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We present an ab initio framework to calculate anharmonic phonon frequency and phonon lifetime that is
applicable to severely anharmonic systems. We employ self-consistent phonon (SCPH) theory with microscopic
anharmonic force constants, which are extracted from density functional calculations using the least absolute
shrinkage and selection operator technique. We apply the method to the high-temperature phase of SrTiO3

and obtain well-defined phonon quasiparticles that are free from imaginary frequencies. Here we show that
the anharmonic phonon frequency of the antiferrodistortive mode depends significantly on the system size
near the critical temperature of the cubic-to-tetragonal phase transition. By applying perturbation theory to
the SCPH result, phonon lifetimes are calculated for cubic SrTiO3, which are then employed to predict lattice
thermal conductivity using the Boltzmann transport equation within the relaxation-time approximation. The
presented methodology is efficient and accurate, paving the way toward a reliable description of thermodynamic,
dynamic, and transport properties of systems with severe anharmonicity, including thermoelectric, ferroelectric,
and superconducting materials.
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I. INTRODUCTION

Lattice anharmonicity plays an important role in charac-
terizing various physical properties of solids and molecules,
including the temperature dependence of vibrational frequen-
cies, thermal expansion, and phase stability of solids [1]. It
is also responsible for the finite phonon linewidth and the
lattice thermal conductivity κL, which is a key quantity when
optimizing the thermoelectric figure of merit ZT [2]. The
magnitude of anharmonicity varies significantly for different
materials. For example, covalent materials such as silicon,
diamond, and graphene are very harmonic and show high
thermal conductivities [3,4]. Conversely, thermoelectric and
ferroelectric (FE) materials often show severe anharmonicity,
demonstrated by inelastic neutron scattering spectra and
ultralow κL values [5–7]. Anharmonic effects can also be
significant in superconductors [8–10] and materials under
extreme conditions [11,12]. To develop a robust understanding
of anharmonic properties of solids, a reliable and versatile
computational method is required. Therefore the development
of first-principles methods to calculate anharmonic properties
of solids and molecules has been the subject of intense research
in recent years.

Many-body perturbation theory is one approach for treating
lattice anharmonicity. This technique considers the anhar-
monic effects as self-energies [13]. The self-energies can be
calculated using a systematic approximation to the Feynman
diagrams, where the lowest-order approximation is usually
employed in the ab initio calculations based on density
functional theory (DFT). Performing this calculation requires
the cubic and quartic force constants, which are the third-
and fourth-order derivatives of the Born-Oppenheimer po-
tential energy surface, respectively. The third-order terms
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can be obtained efficiently and systematically using either
density functional perturbation theory (DFPT) [14] or the
finite-displacement approach [15]. Using the cubic terms,
the phonon linewidth can be obtained by evaluating the
bubble diagram [Fig. 1(b)]. This type of calculation has
been performed to predict the lattice thermal conductivity of
many solids [3,4,16,17] and can also be applied to complex
materials [18]. To estimate the phonon frequency shift due
to lattice anharmonicity, one also needs to compute the loop
diagram [Fig. 1(a)] using the quartic terms. The calculation
of the quartic terms can, in principle, be achieved using the
finite-displacement approach. However, since the number of
quartic parameters increases rapidly as the number of atoms
in the supercell increases, such calculations have only been
reported for simple systems [19,20].

The perturbative approach is valid only when the an-
harmonic self-energies are sufficiently small compared with
the harmonic frequency. Therefore one cannot expect this
technique to yield accurate results for severely anharmonic
systems. The high-temperature phases of FE materials are
typical cases where the perturbation approach fails because of
the imaginary frequencies of harmonic phonons. To overcome
this limitation, it is necessary to employ a nonperturbative
approach to treat anharmonic effects.

Methods based on ab initio molecular dynamics (AIMD)
can consider anharmonic effects nonperturbatively. From the
velocity-velocity autocorrelation function calculated using
the trajectory of an AIMD simulation, one can obtain the
vibrational density of states with full anharmonicity. To
obtain the anharmonic frequency and linewidth of individual
phonons, the velocity should be projected onto the phonon
eigenvector [12]. Inherent in this procedure is the assumption
that the phonon eigenvectors are not altered by anharmonic
effects. Such an assumption, however, is valid only for
simple systems containing a few atoms in the primitive
cell. The temperature-dependent effective potential (TDEP)
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FIG. 1. Diagrams of the self-energies considered in this study.
(a) The first-order diagram associated with the quartic term. (b) The
second-order diagram associated with the cubic term.

method [21] is another AIMD-based approach. The TDEP
method optimizes the effective harmonic force constants within
an AIMD simulation at a target temperature. This method
should be useful in high temperature because it allows both
the phonon eigenvectors and the internal coordinate system to
be changed by anharmonic effects. However, since the AIMD
is based on the Newton equation of motion, the MD-based
methods cannot account for the zero-point vibration. Therefore
these methods cannot be applied to superconductors and
ferroelectric materials in the low-temperature range.

Self-consistent phonon (SCPH) theory [22] is another
approach for including anharmonic effects beyond perturba-
tion theory that considers the quantum effect of phonons.
Other first-principles methods are able to compute anharmonic
phonon frequencies related to the SCPH theory: self-consistent
ab initio lattice dynamics (SCAILD) [23] and stochastic
self-consistent harmonic approximation (SSCHA) [24]. To
avoid the cumbersome calculation of quartic force constants,
these methods employ real-space stochastic approaches and
displace atoms in the supercell to model anharmonic effects.

In this study, we have developed an efficient first-principles
method to treat lattice anharmonicity. The method is based on
the SCPH theory, and the anharmonic frequency is estimated
from the pole of the Green’s function. The cubic and quartic
force constants necessary for the present SCPH calculations
are extracted from the DFT calculations using the recently
proposed compressive sensing approach [25]. By combining
the perturbation theory with the solution to the SCPH equation,
we can also estimate the phonon lifetime and lattice thermal
conductivity of severely anharmonic materials.

To confirm the validity of our approach, the method is
applied to the high-temperature phase of SrTiO3 with cubic
symmetry (c-STO). SrTiO3 is one of the most studied per-
ovskite oxides and is known to undergo the cubic-to-tetragonal
phase transition at 105 K accompanied by the freezing-out of
the antiferrodistortive (AFD) soft mode [26–28]. The FE phase
transition is not observed, even at 0 K, because of the zero-
point vibration. Our approach can describe the temperature
dependence of the soft-mode frequencies and lattice thermal
conductivity of the severely anharmonic c-STO.

This paper is organized as follows. First, we introduce the
SCPH theory and details of our implementation in Sec. II. We
describe the details of the computational conditions, including
the compressive sensing of force constants in Sec. III. The
method is applied to c-STO and the results are presented in
Sec. IV. In Sec. IV B, we examine the size- and temperature
dependence of anharmonic phonon frequencies and compare
these results with experimental values. We also calculate the
lattice thermal conductivity of c-STO in Sec. IV C to show

the validity of our approach. Finally, we conclude this work in
Sec. V.

II. SELF-CONSISTENT PHONON THEORY

A. Potential energy expansion

The dynamics of interacting ions within the Born-
Oppenheimer approximation are described by the Hamiltonian
H = T + U , where T is the kinetic energy and U is the
potential energy of the system. When U is an analytic function
of atomic displacements from equilibrium positions {u}, it can
be expanded as a Taylor series with respect to u as

U = U0 + U2 + U3 + U4 + · · · , (1)

Un = 1

n!

∑
{�,κ,μ}

�μ1...μn
(�1κ1; . . . ; �nκn)

× uμ1 (�1κ1) · · · uμn
(�nκn). (2)

Here, Un is the nth-order contribution to the potential energy,
uμ(�κ) is the atomic displacement of the atom κ in the �th
cell along the μ direction, and �μ1...μn

(�1κ1; . . . ; �nκn) is the
nth-order interatomic force constant (IFC). In Eq. (1) the
linear term U1 is omitted because atomic forces are zero in
equilibrium.

In the harmonic approximation, only the quadratic term U2

is considered and cubic, quartic, and higher-order terms are
neglected. This allows the Hamiltonian H0 = T + U2 to be
represented in terms of the harmonic phonon frequency ω. To
compute the phonon frequency ω, one needs to construct the
dynamical matrix

Dμν(κκ ′; q) = 1√
MκMκ ′

∑
�′

�μν(�κ; �′κ ′)eiq·r(�′), (3)

where Mκ is the mass of atom κ , �μν(�κ; �′κ ′) are the harmonic
IFCs, and r(�) is a translation vector of the primitive lattice.
By diagonalizing the dynamical matrix, one obtains harmonic
phonon frequencies as

D(q)eqj = ω2
qj eqj , (4)

where the index j labels the phonon modes for each crystal
momentum vector q and eqj is the polarization vector of the
phonon mode qj .

B. Dyson equation

To derive the SCPH equation, we employ the many-body
Green’s function theory. The one-phonon imaginary-time
Green’s function is given as

Gqj,qj ′(τ ) = 〈TτAqj (τ )A†
qj ′(0)〉H

= Z−1Tr{e−βH Tτ [Aqj (τ )A†
qj ′ (0)]}, (5)

where Tτ is the time-ordering operator, Aqj (τ ) =
eτH/�Aqj e

−τH/� is the displacement operator in the Heisen-
berg picture, Z = Tre−βH is the partition function, and β =
1/kT , where k is the Boltzmann constant and T is the tempera-
ture. The displacement operator is defined as Aqj = bqj + b

†
qj

where bqj and b
†
qj are the annihilation and creation operators of
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the phonon qj , respectively. It is straightforward to show that
the Green’s function satisfies Gqjj ′(τ ) = Gqjj ′ (τ + β�) for
−β� < τ < 0 and Gqjj ′ (τ ) = Gqjj ′(τ − β�) for 0 < τ < β�,
where we simply denote Gqj,qj ′ as Gqjj ′ . Because of these
properties, we can also show the following result for the
Fourier transform of the Matsubara Green’s function:

Gqjj ′(iωm) =
∫ β�

0
dτGqjj ′ (τ )eiωmτ , (6)

where ωm = 2πm/β� is the Matsubara frequency. To obtain
the Green’s function for anharmonic systems, we need to solve
the Dyson equation. When one obtains Gqjj ′ (iωm) within
some approximations, it is possible to obtain the retarded
Green’s function Gqjj ′(ω) by analytic continuation to the
real axis as Gqjj ′(ω) = Gqjj ′ (iωm → ω + iε) with a positive
infinitesimal ε. The function Gqjj ′ has a pole at the energy
corresponding to the renormalized frequency �qj . In the case
of the harmonic approximation, one can readily obtain the
expression for Gqjj ′(ω) as

G0
qjj ′ (ω) = − 2ωqj

ω2 − ω2
qj

δjj ′ . (7)

Therefore the free-phonon Green’s function is diagonal in the
phonon polarization index j and can be obtained from the
harmonic phonon frequencies.

To estimate the phonon Green’s function Gqjj ′(ω), and
thereby obtain the anharmonic frequency �qj , we solve the
Dyson equation

[Gq(ω)]−1 = [
G0

q(ω)
]−1 − �q(ω). (8)

Here, we denote the retarded Green’s functions in the matrix
form and �q(ω) is the phonon self-energy, which can be
estimated within a systematic diagrammatic approximation.
Since the left-hand side of Eq. (8) becomes zero at the
frequencies of the renormalized phonons, finding the solution
{�qj } is equivalent to solving the following equation:

det
{[

G0
q(ω)

]−1 − �q(ω)
} = 0. (9)

By multiplying det (�
1
2
q ) from the left and right of Eq. (9)

with the diagonal matrix 
qjj ′ = 2ωqj δjj ′ , one obtains the
following SCPH equation:

det [ω2 − V q(ω)] = 0, (10)

Vqjj ′(ω) = ω2
qj δjj ′ − (2ωqj )

1
2 (2ωqj ′ )

1
2 �qjj ′(ω). (11)

This equation needs to be solved self-consistently because
the self-energy is a function of the solution ω. In the present
study, however, the ω dependency in Eq. (11) can be neglected
because we consider only the first-order contribution to the
phonon self-energy �

(a)
q , which is independent of ω, as will

be described in Sec. II C. Nevertheless, the self-consistency
is retained in the SCPH approach because the self-energy
is a function of phonon frequencies and polarization vec-
tors, which themselves are updated by diagonalizing the
matrix V q .

C. Anharmonic self-energy

Solving the SCPH equation requires a diagrammatic ap-
proximation to the phonon self-energy �q(ω). In this study,
we consider anharmonicity up to the fourth order, i.e., H =
H0 + U3 + U4, where Un is the nth-order contribution to the
potential energy surface expressed in terms of the displacement
operator A. This can be obtained by substituting

uμ(�κ) = (NMκ )−
1
2

∑
q

√
�

2ωq

Aqeμ(κ; q)eiq·r(�) (12)

for Eq. (1), where q labels the phonon modes defined as q =
(q,j ) and −q = (−q,j ), and N is the number of q points. We
then obtain the following result:

Un = 1

n!

(
�

2

) n
2 ∑

{q}
�(q1 + · · · + qn)

�(q1; . . . ; qn)√
ωq1 · · · ωqn

×Aq1 · · · Aqn
. (13)

The function �(q) becomes 1 if q is an integral multiple of
the reciprocal vector G and is 0 otherwise. �(q1; . . . ; qn) is
the reciprocal representation of the nth-order IFCs defined by

�(q1; . . . ; qn)

= N1− n
2

∑
{κ,μ}

(Mκ1 · · · Mκn
)−

1
2 eμ1 (κ1; q1) · · · eμn

(κn; qn)

×
∑

�2,...,�n

�μ1...μn
(0κ1; . . . ; �nκn)ei(q2·r(�2)+···+qn·r(�n)).

(14)

In solving the SCPH equation, we consider only the first-
order contribution to the phonon self-energy due to the quartic
term,

�
(a)
qjj ′ (iωm) = −1

2

∑
q1

��(qj ; −qj ′; q1; −q1)

4
√

ωqjωqj ′ωq1

× [1 + 2n(ωq1 )], (15)

which corresponds to the loop diagram shown in Fig. 1(a).
Here, n(ω) = (eβ�ω − 1)−1 is the Bose-Einstein distribution
function. Since we continue the iteration cycle of the self-
consistent equation [Eq. (11)] until we obtain a convergence
with respect to the anharmonic frequencies, the SCPH equation
automatically includes an infinite class of anharmonic self-
energies that can be generated from the loop diagram. In this
study, we consider the off-diagonal components of the self-
energy to allow for polarization mixing (PM), which we found
to be important for c-STO, as will be discussed in Sec. IV B.
If we neglect the off-diagonal elements, �

(a)
qjj ′ ≈ �

(a)
qjj ′δjj ′ , the

SCPH equation can be reduced to the diagonal form:

�2
q = ω2

q + 2�qI
(a)
q , (16)

I (a)
q = 1

2

∑
q1

��(q; −q; q1; −q1)

4�q�q1

[1 + 2n(�q1 )]. (17)

This equation is equivalent to the one derived by a varia-
tional approach where the anharmonic free-energy within the
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first-cumulant expansion is minimized with respect to trial
frequencies [29].

To calculate the phonon linewidth, one needs to consider the
bubble self-energy shown in Fig. 1(b), which is the contribution
from cubic anharmonicity given as

�
(b)
qjj ′ (iωm) = 1

2N

∑
q1,q2

��(−qj,q1,q2)�(qj ′, − q1, − q2)

8
√

ωqjωqj ′ωq1ωq2

×�(−q + q1 + q2)F(iωm,1,2). (18)

Here, we introduced the ω-dependent function F defined as

F(iωm,1,2) =
∑

σ=±1

[
1 + n1 + n2

iωm + σ (ω1 + ω2)

+ n2 − n1

iωm + σ (ω1 − ω2)

]
, (19)

where we symbolically denote n(ωqi
) and ωqi

as ni and
ωi , respectively. We will consider the contribution from this
diagram in a perturbative manner whereby Eq. (18) is evaluated
using the phonon frequencies and polarization vectors obtained
as a solution to the SCPH equation. It should be noted that there
is another second-order diagram that contains two four-phonon
vertexes. Although we do not consider that contribution for
computational reasons, it is, in principle, possible to extend
the theory to include higher-order diagrams [30].

D. Computational implementation

In this section, we describe the details of the computational
implementation used to solve the SCPH equation efficiently.
The most expensive part of the SCPH equation is the
calculation of the quartic coefficients in Eq. (15), which are
changed in each cycle of the iterative algorithm through an
update of the phonon eigenvectors. To avoid recalculating
the quartic coefficient in each cycle, we employ a unitary
transformation of the eigenvectors, as will be described below.
Our approach is inspired by the method proposed by Hermes
and Hirata for molecules [31], which we extended to periodic
systems at finite temperatures.

First, we construct the dynamical matrix D(q) from the
harmonic IFCs and calculate eigenvalues and eigenvectors
{ω2

q,eμ(κ; q)} for the gamma-centered N1×N2×N3 q-point
grid. We then calculate the matrix elements Fqq1,ijk� =
�(qi; −qj ; q1k; −q1�) by Eq. (14) using the harmonic eigen-
vectors and quartic IFCs. Here, the index q is restricted to the
irreducible points that are commensurate with the supercell
size, whereas the index q1 includes all of the N1×N2×N3 grid
points. The next step is to diagonalize the following SCPH
equation, which can be obtained from Eqs. (11) and (15):

V
[1]
qij = ω2

qiδij + 1

2

∑
q1,k

Fqq1,ijkk

�[1 + 2n(ωq1k)]

2ωq1k

. (20)

Here, we added the superscript 1 to the matrix V q to explicitly
show that it is the first iteration of the SCPH equation. Then, by
diagonalizing the Hermitian matrix V q as V q = Cq W q C†

q , we

obtain the updated phonon frequencies ω
[1]
qi = W

1
2

qii . The corre-
sponding polarization vectors can be obtained from the unitary
matrix Cq . Let Eq and E[1]

q denote the s×s matrices defined

as Eq = (eq1, . . . ,eqs) and E[1]
q = (e[1]

q1 , . . . ,e
[1]
qs ), respectively,

where s is the number of phonon modes. It can then be shown
that Eq and E[1]

q are unitary transformations of each other,
which can be written as E[1]

q = Eq C [1]
q . Because the phonon

polarization vectors are modified in this manner, we need to
modify Eq. (20) for the next iteration of the SCPH equation.
The equation for the nth step of the iteration is given as

V
[n]
qij = ω2

qiδij + 1

2

∑
q1,k,�

Fqq1,ijk�K[n−1]
q1,k� , (21)

where K is defined as

K[n]
q,ij = αK

[n]
q,ij + (1 − α)K [n−1]

q,ij , (22)

K
[n]
q,ij =

∑
k

C
[n]∗
q,kiC

[n]
q,kj

〈
Q

[n]∗
qk Q

[n]
qk

〉

=
∑

k

C
[n]∗
q,kiC

[n]
q,kj

�
[
1 + 2n

(
ω

[n]
q1k

)]
2ω

[n]
q1k

. (23)

Here, we have used the fact that the mean square
displacement of normal coordinate Qqj is given as
〈Q∗

qjQqj 〉 = �

2ωqj
〈A†

qjAqj 〉 = �

2ωqj
[1 + 2n(ωqj )]. In the

classical limit (β → 0), the expectation value would be
〈Q∗

qjQqj 〉 = kT ω−2
qj . In addition, we introduced the mixing

parameter α in Eq. (22) to improve convergence.
After we obtain V [n]

q and C [n]
q for all irreducible q points,

we construct the new dynamical matrix as

D[n]
q = E[n]

q W [n]
q E[n]†

q

= Eq C [n]
q W [n]

q C [n]†
q E†

q, (24)

where W
[n]
qij = (ω[n]

qi )2δij is the diagonal matrix. Using the
dynamical matrices, we construct dynamical matrices for the
star of q using the unitary transformation:

D[n]
Sq = �q({S|v(S)})D[n]

q �†
q({S|v(S)}). (25)

Here, �q is the unitary matrix associated with the symmetry
operation {S|v(S)}, where S is the 3×3 rotation matrix and
v(S) is the translation vector. The detailed expression for
�q can be found in Ref. [32]. Finally, we construct the
dynamical matrix in real space by taking the inverse Fourier
transformation,

D[n](r(�)) = 1

N

∑
q

D[n]
q e−iq·r(�), (26)

from which we obtain ω
[n]
qi and C [n]

q for the dense N1×N2×N3

grid points, which are necessary for the next iteration of
the SCPH equation, by Fourier interpolation. For polar
semiconductors, the nonanalytic part of the dynamical matrix
is accounted for using the mixed-space approach [33].

We iterate Eqs. (21)–(26) until convergence is achieved
for all phonon frequencies at the irreducible q points. We
initialize the frequency and the unitary matrix as ω

[0]
qj = |ωqj |

and C
[0]
q,ij = δij , respectively. Whenever we encounter an imag-

inary branch, we replace the frequency with its absolute value.
After the calculation has converged, the anharmonic frequen-
cies and eigenvectors for a dense q grid, which are necessary
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for the subsequent calculation of phonon lifetime and lattice
thermal conductivity, can be obtained by Fourier interpolation.

III. SIMULATION DETAILS

A. DFT calculations

Ab initio DFT calculations were performed using the Vienna
ab initio simulation package (VASP) [34], which employs
the projector augmented wave (PAW) method [35,36].
The adapted PAW potentials treat the Sr 4s24p65s2, Ti
3s23p63d24s2, and O 2s22p4 shells as valence states. A cutoff
energy of 550 eV was employed and the Brillouin zone inte-
gration was performed with the 12×12×12 Monkhorst-Pack
k-point grid. We employed the PBEsol exchange-correlation
functional [37], which was reported to work exceedingly well
for predicting the equilibrium volume and harmonic phonon
frequency of BaTiO3 and SrTiO3 [38]. The optimized lattice
constant is 3.896 Å, which agrees well with the experimental
value of 3.905 Å (Ref. [39], 293 K) and the previous DFT result
of 3.898 Å [38]. The nonanalytic part of the dynamical matrix
is considered in all of the following calculations. We calculated
the Born effective charges and the dielectric tensor of c-STO
using DFPT and obtained values of ε∞ = 6.35, Z∗(Sr) = 2.55,
Z∗(Ti) = 7.35, Z∗(O)⊥ = −2.04, and Z∗(O)‖ = −5.82,
which agree well with the previous computational result [40].
Because the thermal expansion coefficient of c-STO is very
small [39], we neglect thermal expansion effects in this study.

B. Estimation of force constants

To compute the harmonic phonon frequency, we extracted
harmonic IFCs using the finite-displacement approach [15].
The calculation was conducted with a 2×2×2 cubic supercell
containing 40 atoms as in Ref. [12]. We displaced an atom
from its equilibrium position by 0.01 Å and calculated atomic
forces for each displaced configuration. We then extracted
�μν(�κ; �′κ ′) by solving the least-square problem

�̃ = arg min
�

‖A� − F‖2
2, (27)

as implemented in the ALAMODE package [41,42]. Here, � =
[�1,�2, . . . ,�M ]T is the parameter vector composed of M

linearly independent IFCs, F is the vector of atomic forces
obtained by DFT calculations, and A is the matrix composed
of the atomic displacements.

To solve the SCPH equation and estimate the anharmonic
phonon frequencies of c-STO, one has to prepare quartic IFCs.
Cubic IFCs are also necessary to estimate phonon linewidth
and thermal conductivity, as will be discussed in Sec. IV C. In
principle, one can extend the finite-displacement approach to
extract anharmonic terms, for which multiple atoms have to
be displaced simultaneously by an appropriately chosen dis-
placement magnitude �u. However, finding an optimal value
of �u is not a trivial task, especially when imaginary modes
exist within the harmonic approximation, as in c-STO. We
found that the finite-displacement approach with �u = 0.1 Å
failed to yield reliable fourth-order IFCs that could reproduce
the double-well potential of the AFD mode. To avoid this
issue, one may alternatively employ the AIMD simulation to
sample the displacement-force data set. This approach works
particularly well for simple systems such as Si and Mg2Si [41].

However, it should be noted that as long as one employs
the ordinary least-squares method [Eq. (27)], an overfitting
issue may arise unless the number of individual reference
data is fairly large compared with the number of parameters.
Recently, Zhou et al. [25] proposed a more robust approach to
estimate anharmonic IFCs. Noting that only a small fraction of
IFCs has non-negligible contributions to atomic forces, they
developed the compressive sensing lattice dynamics method
and obtained the sparse solution using the least absolute
shrinkage and selection operator (LASSO) technique. In the
LASSO technique, one solves the following equation:

�̃ = arg min
�

‖A� − F‖2
2 + λ‖�‖1, (28)

where the L1 penalty term is added to the least-squares
equation. Owing to the L1 penalty term, one can find a sparse
representation of the basis function, as demonstrated by the
cluster expansion method and the potential fitting [43,44]. In
this work, we followed the procedure of the previous study of
Zhou et al. to solve the LASSO equation. We initially con-
ducted an AIMD simulation at 500 K for 2000 steps with the
time step of 2 fs. From the trajectory of the AIMD simulation,
we then sampled 40 atomic configurations that were equally
spaced in time. For each configuration, we displaced all of the
atoms within the supercell by 0.1 Å in random directions. The
atomic forces for the configurations prepared in this manner
were calculated using precise DFT calculations, from which
the matrix A and the vector F in Eq. (28) were constructed.
The LASSO equation was solved using the split Bregman
algorithm [43,45], and the optimal value of λ was selected
from the four-fold cross-validation score. To ensure that all of
the terms in the L1 term had the same dimension, we scaled
the nth-order IFCs and atomic displacement by � → �un−1

0

and u → u/u0, respectively, with u0 = 0.4a0 (≈0.21 Å)
representing the order of the thermal nuclear motion.

IV. RESULTS AND DISCUSSION

A. Anharmonic force constants in cubic SrTiO3

To find a sparse representation of the basis function
for c-STO, we first prepared a large parameter vector �

that included anharmonic terms up to the sixth order. For
harmonic and cubic terms, we included all possible IFCs
present in the 2×2×2 supercell. The quartic terms were
considered up to third-nearest neighbor shells, whereas fifth-
and sixth-order IFCs were considered for nearest-neighbor
pairs. We determined a set of linearly independent parameters
by considering the space group symmetry and the constraints
for the translational invariance [15,41]. We fixed the harmonic
terms to the values determined by the finite-displacement
approach [Eq. (27)] and employed the LASSO technique for
estimating the remaining anharmonic terms. The number of
linearly independent anharmonic parameters M was 1053,
from which a sparse representation was found by Eq. (28).

Figure 2 shows the magnitude of the anharmonic IFCs
estimated by solving the LASSO equation. Here, the distance
for the IFCs related to more than two atoms is defined as
the distance of the most distant atomic pairs. The absence
of onsite force constants for the third- and fifth-order IFCs
is due to the inversion symmetry of c-STO. As shown in
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/Å

n
)

FIG. 2. (Color online) Absolute values of the third-, fourth-,
fifth-, and sixth-order anharmonic force constants estimated by the
LASSO technique plotted as a function of interatomic distance. The
onsite and two-body terms are indicated by circles and the three-body
terms are indicated by triangles.

Fig. 2, the magnitude of anharmonic IFCs decays rapidly with
increasing interatomic distance, which indicates the locality of
anharmonic interactions. The terms with the largest magnitude
occur at a distance of 1.95 Å and represent force constants
between a Ti atom and one of the surrounding O atoms. Among
the onsite quartic terms, �

μμμμ

Ti,Ti,Ti,Ti (μ = x,y,z) and �νννν
O,O,O,O,

where ν is the direction parallel to the Ti-O bond, are most
significant. Compared with these terms, the other onsite IFCs,
including those of the Sr atom, are one order of magnitude
smaller.

The accuracy of the IFCs estimated by the LASSO equation
was assessed by preparing independent test data using an
AIMD simulation at 300 K for 2000 steps. We then calculated
the potential energy [Eq. (1)] and atomic forces using the
atomic displacements {u} and the IFCs {�}. In Fig. 3, we
compare the potential energy U − U0 and the atomic forces
obtained from DFT and with those calculated from the IFCs
estimated by LASSO. The model potential well reproduced
the DFT results for various atomic configurations. The relative
errors for the test data were 1.4% and 6.1% for the potential
energy and the atomic force, respectively, which are as small
as those reported in Ref. [25].

B. SCPH solution

Using the harmonic and quartic force constants obtained
from the finite displacement and the LASSO techniques,
respectively, the SCPH equation [Eqs. (21)–(26)] was solved
numerically. Since we employed the 2×2×2 supercell in this
study, the q point in Eq. (21) was limited to the irreducible
points on the 2×2×2 grid. We changed the q1 grid to investi-
gate the convergence of the anharmonic phonon frequencies.
The mixing parameter of α = 0.1 was employed for all temper-
atures except those near the critical temperature of the struc-
tural phase transition, where a much smaller α was required.

Figure 4 shows the anharmonic phonon dispersion of
c-STO at 300 K obtained as the solution for the SCPH
equation. The phonon frequencies are increased by the quartic
anharmonicity, evident in the low-energy soft modes at the
� (0,0,0), R ( 1

2 , 1
2 , 1

2 ), and M ( 1
2 , 1

2 ,0) points. We investigated
the convergence of the anharmonic phonon frequency �q with
respect to the number of q1 points. The results for the lowest-
energy soft modes at �, R, and M points are summarized in
Table I. Our results indicate that at least 8×8×8 q1 points
are needed to obtain convergence and a less dense 2×2×2
q1-point grid significantly overestimates the �q values. This
occurs because the anharmonic phonon-phonon interaction
is limited only between the zone-center and zone-boundary
phonons by the 2×2×2 q1 grid. Thus our numerical results
indicate the importance of including mode coupling between
longer-wavelength phonons to obtain a reliable description of
the phonon softening in c-STO. The same size dependence
should also be inherent in the real-space approaches because
the available phonon modes are limited by the size of the
employed supercell.
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FIG. 3. (Color online) Comparison of (a) po-
tential energy and (b) atomic forces sampled by an
individual AIMD simulation at 300 K. The dashed
lines indicate cases where the results are identical.
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FIG. 4. (Color online) Anharmonic phonon dispersion of c-STO
at 300 K calculated using the SCPH theory with 8×8×8 q1 points
(solid lines). The dotted lines show the harmonic phonon dispersion
and the open symbols are experimental values at room temperature
adapted from Refs. [46,47].

We also considered the role of the off-diagonal elements
of the phonon self-energy that cause PM. In Fig. 5, we
compare the anharmonic phonon frequencies of two zone-
center optical modes, labeled TO1 and TO2, obtained using
the SCPH equation with and without PM. We have shown
the SCPH results with 2×2×2 q1 points, as these results
will subsequently be compared with those obtained using an
MD-based approach. In the SCPH equation without PM, we
neglect the off-diagonal elements of the phonon self-energy
[Eq. (15)], which is obtained by substituting the unitary matrix
Cq in Eqs. (23) and (24) with the identity matrix. Therefore
the polarization vectors are fixed to the initial harmonic
values. Figure 5 demonstrates that PM is vital to describe
the anti-crossing of the TO1 and TO2 phonon modes, both of
which belong to the same irreducible representation �15. In the
case when we neglect PM, an artificial crossing occurs around
500 K and the frequencies significantly deviate from those with
PM. Therefore we conclude that the harmonic polarization
vectors should not be employed to predict anharmonic phonon
properties of cubic SrTiO3 and other perovskite oxides having
the same symmetry.

TABLE I. Anharmonic phonon frequency (cm−1) of the soft
modes at 300 K calculated using the SCPH equation with various
q1-grid densities. The harmonic phonon frequency is also shown for
comparison.

q1 points �15 (FE) R25 (AFD) M3

2×2×2 144 69 103
4×4×4 138 46 89
6×6×6 136 39 86
8×8×8 136 37 85
10×10×10 135 36 85
12×12×12 135 35 85
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FIG. 5. (Color online) Temperature dependence of the anhar-
monic phonon frequencies of two �15 modes calculated using the
SCPH equation with and without PM, and with the TDEP approach
(see the text for details). The TO1 mode corresponds to the FE mode.
The open symbols are experimental values for the TO1 mode reported
by Servoin et al. [48] and Yamada and Shirane [27].

In Fig. 5, we compare results obtained with the SCPH
method with those obtained with the temperature-dependent
effective potential (TDEP) method [21]. In the TDEP method,
atomic displacements and forces are sampled by AIMD
simulations at a target temperature and are then used to extract
effective harmonic force constants by numerical fitting. In
our TDEP simulations, we performed MD simulations using
the Taylor expansion potential [Eq. (1)] instead of AIMD
to reduce computational costs. Anharmonic terms up to the
sixth order were considered and the force constants estimated
by the LASSO technique were employed. We conducted
the constant-temperature MD simulations with the 2×2×2
supercell and the temperature was controlled by the Berendsen
thermostat [49]. We employed a time step of 1 fs and conducted
the MD simulations for 50 000 steps at each temperature. The
last 40 000 steps were employed to extract effective harmonic
IFCs by least-squares fitting [Eq. (27)]. Although the
anharmonic frequencies obtained using the TDEP approach
are slightly smaller than the SCPH results, they agree
qualitatively with the SCPH results, as shown in Fig. 5. We
consider this discrepancy to be reasonable for the following
two reasons. First, the SCPH results include only anharmonic
self-energies that can be generated from Fig. 1(a), whereas
the TDEP includes higher-order anharmonic effects. Among
these higher-order terms, the first-order contribution due to the
cubic anharmonicity, as depicted in Fig. 1(b), should have the
largest contribution. We found that the effect of the diagram
in Fig. 1(b) is to reduce the anharmonic frequency for the FE
mode. Second, since the quantum effect of nuclear motion
is not considered in the MD simulation, the thermal average
of the squared normal coordinate 〈Q∗

qQq〉 is underestimated
for temperatures below the Debye temperature in the TDEP
approach. Therefore the renormalization of anharmonic
effects is underestimated in the TDEP approach, which
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FIG. 6. (Color online) Temperature dependence of the squared
phonon frequency of the R25 mode obtained from the SCPH theory
with various q1-point densities. The open circles are experimental
values adapted from Ref. [47].

explains why the deviation from the SCPH result becomes
larger with decreasing temperature (see TO1 mode in Fig. 5).

Figure 6 shows a comparison of the temperature de-
pendence of the squared frequency of the AFD mode and
experimental measurements [47]. As can be seen in the figure,
the frequency of the AFD mode is severely size-dependent.
For the 2×2×2 q1 grid, we do not observe a freezing-out of
the AFD mode even at absolute zero. When we increase the
q1-grid density and allow interactions with longer-wavelength
phonons, we observe the precursor of the freezing-out of
the AFD mode at temperatures near 200 K. Although the
soft-mode frequency does not reach zero in the current
simulation with finite q1 points, this would occur in the
thermodynamic limit (N → ∞) as discussed by Cowley [50].
Above approximately 300 K, the temperature dependence
can be reliably fitted by the equation �2

q(T ) = a(T − Tc)2.
Applying this equation to the result obtained using the
12×12×12 q1 grid, we obtain the Tc of the cubic-to-tetragonal
phase transition as 220 K.

For comparison, we have plotted experimental results in
Figs. 4, 5, and 6 using open symbols. The SCPH equation
reproduces the temperature dependence of the soft modes
qualitatively, but not quantitatively, i.e., the frequencies of the
FE and AFD modes are overestimated and underestimated,
respectively. Because the ADF frequency is underestimated,
the transition temperature predicted is twice as large as the
experimental value of 105 K. We consider this deviation to be
acceptable because phonon-related properties of ferroelectric
materials are known to be sensitive to the lattice constant
and the employed exchange-correlation functional [38,51].
In this study, we employed the PBEsol functional to avoid
problems inherent to the local-density approximation (LDA)
and the generalized-gradient approximation with the Perdew-
Burke-Ernzerhof parametrization (PBE) [52]; LDA tends to
underestimate the equilibrium volume, whereas PBE tends to
overestimate it. However, our numerical results suggest that

PBEsol cannot give a quantitative description of c-STO. This
issue is expected to be resolved, at least partially, by employing
a hybrid functional. Wahl et al. [38] investigated the functional
dependence of the harmonic frequency in the FE mode of
c-STO and reported the results of 29i and 74i for the PBEsol
semilocal and the Heyd-Scuseria-Ernzerhof (HSE) hybrid
functionals [53], respectively. Since the harmonic frequency
changes as ω2

HSE < ω2
PBEsol < 0, we expect that the Fock

exchange can increase the depth of the double-well potential,
thereby decreasing the anharmonic frequency of the FE mode.
Wahl et al. also reported that the energy gain for the AFD
phase was smaller in HSE than in the PBEsol functional. This
indicates that the depth of the double-well potential for the
AFD mode can be decreased, and the anharmonic frequency
can be increased by using HSE instead of PBEsol. Therefore
we believe that the quantitative accuracy of the present SCPH
results could be improved by employing a hybrid functional,
which will be the topic of future work.

In the present SCPH calculations, we have not consid-
ered effects related to the cubic anharmonicity, such as
thermal expansion, relaxation of internal coordinates and
intrinsic frequency shifts due to the bubble diagram. However,
these effects can, in general, become important in severely
anharmonic systems [50], and should be considered, especially
when one intends to quantitatively compare theoretical results
with experimental data. Therefore extending the present ab
initio method to include these effects, either perturbatively
or self-consistently, could be another important direction for
further research and development.

C. Lattice thermal conductivity

The lattice thermal conductivity is a key quantity for
optimizing the thermoelectric figure-of-merit ZT , and it has
been the subject of intense theoretical study in recent years.
To show the validity of our theoretical approach based on the
SCPH equation, we estimated the lattice thermal conductivity
of c-STO. For this work, we employ the Boltzmann transport
equation (BTE) within the relaxation time approximation
(RTA), where the lattice thermal conductivity is given as

κ
μν

L (T ) = 1

V N

∑
q

Cq(T )vμ
q (T )vν

q (T )τq(T ). (29)

Here, V is the unit-cell volume, Cq is the lattice specific heat,
vq = d�q/dq is the group velocity, and τq = [2�q(�q)]−1 is
the lifetime of phonon q. The phonon linewidth �q(ω) can be
obtained from the imaginary part of the phonon self-energy
that results from the cubic anharmonicity [Eq. (18)], which is
given explicitly as

�q(ω) = π

2N

∑
q ′,q ′′

�|�(−q,q ′,q ′′)|2
8�q�q ′�q ′′

× [(nq ′ + nq ′′ + 1)δ(ω − �q ′ − �q ′′ )

− 2(nq ′ − nq ′′ )δ(ω − �q ′ + �q ′′ )]. (30)

Here, the matrix element �(q,q ′,q ′′) is calculated from cubic
IFCs using Eq. (14) with eigenvectors {eμ(κ; q)} replaced by
the solution to the SCPH equation {εμ(κ; q)}. Equations (29)
and (30) are identical to those that have commonly been
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FIG. 7. (Color online) Temperature dependence of the lattice
thermal conductivity of c-STO. The computational result is compared
with experimental values reported by Muta et al. [54] and Popuri
et al. [55]. Lines are shown to guide the eye. (Inset) Calculated
phonon lifetime of c-STO at 300 K.

employed in the thermal conductivity calculations except that
harmonic phonon frequencies and eigenvectors are substituted
by anharmonic frequencies and eigenvectors, respectively,
obtained using the SCPH equation.

Figure 7 compares the calculated thermal conductivity of
c-STO with experimental results [54,55]. The calculation was
conducted using the 8×8×8 q1 grid for the SCPH equation and
the 12×12×12 q grid for the BTE-RTA equation [Eq. (29)].
Although we observed deviations in soft-mode frequencies,
the calculated thermal conductivity agrees well with the
experimental results, as can be seen in Fig. 7. We expect
that the agreement could be improved further by employing
a finer q grid and using a hybrid functional, although such
calculations were not performed because of computational
limitations. In Fig. 7 inset, we also show the phonon lifetime
τq at 300 K calculated by Eq. (30). The phonon lifetimes of
c-STO obtained from the perturbation theory [Eq. (30)] are
found to be even smaller than those of PbTe [16], but the
κL value of c-STO is higher. This can be attributed to the
large group velocities of phonons, especially of TO modes
above ∼100 cm−1, which contribute significantly to the total
κL value [56]. The lifetime shows a characteristic feature in the
low-frequency region (<100 cm−1): the phonon modes split
into two separate regions in τq > 3 ps and τq ∼ 0.6 ps, where
the former corresponds to the acoustic modes that follow the
frequency dependence of τ ∼ ω2, which has been observed
in other materials [16,41], and the latter corresponds to the
phonon modes around the R point, which indicates the severe
anharmonicity of the AFD mode.

V. CONCLUSIONS

We developed an ab initio method to compute anharmonic
phonon frequencies and lifetimes that can be applied to
severely anharmonic systems. The method employs anhar-

monic force constants up to the fourth order, which are
extracted from DFT calculations using a compressive sensing
approach. The frequency renormalization associated with the
quartic anharmonicity is treated nonperturbatively using the
SCPH theory. By performing the perturbation calculation after
the SCPH solution, we also calculated phonon lifetimes that
result from the three-phonon scattering processes.

We applied the method to the high-temperature phase of
perovskite SrTiO3. Unlike the harmonic phonon dispersion,
the SCPH solution was free from the imaginary branches in
the entire Brillouin zone. We found that including polarization
mixing is important to correctly account for the temperature
dependence of the phonon frequency of the ferroelectric soft
mode of perovskite oxides. In addition, we examined the
size-dependence of the anharmonic frequencies of the soft
modes and found that long-wavelength phonons significantly
reduced the anharmonic frequencies, especially for the an-
tiferrodistortive mode near the transition temperature. The
temperature dependence of the soft mode frequencies calcu-
lated using the SCPH theory agreed qualitatively well with
the experimental results. However, the quantitative accuracy
of the present calculations based on the PBEsol functional
was unsatisfactory, where we obtained the cubic-to-tetragonal
transition temperature as Tc = 220 K that was twice as large as
the experimental value of 105 K. Although further theoretical
investigations are required to understand the origin of this
discrepancy, we expect that the quantitative agreement can
be improved by employing a hybrid functional. We also
calculated the lattice thermal conductivity κL of cubic SrTiO3

using the Boltzmann transport equation within the relaxation-
time approximation. The calculated κL values reproduced
experimental results especially in the high temperature region.
The underestimation of κL in the low temperature region may
be attributed to the overestimation (underestimation) of the
ferroelectric (antiferrodistortive) soft mode, which will be
addressed in a future work.

The present method, which combines the SCPH theory with
perturbation approach based on anharmonic force constants,
enables us to obtain the anharmonic phonon frequencies and
lifetimes at various temperatures efficiently just by changing
the occupation number. The system size dependency can be
investigated using the reciprocal space formalism. Therefore
we believe that the present method paves the way for
understanding lattice anharmonicity and related dynamical and
thermodynamical properties of thermoelectric, ferroelectric,
and superconducting materials.
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