating in a homogeneous
(nondispersive) medium is plotted for reference (dashed
lines) [18], given by pn/p0 = 2Jn(nσ )/nσ , where Jn is the
Bessel function of order n, σ = (βωp0/ρ0c

3
0)x is coordinate

normalized to the shock formation distance, p0 is the pressure
at the source, and β = 1 + B/2A the nonlinearity parameter.
Such analytical solution is valid in the preshock region σ < 1.
The growth rate of the self-collimated second harmonic beam
propagating in the crystal matches well the growth rate of
a plane wave in a homogeneous medium in such preshock
region, which is a consequence of the weak divergence of
the beam and the high degree of phase matching. Also, the
second harmonic field can reach even higher amplitudes than
those corresponding to nondispersive media (where harmonics
decay beyond the shock formation distance). The latter effect
can be understood in terms of phase mismatch of higher
harmonics: in homogeneous media all harmonics are phase
matched while in the crystal only the second harmonic is
phase matched. In Fig. 5 the third harmonic is also plotted,
where its small contribution to the beam is evident. The phase
mismatch in third and higher harmonics decrease the energy

flow into these components. Finally, the amplitude in Fig. 5
decays because of nonperfect conditions for self-collimations,
that make the beam start diverging after a long distance, or
nonperfect phase matching, which results in a beating period
with long coherence length.

IV. CONCLUSIONS AND REMARKS

We have demonstrated the possibility of efficient second
harmonic generation of sound in a sonic crystal, by means
of the formation of narrow, weakly diverging nonlinear
acoustic beams. Three conditions must be simultaneously
present for an efficient second harmonic generation, which
are (1) simultaneous self-collimation, (2) phase matching,
and (3) high spatial coupling of interacting harmonics. The
use of a simultaneous self-collimation regime limits the
diffraction of both harmonic beams, maintaining the amplitude
at the axis and therefore the nonlinear interaction. Under
ideal conditions (no divergence and losses), the decrease of
the first harmonic beam is mainly attributed to the energy
transfer to second and higher harmonics. The sonic crystal
parameters can be chosen to fulfill phase matching with the
second harmonic, maximizing second harmonic generation
due to synchronous cumulative interaction. Finally, the spatial
coupling (overlapping) between interacting modes is also
analyzed by calculating a nonlinear coupling coefficient. It is
shown that its value (κ = 0.85 for the case studied) is not far
from the ideal case, revealing a strong spatial overlap between
both Bloch modes that leads to high energy transfer.

The study shows that linear dispersion characteristics (band
structures, isofrequency contours) can be used to predict the
behavior of nonlinear beams propagating in periodic media.
This opens the possibility of extending the study of nonlinear
sound beam propagation in sonic crystals to other cases
of interest. For example, crystals with higher filling factors
present full frequency band gaps, that may be used to filter
out the propagation of selected higher harmonics. In this
sense, sonic crystals can be a way to control the spectrum of
intense acoustic waves, using the strong dispersion properties
introduced by the periodicity.
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[6] E. Soliveres, I. Pérez-Arjona, R. Pic, V. Espinosa, V. J. Sánchez-
Morcillo, and K. Staliunas, Appl. Phys. Lett. 99, 151905 (2011).

[7] T. Miyashita, Meas. Sci. Technol. 16, R47 (2005).
[8] M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics

(Academic Press, San Diego, 1998).

054302-5

http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1126/science.286.5444.1518
http://dx.doi.org/10.1063/1.123502
http://dx.doi.org/10.1063/1.123502
http://dx.doi.org/10.1063/1.123502
http://dx.doi.org/10.1063/1.123502
http://dx.doi.org/10.1103/PhysRevB.76.140302
http://dx.doi.org/10.1103/PhysRevB.76.140302
http://dx.doi.org/10.1103/PhysRevB.76.140302
http://dx.doi.org/10.1103/PhysRevB.76.140302
http://dx.doi.org/10.1063/1.3104861
http://dx.doi.org/10.1063/1.3104861
http://dx.doi.org/10.1063/1.3104861
http://dx.doi.org/10.1063/1.3104861
http://dx.doi.org/10.1063/1.3643497
http://dx.doi.org/10.1063/1.3643497
http://dx.doi.org/10.1063/1.3643497
http://dx.doi.org/10.1063/1.3643497
http://dx.doi.org/10.1088/0957-0233/16/5/R01
http://dx.doi.org/10.1088/0957-0233/16/5/R01
http://dx.doi.org/10.1088/0957-0233/16/5/R01
http://dx.doi.org/10.1088/0957-0233/16/5/R01


EL MOKHTAR HAMHAM et al. PHYSICAL REVIEW B 92, 054302 (2015)

[9] R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, New
York, 2003).

[10] W. De Lima and M. F. Hamilton, J. Sound Vib. 265, 819 (2003).
[11] M. F. Müller, J.-Y. Kim, J. Qu, and L. J. Jacobs, J. Acoust. Soc.

Am. 127, 2141 (2010).
[12] D. M. Donskoy, K. Khashanah, and T. G. McKee, J. Acoust.

Soc. Am. 102, 2521 (1997).
[13] J. Legland, V. Tournat, O. Dazel, A. Novak, and V. Gusev,

J. Acoust. Soc. Am. 131, 4292 (2012).
[14] S. Hirsekorn and S. Pangraz, Appl. Phys. Lett. 64, 1632 (1994).
[15] Y. Zheng, R. G. Maev, and I. Y. Solodov, Can. J. Phys. 77, 927

(2000).

[16] V. F. Humphrey, Ultrasonics 38, 267 (2000).
[17] W. Law, L. Frizzell, and F. Dunn, J. Acoust. Soc. Am. 69, 1210

(1981).
[18] K. Naugolnykh and L. Ostrovsky, Nonlinear Wave Processes in

Acoustics (Cambridge University Press, Cambridge, UK, 1998).
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