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Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal
equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below
(at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range
order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction
parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about
1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first
two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the
state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with
increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static
atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They
also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state
and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the
ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due
to the different local atomic chemical environment. There exists a similar strong concentration dependence of
the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for
Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L12-A1
transition temperature.
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I. INTRODUCTION

The Invar effect is characterized through a very low
thermal expansion over an extended temperature range. It was
discovered by Guillaume in 1897 (Ref. [1]) on Fe-35 at.%
Ni that showed a thermal expansion coefficient being by one
order of magnitude lower than the values of the pure elements.
The same anomaly was found later on in numerous materials
with different crystallographic structures, degrees of order, or
binding states. The only similarity among all Invar materials
was that they were magnetically active and that the effect
occurred around and up to the Curie temperature [2].

First-principles calculations of ferromagnetic Invar systems
have explained why this effect happens in the ferromagnetic
state close to the Curie temperature when the magnetization is
substantially reduced: the reduction of the magnetization with
increasing temperature is accompanied by a noticeable de-
crease of the magnitude of the local magnetic moment thereby
reducing magnetic pressure, the drop of which compensates
for the thermal lattice expansion due to anharmonic effects in
the lattice vibrations [3–6].

An ab initio study of species-dependent static atomic
displacements of Fe-35 at.% Ni in Ref. [7] has demonstrated
that this picture is very well reproduced locally. First of all,
larger displacements between Fe-Fe nearest neighbors are
obtained in the ferromagnetic state than in the “ferrimagnetic”
state, which has been used to model a ferromagnetic state with
a reduced magnetization. The magnetic moment on Fe atoms in
such a ferrimagnetic state is substantially reduced compared to
those in the ferromagnetic state. Second, the distance between
Fe atoms in both states tends to expand with increasing moment
for fixed local coordinations in both magnetic states.

Diffuse x-ray scattering studies were done by Robertson
et al. [8] to determine the static atomic displacements in
Fe-36.8 at.% Ni. The alloy, in a short-range ordered state, was
investigated at two temperatures (293 and 60 K), both being
below the Curie temperature. The 3λ method [9] was applied
which is well suited to analyze the microstructure of alloys
with neighboring elements in the periodic table. It also allows
the contributions that do not depend on the scattering contrast
(thermal diffuse scattering, Huang scattering, and Compton
scattering) to be separated experimentally from those that
depend on it (short-range order scattering and displacement
scattering). Static atomic displacements up to the 8th shell
were determined within the radial approximation. They were
stronger in magnitude at 60 K than at 293 K while the sign
remained unchanged. Line scans of the diffuse intensity of the
non-Invar alloy Fe-53.5 at.% Ni at 30 and 293 K on the other
hand did not give any indication for temperature-sensitive
displacements [10].

Based on short-range order parameters of Fe-36.8 at.% Ni
in a state as quenched from 753 K, Robertson et al. [8] stated
that Fe tends to form platelets on {100} planes. These platelets
have to be very small and/or rare due to the small value of the
nearest-neighbor short-range order parameter (only about a
tenth of the maximum achievable magnitude). Based on elastic
diffuse neutron scattering around Bragg reflections of Fe-(35
to 60) at.% Ni in the as-grown state, Tsunoda et al. [11] also
noted a heterogeneity in the Fe-Ni system. Two explanations
of these heterogeneities were provided: (i) formation of
Fe-rich clusters in the high-volume state and (ii) formation
of embryos of the fcc to bcc martensitic transformation at low
temperatures [2].
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With respect to structural aspects such as low-temperature
order or ground states, Fe-Ni, Fe-Pt, Fe-Pd are often compared
to one another (see, e.g., Barabash et al. [12]). All three systems
have in common that they are Invar alloys [2,13]. The Invar
system Fe-Pt differs in various aspects from Fe-Ni that was
studied in much detail, e.g., it shows no deviation from the
Slater-Pauling curve and there is no mixed magnetic behavior.
Concerning the Fe-Pd system, one should note that a two-phase
state is present in thermal equilibrium and that single crystals
of larger “mosaicity” are typically grown.

The magnetovolume effects of Fe-Pt were studied by
Sumiyama et al. [14] for ordered and disordered Fe-(28 to 32)
at.% Pt. A negative linear thermal expansion coefficient was
found for both states around the Curie temperature, larger in the
disordered state and for lower Pt fractions (e.g., T ord

c = 505
K, T disord

c = 371 K for Fe-28 at.% Pt, see also Ref. [15]).
Spontaneous volume magnetostriction at 0 K as well as
forced magnetostriction were larger for the disordered than the
ordered state and increased with lower Pt fraction. The same
dependence for the spontaneous volume magnetostriction was
found by ab initio calculations using the disordered local
moment approach [5].

Evidence for further magnetic transitions in Fe-Pt was
obtained by Matsushita et al. [16,17] performing pressure
studies on disordered Fe-30 at.% Pt and ordered Fe-27.2
at.% Pt up to 7.5 GPa. With increasing pressure, the Curie
temperature was observed at considerable lower temperature
than at ambient pressure and transitions to high-pressure
magnetic states for both the ordered and the disordered phases
were found at low temperatures based on ac susceptibility
measurements.

Diffuse neutron scattering in ordered Fe-28 at.% Pt was
investigated by Tsunoda et al. [18]. A butterfly-shaped pattern
around the 200 fundamental peak position (dominantly of
nuclear character, reflecting lattice deformations) was found
below the Curie temperature. As in the case of Fe-36.8 at.% Ni
this diffuse scattering pattern was attributed to premartensitic
embryos evolving due to the martensite transformation below
room temperature (RT) [19,20]. The pattern around the 100
superstructure reflection (dominantly of magnetic character,
thus reflecting the spin arrangement) was of circular shape.
Note that there are different types of a martensite phase
depending on the degree of long-range order of the high-
temperature parent phase: with increasing order it changes
from bcc to bct to fct (with lattice parameter ratio c/a < 1) to
fct (with c/a > 1) [21].

The aim of this paper is to study the Invar anomaly on
the atomic level from diffuse x-ray scattering and by ab
initio calculations. As there is only one genuinely magnetic
constituent, Fe-Pt is simpler than Fe-Ni addressed before.
The strong and even negative thermal expansion below the
Curie temperature will provide much larger displacements
than in the case of Fe-Ni. By doing experiments around the
Curie temperature and exploiting the strong forced volume
magnetostriction, states in a close temperature range may
be evaluated introducing less experimental uncertainty in
considering thermal diffuse scattering. The strong dependence
of the local magnetic moment on the magnetic and chemical
states will be addressed by calculating the magnetic transition
temperatures in dependence of the chemical state as well as

the order-disorder transition and comparing those temperatures
with direct experimental data.

For this study, short-range ordered Fe-27 at.% Pt was
chosen for three reasons: (i) with 27 at.% Pt it is assured that
no martensite will be present at room temperature and above,
(ii) for this composition and for the short-range ordered state
the anomaly in thermal expansion is largest and (iii) excellent
crystal quality will also allow the near-surface microstructure
to be investigated as a further way to possibly vary the
microstructure (not the topic of the present investigation).

II. METHODOLOGY

A. Basics of elastic diffuse scattering

Elastic diffuse scattering from a binary (here Fe-Pt) alloy is
separated into the contributions of short-range order scattering
ISRO(h), size-effect scattering ISE(h), and Huang scattering
IH(h) at any position with scattering vector h. The first two
contributions are (for details, see Refs. [22–26])

ISRO(h) =
∑

lmn

αlmn cos(πhxl) cos(πhym) cos(πhzn),

(1)
ISE(h) = h · [ηQPtPt(h) + ξQFeFe(h)],

where, e.g.,

QPtPt
x (h) = −2π

∑

lmn

(cPt/cFe + αlmn)
〈
xPtPt

lmn

〉

× sin πh1l cos πh2m cos πh3n,
(2)

QFeFe
x (h) = 2π

∑

lmn

(cFe/cPt + αlmn)
〈
xFeFe

lmn

〉

× sin πh1l cos πh2m cos πh3n.

Here, h = (h1,h2,h3), αlmn are the Warren-Cowley short-range
order parameters for any neighboring shell lmn, cμ are
the atomic fractions of component μ = Fe, Pt, and 〈xμμ

lmn〉
are the averaged static atomic displacements between μ-μ
pairs in units of the lattice parameter a. Furthermore, η =
Re{fPt/[fPt − fFe]} and ξ = Re{fFe/[fPt − fFe]} are scatter-
ing factor ratios. To determine the Fourier coefficients αlmn

and 〈xμμ

lmn〉, the Georgopoulos-Cohen (GC) method [27] was
employed.

B. Atomistic, magnetic, and electronic-structure modeling

Statistical modeling of magnetic and atomic alloy config-
urations at finite temperatures has been done using classical
Heisenberg and Ising Hamiltonians. In particular, the Heisen-
berg Hamiltonian had the following form:

H Heis = −
∑

p

Jp

∑

i,j∈p

ei · ej cicj , (3)

where Jp is the magnetic exchange interaction between Fe
atoms at coordination shell p in some particular atomic and
magnetic configuration, ei is the unit vector describing the
direction of the local magnetic moment at site i, and ci is the
concentration variable taking on values 1 and 0 if site i is
occupied by Fe and Pt, respectively. In general, one also adds
terms which account for relativistic effects, such as magnetic
anisotropy. However, they have been disregarded here due to
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their minor contribution to the stability of the magnetic state
and the transition temperatures.

The atomic configurational Hamiltonian had the usual Ising
form

H = 1

2

∑

p

V (2)
p

∑

i,j∈p

δciδcj

+ 1

3

∑

t

V
(3)
t

∑

i,j,k∈t

δciδcj δck

+ 1

4

∑

q

V (4)
q

∑

ijk�∈q

δciδcj δckδc� . (4)

Here, δci is the concentration fluctuation at site i: δci = ci − c;
V (n)

s is the n-site effective interaction parameter of the cluster
(ECI) of an s-type, which depends on the concentration of Fe,
the lattice constant of the alloy, and the magnetic state. These
ECI parameters are implicitly temperature dependent in quite
a complicated way since the magnetic state depends on the
alloy configuration and the magnetic interactions, which also
determine the magnetic state and in turn depend on the alloy
configuration and the magnetic state.

Although the ECI parameters in magnetic systems depend
on the local atomic configuration, such a dependence is small
in the paramagnetic state and can be neglected. The magnetic
transition in Fe3Pt occurs at quite a low temperature where
atomic diffusion is very slow, i.e., all the important and inter-
esting configurational effects occur in the paramagnetic state.
Thus, such a configurational dependence was disregarded in
this work.

The ECI parameters have been obtained in the random
atomic configuration using the screened generalized pertur-
bation method (SGPM) [28,29] implemented in the Green’s
function exact muffin-tin orbitals (EMTO) technique [30–32].
The coherent potential approximation (CPA) [33,34] has
been used in the electronic-structure calculations of random
alloys. Screening parameters have been determined in the
864-atom supercell calculations of random Fe-25 at.% Pd in
both ferromagnetic and paramagnetic states using the locally
self-consistent Green’s function (LSGF) method [35]. The
paramagnetic state has been modeled by the disordered local
moment (DLM) spin configuration [36,37].

The local density approximation [38] has been used for
the exchange-correlation potential in the DFT self-consistent
calculations, while the total energy has been calculated in
the generalized gradient approximation (GGA) [39]. All the
EMTO-CPA calculations were performed using an orbital mo-
mentum cutoff of lmax = 3 for partial waves. Some calculations
of the magnetic and chemical interactions have been done by
the fully relativistic EMTO-CPA method, which solves the
four-component Dirac equation [40].

To account for the local lattice relaxations in the statistical
model [Eq. (4)], strain-induced interactions have been calcu-
lated in the dilute limit of Pt in Fe using the Kanzaki-Krivoglaz
model [41,42]. Forces and atomic displacements were obtained
in the projector-augmented-wave (PAW) [43,44] method using
the Vienna ab initio simulation package (VASP) [45,46].
For that purpose, a 256-atom supercell was produced by a
4 × 4 × 4 repetition of the initial cubic 4-atom supercell.

The PAW-VASP method has also been used to determine
static atomic displacements in random and short-range ordered
Fe-25 at.% Pt. All the PAW-VASP calculations have been
performed using the Perdew-Burke-Ernzerhof (PBE) form for
the GGA [39]. The plane-wave energy cutoff was 350 eV. The
convergence criteria were 10−5 eV for the total energy and
10−2 eV/Å for the forces. The integration over the Brillouin
zone in the electronic-structure calculations was done using a
4 × 4 × 4 Monkhorst-Pack k-point grid [47].

III. EXPERIMENT

A single crystal with a nominal composition of Fe-27 at.%
Pt was produced with 99.95% pure iron from PRAXAIR MRC
SA (Meyrin, Switzerland) and 99.95% pure platinum from
Johnson Matthey (Zurich, Switzerland). The raw material was
alloyed by arc melting in an Ar atmosphere and swaged to a
rod. A single crystal was then grown by the Bridgman method.

Two samples, both with a thickness of 3 mm and a diameter
of about 11 mm, were cut from the crystal by spark erosion.
One sample had a 〈210〉 surface normal and was used to
measure the diffuse scattering at room temperature and at
427 K. The other sample had a 〈110〉 surface normal. It served
for the diffuse scattering under a magnetic field H of about
11 kOe that was set up along the in-plane 〈110〉 easy axis
of magnetization [48,49]. X-ray fluorescence analysis with
polycrystalline standards yielded a concentration of Fe-27.1(4)
at.% Pt for both samples.

A state of thermodynamic equilibrium was set up for both
samples by homogenizing at 1373 K for 2 days and annealing
for 6 days at 1123 K before quenching in ice brine. According
to Osaka et al. [50], a relaxation time of several minutes is
expected at 1123 K which is sufficiently short to attain thermal
equilibrium by annealing but also higher than the quenching
time, by at least one order of magnitude. Following these heat
treatments, the surface preparation of both samples was done
on a Logitech PM5 precision lapping and polishing system
(FIRST, ETH Zurich) up to a grain size of 0.04 μm.

Mo Kα radiation from a 12-kW rotating anode by Rigaku
was employed (for details see Ref. [51]). All three diffuse
scattering experiments were performed on a three-dimensional
grid in reciprocal space with spacings of 0.1 reciprocal lattice
units (rlu) and scattering vectors ranging from about 1.5
to 7.0 rlu. For both measurements at room temperature, an
additional grid around the X position within a distance of 0.4
rlu [with same spacing, but shifted by (0.05, 0.05, 0.05)] was
employed. On the average, about 14 000 positions were taken
per scattering experiment.

Data were calibrated using polystyrene. Compton scattering
and thermal diffuse scattering up to third order were calculated
and subtracted from the calibrated scattering to obtain elastic
diffuse scattering. To calculate thermal diffuse scattering and to
determine the total (static and dynamical) Debye-Waller factor,
elastic constants have to be known. They were determined at
room temperature by the pulse-echo-overlap method using
a cylinder with a 〈110〉 axis and following the same heat
treatment. Values of c11 = 125(2) GPa, c12 = 91(1) GPa, and
c44 = 84(1) GPa were obtained. These values agree within 8%
with the findings of Hausch [52], the difference is believed
to be largely due to a high sensitivity of the elastic data

054205-3
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FIG. 1. Macroscopic length change 	l/l of Fe-27.1 at.% Pt
around the Curie temperature.

on the actual state of order and to the difference of sample
composition.

For the two other diffuse scattering experiments, values
were taken from Hausch [52]: (i) c11 = 182 GPa, c12 =
122 GPa, c44 = 93.8 GPa at 427 K and (ii) c11 = 122 GPa,
c12 = 88 GPa, c44 = 87 GPa under magnetic saturation at
room temperature. Finally, atomic scattering factors and
Compton scattering values were taken from Ref. [53] and the
Hönl corrections from Sasaki [54].

The investigation of the Invar effect on an atomic level
was accompanied with dilatometry. An oligocrystalline rod
with a diameter of 2.5 mm and a length of 10 mm was
measured on a dilatometer type 805A/D (Bähr Thermoanalyse
GmbH) with the same thermal history as the samples for
diffuse scattering. Figure 1 shows the relative change in
length in dependence of temperature with a negative slope
around the Curie temperature of ∼360 K (Invar region) and a
steady increase at higher temperatures following the Grüneisen
relation.

IV. RESULTS FROM SCATTERING

To illustrate the experimental (elastic and inelastic) diffuse
scattering of Fe-27.1 at.% Pt, the pattern for the (100) plane is
shown in Fig. 2. The measurement at room temperature was
chosen; the patterns for the measurements at 427 K and under
magnetic field are barely distinguishable. One always notes
strong diffuse maxima of up to ∼10 Lu at 100 positions, i.e.,
at the L12 superstructure positions of the ordered Fe3Pt phase.
The diffuse maxima show no shift from the exact X position,
only a slight asymmetry along 〈100〉 is seen in the surrounding
pattern. Both findings imply that the displacement scattering
is much lower than short-range order scattering within the
selected range of scattering vectors.

After subtraction of thermal diffuse scattering and Compton
scattering, the elastic diffuse scattering was analyzed using
the method of Georgopoulos and Cohen [27]. The underlying
Fourier series of short-range order scattering and linear
displacement scattering were then least-squares fitted to obtain
the Warren-Cowley short-range order parameters αlmn and
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FIG. 2. (Color online) As-measured diffuse scattering of
Fe-27.1 at.% Pt at RT in Lu. The hatched areas around Bragg
reflections present the regions that were not employed in data
evaluation due to strong thermal diffuse scattering.

the species-dependent static atomic displacements 〈xμμ

lmn〉. The
number of relevant parameter sets was determined by consid-
ering the R value of the fits, the magnitude of the standard
deviations with respect to those of the Fourier coefficients,
and a comparison of the separated and recalculated short-range
order scattering and displacement scattering, respectively.

A. Short-range order

The separated short-range order scattering for all three
states is shown in Fig. 3. Around the maxima at 100 the lines
of equal intensity have a disklike shape. Such a pattern is well
known to arise from configurations when diffuse antiphase
boundaries of conservative nature are present, like, e.g. in
Cu-25 at.% Au (Ref. [55]) or Ni-25 at.% Pt (Ref. [56]).

Due to the strong modulation in scattering 40 αlmn are
required to reproduce the maximum in intensity at X position.
The leading parameters are given in Table I; the standard
deviations are exclusively based on counting statistics. A
close agreement among all three states is found: the standard
deviation among the three data sets σ amounts (on the average)
to only 0.9 σ for each individual parameter. The largest
spread among parameters is seen in α000 where it is 4 σ .
A close agreement among the three states is expected, as the
temperature range of the measurements is sufficiently low to
avoid any distinct ordering.

The experimental value of α000 is lower than the theoretical
value of 1. Such deviations are repeatedly seen in literature
and reflect uncertainties not stemming from counting statistics,
but from calibration, determination of the inelastic scattering
contributions, or separation into the different elastic scattering
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TABLE I. Warren-Cowley short-range order parameters of Fe-
27.1 at.% Pt at room temperature, at 427 K, and at RT under magnetic
saturation as determined from x-ray diffuse scattering. Data of the first
21 shells are shown. Theoretical results are at 1320 K, which is 80 K
above the theoretical order-disorder transition temperature.

αlmn

RT
Magnetic Theory,

lmn RT 427 K saturation 1320 K

000 0.9593 (70) 0.9010 (65) 0.9302 (81) 1.0
110 −0.1334 (45) −0.1177 (39) −0.1312 (47) −0.120
200 0.1790 (40) 0.1784 (36) 0.1630 (44) 0.185
211 −0.0137 (29) −0.0066 (25) −0.0097 (32) −0.008
220 0.0782 (27) 0.0804 (24) 0.0741 (30) 0.085
310 −0.0448 (19) −0.0426 (18) −0.0386 (22) −0.045
222 0.0454 (21) 0.0454 (20) 0.0441 (25) 0.042
321 −0.0129 (12) −0.0123 (11) −0.0136 (15) −0.016
400 0.0460 (21) 0.0419 (20) 0.0294 (27) 0.052
330 −0.0171 (13) −0.0171 (13) −0.0192 (17) −0.019
411 0.0047 (13) 0.0064 (12) 0.0014 (16) 0.006
420 0.0261 (12) 0.0280 (12) 0.0294 (15) 0.032
233 −0.0074 (10) −0.0073 (9) −0.0062 (12) −0.009
422 0.0190 (10) 0.0190 (10) 0.0171 (13) 0.020
431 0.0008 (8) −0.0003 (8) −0.0015 (9) −0.002
510 −0.0152 (13) −0.0157 (12) −0.0101 (15) −0.018
521 −0.0067 (9) −0.0080 (8) −0.0067 (10) −0.010
440 0.0081 (13) 0.0097 (13) 0.0081 (17) 0.015
433 −0.0000 (10) −0.0020 (9) −0.0017 (12) −0.003
530 −0.0049 (10) −0.0057 (10) −0.0038 (13) −0.009
244 0.0068 (10) 0.0066 (10) 0.0090 (13) 0.011
600 0.0103 (20) 0.0071 (18) −0.0041 (25) 0.019

000 200
RT

th
eo

ry

020 220
magnetic field

42
7 

K
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se
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FIG. 3. (Color online) Short-range order scattering ISRO of Fe-
27.1 at.% Pt at room temperature, at 427 K, and at RT under saturating
magnetic field. The as-separated and as-fitted intensities are shown.

contributions. Consistently with the large scattering intensity
at 100, the magnitude of α110 amounts to about one third of
maximally ordered Fe-27.1 at.% Pt. The sign sequence of the
αlmn up to shell 330 is the same as that of the L12 structure. A
difference in sign along with a large value for α800 might be
connected with the presence of diffuse antiphase boundaries.

B. Static atomic displacements

To fit the static atomic displacements from the Fourier
series QFeFe and QPtPt, only six neighboring shells can be
considered. Otherwise, strong correlations arise among the
Fourier coefficients. The static atomic displacements are given
in Table II, and the recalculated terms h · Qμμ are shown in
Fig. 4 for the state at RT under magnetic saturation. Figure 4
illustrates that the two terms h · Qμμ contribute with different
signs to the total displacement scattering. This is a well-known
feature. Still, a build up in modulations (compensated in total
scattering) is prohibited by the ridge-regression technique
within the Georgopoulos-Cohen method.

The number of static atomic displacements can be largely
enhanced if one assumes that the displacement of any neigh-
boring shell may be approximated just by a radial displace-
ment, i.e., without considering cubic symmetry of the alloy.
Then, 16 shells turned out to be best suited. The respective
values are also given in Table II for those shells that have radial
displacements under the lattice symmetry. Good agreement
is seen for the strongest nearest-neighbor displacements, and
on a slightly reduced level for the next-nearest ones. As a
general feature one observes that the displacements among
Fe-Fe pairs are smaller than those between Pt-Pt pairs. This is
a well-known situation: the majority species (here Fe) mainly
determines the average lattice and is thus less subject to
displacements from the sites of the average lattice.

Figure 5 (like Table II) reveals a strikingly systematic
tendency for the displacements of the first two shells: the
magnitude of the atomic displacements increases from the state
at 427 K over the one at RT to the one at RT under saturating
magnetic field. Thus, spontaneous volume magnetostriction
for the two measurements at different temperatures as well as
forced volume magnetostriction at fixed temperature act in the
same way with respect to the near-field deviations from the
average lattice.

C. Effective pair interaction parameters

Based on the Warren-Cowley short-range order parameters,
effective pair interaction (EPI) parameters Vlmn = V AA

lmn +
V BB

lmn − 2V AB
lmn were determined using the inverse Monte Carlo

method [57]. The average over the three short-range order
(SRO) parameter sets was taken for modeling crystals of
48 × 48 × 48 atoms under linear boundary conditions. The
EPI parameters of the Ising Hamiltonian enter the ordering
energy per atom, Eord, of an A-B alloy through

Eord = 1

2
cAcB

∑

lmn

Vlmnαlmn . (5)

In spite of the averaged SRO parameter set, it still turned
out impossible to reproduce the short-range ordered state of
the measurements in Monte Carlo simulations, independent
of the number of EPI parameters. This deficiency is due to
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TABLE II. Species-dependent static atomic displacements of Fe-27.1 at.% Pt at room temperature, at 427 K, and at RT under magnetic
saturation, in units of the lattice parameter. In comparison, data are also given when the radial approximation was applied.

Room temperature

lmn 〈xPtPt
lmn 〉 〈xFeFe

lmn 〉 〈xFePt
lmn 〉

Radial approx. Radial approx. Radial approx.

110 0.02511 (11) 0.02574 (8) 0.00297 (1) 0.00276 (1) −0.00575 (2) −0.00559 (1)
200 −0.00535 (23) −0.00781 (20) −0.00143 (6) −0.00177 (5) 0.00413 (12) 0.00551 (11)
211 −0.00096 (8) 0.00016 (1) −0.00003 (2)
121 −0.00128 (6) −0.00031 (1) 0.00061 (2)
220 −0.00170 (8) −0.00016 (11) −0.00001 (2) −0.00015 (3) 0.00043 (3) 0.00025 (5)
310 0.00528 (9) 0.00014 (1) −0.00099 (2)
130 0.00114 (10) −0.00021 (2) 0.00007 (3)
222 −0.00087 (9) −0.00072 (7) −0.00021 (2) 0.00003 (1) 0.00047 (3) 0.00012 (2)

427 K

lmn 〈xPtPt
lmn 〉 〈xFeFe

lmn 〉 〈xFePt
lmn 〉

Radial approx. Radial approx. Radial approx.

110 0.02237 (11) 0.02295 (8) 0.00194 (2) 0.00195 (1) −0.00461 (2) −0.00469 (1)
200 −0.00196 (25) −0.00374 (20) 0.00004 (7) 0.00037 (4) 0.00059 (14) 0.00065 (9)
211 −0.00214 (8) −0.00053 (2) 0.00105 (3)
121 −0.00111 (6) −0.00029 (1) 0.00056 (2)
220 −0.00213 (8) −0.00084 (11) −0.00023 (2) −0.00060 (2) 0.00085 (3) 0.00105 (4)
310 0.00550 (9) −0.00022 (2) −0.00061 (3)
130 0.00173 (10) −0.00002 (2) −0.00025 (3)
222 −0.00112 (9) −0.00158 (7) −0.00022 (2) −0.00019 (1) 0.00054 (3) 0.00060 (2)

RT, magnetic saturation

lmn 〈xPtPt
lmn 〉 〈xFeFe

lmn 〉 〈xFePt
lmn 〉

Radial approx. Radial approx. Radial approx.

110 0.03173 (10) 0.03201 (8) 0.00475 (2) 0.00459 (2) −0.00836 (2) −0.00822 (2)
200 −0.00888 (22) −0.00950 (21) −0.00198 (10) −0.00133 (9) 0.00599 (17) 0.00515 (16)
211 0.00011 (8) 0.00005 (3) −0.00008 (4)
121 −0.00101 (6) −0.00037 (2) 0.00064 (3)
220 −0.00140 (8) 0.00031 (11) −0.00020 (2) 0.00011 (4) 0.00062 (3) −0.00023 (6)
310 0.00595 (9) 0.00085 (2) −0.00196 (3)
130 0.00040 (9) −0.00006 (2) 0.00001 (3)
222 −0.00090 (9) −0.00082 (7) −0.00026 (3) −0.00001 (3) 0.00054 (4) 0.00019 (4)

the proximity of the aging temperature (1123 K) to the order-
disorder transition temperature (1043 K, see Ref. [50]; earlier
the transition temperature was given as 1093 K according
to Ref. [58]). Considering the magnitude and the standard
deviations of the Vlmn, 21 shells were finally employed.
Table III gives the EPI set. The uncertainties were obtained
by using six sets of SRO parameters, compatible with the
normal distribution of the αlmn. Subsequent Monte Carlo
simulations yielded an order-disorder transition temperature
of 1088(10) K, in excellent agreement with those from direct
experimental findings.

V. FIRST-PRINCIPLES RESULTS

A. Magnetic interactions in Fe-rich Fe-Pt alloys

In Sec. II B, it has been mentioned that magnetic interac-
tions in Fe-Pt depend on the alloy composition, lattice constant,
magnetic state, and in fact on the atomic configurational
state. Figure 6 shows the concentration dependence of the

nearest-neighbor magnetic exchange interactions, which have
been calculated at a fixed lattice constant of 3.75 Å, a value that
corresponds approximately to the experimental lattice constant
of random Fe-27 at.% Pt. [14,59]. In this figure, the interactions
at the first coordination shell of the fcc lattice are shown in
the ferromagnetic (FM) and DLM (paramagnetic) states. Also
shown are the interactions in the DLM state in L12 ordered
Fe3Pt.

Apart from a pronounced concentration dependence, the
nearest-neighbor exchange interaction Jxc exhibits also quite
a strong dependence on the magnetic state for Fe-rich Fe-Pt.
In the FM state, this exchange interaction is much stronger
than in the DLM state. Basically, this means that a classical
Heisenberg Hamiltonian is unable to fully describe the system.
The reason for such a dramatic growth of the exchange
interactions in the FM state is the substantial increase in the
local magnetic moment of Fe in the FM state, which is about
2.6 μB, while it is only 2.3 μB in the DLM state. Since the
magnetic exchange interactions are proportional to the square
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FIG. 4. (Color online) Size-effect scattering h · QFeFe and h ·
QPtPt of Fe-27.1 at.% Pt at RT under saturating magnetic field. The
fitted scattering is shown.

of the magnitude of the local magnetic moment, they should be
stronger by about 30% in the FM state than in the DLM state.

This strong dependence of the local magnetic moment on
the magnetic state in Fe-Pt is the origin of the Invar effect
as has been demonstrated in Ref. [5]. The reduction of the
magnetization with increasing temperature leads to reduced
local magnetic moments of Fe atoms and consequently to
the decrease of the equilibrium volume of the alloy, which
compensates for the thermal expansion due to anharmonic
effects.
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FIG. 5. (Color online) Species-dependent static atomic displace-
ments of Fe-Fe and Pt-Pt pairs in radial approximation. The values in
radial direction 〈r〉μμ

lmn are shown in units of the lattice parameter.

TABLE III. EPI parameters of Fe-27.1 at.% Pt based on the SRO
parameters from diffuse scattering.

lmn Vlmn (mRy)

110 6.10 (33)
200 −2.31 (28)
211 −0.08 (9)
220 −0.30 (7)
310 0.28 (8)
222 −0.75 (7)
321 −0.33 (2)
400 0.57 (15)
330 −0.24 (4)
411 −0.05 (5)
420 −0.32 (5)
233 −0.38 (4)
422 −0.23 (3)
431 −0.21 (3)
510 0.13 (8)
521 −0.14 (2)
440 0.01 (1)
433 −0.07 (2)
530 −0.21 (3)
244 −0.07 (3)
600 0.25 (6)

A strong dependence of the nearest-neighbor interaction on
concentration is the effect of the filling of the majority d band
of Fe. As one can see in Fig. 6, such a dependence is in fact
even much more pronounced when the corresponding lattice
expansion with concentration is taken into consideration.

0 0.2 0.4 0.6 0.8
cPt

0

1

J xc
 (m

R
y)

random, FM
random, DLM
ordered, DLM
random, DLM, FR
random, DLM, a(c)

0.5

FIG. 6. (Color online) Fe-Fe magnetic exchange interaction Jxc

at the first coordination shell in Fe-Pt alloys as a function of
concentration. All the results but those shown by diamonds are
obtained at a fixed lattice constant of 3.75 Å. The results shown
by diamonds are obtained at the experimental room-temperature
lattice constants. The large up triangle shows the result of the scalar
relativistic calculations of the L12 ordered Fe3Pt. Only the results
shown by squares are obtained in the FM state, all the others in
the DLM state. Small down triangles show the results of the fully
relativistic calculations, which include spin-orbit coupling.
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FIG. 7. (Color online) Fe-Fe magnetic exchange interactions at
the first two coordination shells in random Fe-25 at.% Pt as function
of the lattice constant in the DLM state.

Figure 7 shows the dependence of the magnetic exchange
interactions at the first two coordination shells on the lattice
constant in random Fe-25 at.% Pt in the DLM state. Obviously,
the lattice parameter plays an important role in the magnetic
interactions of Fe atoms, which explains the strong pressure
dependence of the Curie temperature in Fe-rich Fe-Pt alloys
[60].

Figure 8 shows the magnetic exchange interactions at
close-by coordination shells in random and L12 ordered
Fe-25 at.% Pt in the DLM state. One can see that the

110 200 211 310 222 321 400 330
neighboring shell lmn

-0.2
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0.2

0.4

J xc
 (m

R
y)

SR, random
FR, random
SR, L1  ordered2

220

FIG. 8. (Color online) Fe-Fe magnetic exchange interactions in
the DLM state in random Fe-25 at.% Pt, obtained in the scalar (SR)
and fully relativistic (FR) calculations and in L12 ordered Fe3Pt for
the same lattice constant of 3.75 Å.

atomic configuration mainly affects the magnetic exchange
interactions at the second, third, and fourth coordination shells.
In order to demonstrate that this is quite a substantial effect, we
calculated the Curie temperature using these interactions and
found that the magnetic interactions for random Fe-25 at.% Pt
yield a substantially lower Curie temperature (about 290 K)
than those for the L12 ordered Fe3Pt (about 450 K). This means
that for the correct description of the magnetic phase transition
in Fe-Pt alloys, one should use magnetic exchange interaction
parameters determined for the corresponding configurational
state [61].

It is experimentally well established that the Curie temper-
ature in Fe-rich Fe-Pt alloys depends on the state of the atomic
order: It is higher in the ordered than in the random state, by
about 150 K [15,62]. This can be the result of two factors:
(i) the effect of atomic order itself due to different atomic
distribution functions at each coordination shell and (ii) the
effect of atomic order on the magnetic exchange interactions,
which has been demonstrated above. In order to investigate
the first effect, we have calculated the Curie temperature in the
L12 ordered Fe3Pt alloy using magnetic exchange interactions
of the ordered phase and found that the Curie temperature
drops to 380 K from 450 K (case of random Fe-25 at.% Pt, see
above).

In other words, for a fixed set of exchange interaction
parameters in Fe-rich Fe-Pt alloys, atomic ordering towards
L12 leads to a decrease of the magnetic transition temperature.
In the single-site mean-field approximation, the respective
change of the Curie temperature in the L12 ordered phase
relative to that in a random alloy is proportional to

	Tc ∝ 1
3

{− 12
3 J110 + 6J200 − 24

3 J211 + 12J220 + · · · }, (6)

which is negative for a fixed set of exchange interactions
either in random or ordered alloy configuration. Therefore,
the experimentally observed increase of the Curie temperature
with increasing atomic order is the effect of the renormalization
of the exchange interactions due to atomic order.

Let us note that the existing experimental data for the Curie
temperature in Fe3Pt are somewhat higher than the theoretical
result for the completely ordered phase in the scalar relativistic
approximation (380 K). According to Ref. [62], the transition
temperature in L12 ordered Fe3Pt is about 420 K, while it is
about 270 K in random Fe-25 at.% Pt. In another experimental
study [48], the transition temperature in the ordered Fe3Pt is
421 and 447 K for a partially ordered alloy with a long-range
order parameter of 0.76 and 1, respectively.

Nevertheless, the agreement is reasonable and can be
further improved. First of all, theoretical magnetic exchange
interactions are obtained in the DLM state, which is closer
to the magnetic state at the Curie temperature (zero or very
small magnetization) than the completely ordered FM state.
In fact, one could account for magnetic short-range order,
which is substantial at the Curie temperature, and this should
increase the strongest interaction at the first coordination shell
(see Fig. 6) and therefore the Curie temperature. Second, it
is important to account for the thermal expansion at 450 K,
where the experimental phase transition is observed, and this
should also lead to an increase of the Curie temperature. And,
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finally, a non-negligible contribution can come from Pt atoms,
which may acquire nonzero magnetic moment both due to
influence of Fe atoms and thermally induced longitudinal spin
fluctuations.

This means that consistent theoretical calculations of the
Curie temperature in these alloys should be done in a self-
consistent manner even for a fixed atomic configuration,
where the magnetic exchange interactions are renormalized
according to the change of the temperature and the magnetic
state. However, such an exercise is beyond the scope of
the paper. In the end, it will of course lead to quantitative
changes, which might bring the calculated Curie temperature
to perfect agreement with experimental data. However, this
proves nothing about the theory, which still will remain quite
approximate due to other approximations involved in the
calculations, starting from the one for the exchange-correlation
energy.

The important message here is that magnetic interactions
in Fe-rich Fe-Pt alloys depend on all possible external and
internal parameters, such as the atomic and magnetic configu-
rational states. This fact has very important consequences for
the proper theoretical modeling of thermodynamics of Fe-Pt
alloys, basically meaning that the usual cluster expansions
done for enthalpies of formation in the ferromagnetic state can
be in large error for finite-temperature thermodynamics.

B. Effective chemical interactions

Effective chemical interactions have been calculated by the
SGPM method for random Fe-Pt alloys in both FM and DLM
states. In the case of magnetic alloys, chemical interactions
can in fact quite strongly depend on alloy configuration
[63]. These effects, however, will be neglected since an
accurate quantitative description of the finite-temperature
thermodynamics of this system is very complicated due to
nontrivial magnetism and large atomic size mismatch of the
alloy components.

First, the concentration and magnetic state dependence
of the ECI parameters is demonstrated. Figure 9 shows
the concentration dependence of the chemical part of the
nearest-neighbor ECI parameters V

(2)
1 obtained in the FM and

DLM states. The calculations have been done for a fixed lattice
constant of 3.75 Å in order to separate volume effects.

Part of the difference between the interactions in the FM and
DLM states can be associated with the corresponding magnetic
exchange interactions [64,65]. Since the magnetic exchange
interaction at the first coordination shell is of the ferromagnetic
type (and the magnetic Fe-Fe interaction is more attractive
in the FM state), the FM effective chemical interaction is
less positive than that in the DLM state. The concentration
dependence of the FM and DLM ECI parameters V

(2)
1

somewhat differs, especially for Fe-rich alloy compositions,
which is most probably related to some electronic effects
associated with the change of the Fermi surface topology in
this region [63].

In this case, one can expect strong sensitivity of the
many-atom interactions in the corresponding concentration
interval. Indeed, one can see in Fig. 10 that the concentration
dependence of the higher-order three- and four-site interac-
tions is not less pronounced than that of the pair interactions.
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FIG. 9. (Color online) Effective pair chemical interactions
(chemical part from SGPM calculations) at the first coordination
shell in random Fe-Pt alloys as function of Pt concentration.

In this figure, two three-site interactions are shown: V (3)
111 for the

triangle of nearest neighbors and V
(3)

411 for the cluster of three
subsequent sites on the line in the closed-packed direction
[110], and two four-site interactions: V

(4)
1 for the tetrahedron

of nearest neighbors and V
(4)

4 for the cluster of four subsequent
sites on the line in the closed-packed direction. One notices
that the interactions in the FM state exhibit quite a nonlinear
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FIG. 10. (Color online) Effective three-site V
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q chemical interactions in random Fe-Pt alloys as function of Pt

concentration. Filled symbols show the interactions in the FM state,
while the corresponding open symbols show the interactions in the
DLM state.
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concentration behavior, which becomes more pronounced with
increasing order of the interactions.

C. ECI parameters and statistical simulations for Fe-27 at.% Pt

One of the most serious complications in a first-principles
description of effective interactions in the Fe-Pt system is
the substantial size mismatch of its alloy components. Partly,
this is the reason for a quite strong ordering tendency due
to electrostatic effects. On the other hand, the ordering
tendency at the first coordination shell is compensated by the
strong strain-induced interaction, which is attractive for alloy
components of the same type.

Unfortunately, a strict first-principles description of the
strain-induced interactions is possible only in the dilute limit
of one component in the other. This creates a problem in our
case since fcc Fe is a mechanically unstable system in the FM
state, at least within the range of Fe-rich Fe-Pt alloys lattice
constants. The other problem is that it is quite difficult to do
calculations in the paramagnetic state, which is relevant at the
temperatures of the order-disorder phase transition in Fe-27
at.% Pt.

Therefore, we have estimated the strongest strain-induced
interactions using a harmonic superposition model [66], as-
suming that local atomic displacements are small and thereby
only the harmonic contribution is important. In this case,
the force acting on a host atom due to two impurity atoms
and the resulting displacements are given by a superposition
of the forces and displacements produced by each impurity
atom. Thus, using the Hellmann-Feynman forces from the
first-principles calculations of the host atoms around a single
impurity Fi (before relaxation), and local displacements of
the host atoms ui (after relaxation), one can determine the
strain-induced interactions as

V si(Rp) = −1

2

∑

i

[(
F1

i + F2
i

)(
u1

i + u2
i

) − F1
i u1

i − F2
i u2

i

]
.

(7)

Here, the summation is performed over all host atoms, and
F1(2)

i and u1(2)
i are the forces and displacements induced either

by the first (1) or second (2) impurity atom, respectively, with
Rp being their distance vector. This model is in fact equivalent
to the widely used Krivoglaz-Kanzaki model [41,42,67].

In this work, we have used a 256-atom supercell containing
255 Fe atoms and a single Pt atom to determine the static
lattice displacements ui and the Kanzaki forces Fi caused by
the presence of the Pt atom. The calculations have been done
in the FM state.

In Fig. 11, we show the calculated chemical and total
interactions, which were determined as

V (2)
p = V (2)−ch

p + V si(Rp) (8)

at the first three coordination shells where the strain-induced
interactions are the strongest. The strain-induced interactions
are in fact quite long ranging. However, there is large
uncertainty as Eq. (8) has been used in the wrong magnetic
state and the dilute limit was assumed. At the same time, the
magnetic state affects the magnitude of the local magnetic
moment and thus the effective size of Fe and Pt atoms. The
chemical ECI parameters of random Fe-27 at.% Pt have been
calculated at 1200 K, using a lattice constant of 3.79 Å as
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FIG. 11. (Color online) Total and chemical ECI parameters V
(2)
lmn

in random Fe-27 at.% Pt. The chemical interactions are calculated in
the DLM state at a lattice constant of 3.79 Å.

estimated in the Debye-Grüneisen model. The calculations
have been done in the DLM state.

There are several quite strong three- and four-site interac-
tions, the strongest among them were presented in Fig. 10.
These interactions in the DLM state together with the ECI
parameters given in Fig. 11 have been used in the Monte Carlo
simulations of Fe-27 at.% Pt. The order-disorder transition
temperature is 1240 K, which is about 200 K higher than the
experimental value. The theoretical atomic SRO parameters at
1320 K which is 80 K above the order-disorder phase tran-
sition, was compared with those from diffuse scattering that
were taken from a state also about 80 K above the experimental
order-disorder transition temperature. Table I shows that the
agreement between theoretical and experimental results is very
good in the SRO parameters, and also in the contour plot of
Fig. 3.

D. Static lattice displacements in Fe-25 at.% Pt

Theoretical investigations of atomic displacements in Fe-25
at.% Pt with and without atomic SRO have been performed
using a 256-atom supercell. Calculations have been done for
two atomic configurations: The first with αlmn = 0 up to
the eighth coordination shell, the other with the following
SRO parameters at the first six coordination shells: α1−6 =
−0.125,0.167,−0.007,0.055,−0.046,0.016. The latter pa-
rameter set corresponds to the high-temperature state of the
alloy just above the order-disorder phase transition and, in
particular, this alloy configuration is close to the one used in
the experiment.

The PAW first-principles calculations have been done by
VASP in the FM state. Unfortunately, the ab initio modeling
of the paramagnetic state with a reduced magnetization is
practically impossible for such a large supercell. On the other
hand, the modeling of lattice displacements on a smaller unit
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TABLE IV. Static atomic displacements of Fe-25 at.% Pt without
and with atomic SRO determined from first-principles calculations of
a 256-atom supercell in the FM state. Values (in radial approximation)
are given in units of the lattice parameter.

lmn 〈xPtPt
lmn 〉 〈xFeFe

lmn 〉 〈xFePt
lmn 〉

Random alloy
110 0.0363 −0.0060 0.0029
200 0.0001 −0.0024 0.0035
211 0.0049 −0.0014 0.0013
220 0.0048 −0.0013 0.0012

With atomic SRO

110 0.0275 −0.0037 0.0022
200 −0.0067 −0.0023 0.0063
211 0.0016 0.0003 −0.0007
220 0.0008 −0.0007 0.0009

cell does not make much sense: even in the case of a 256-atom
supercell, the meaningful results are restricted to just a few
nearest-neighbor coordination shells. Theoretical results are
presented in Table IV.

One can see that there is a pronounced effect of the atomic
SRO upon the lattice displacements: the Pt-Pt interatomic
distances appear to be reduced while Fe-Fe distances are
increased in the alloy with atomic SRO relative to those in the
completely random alloy. The theoretical results with atomic
SRO can be compared with the experiment done with saturat-
ing magnetic field. Although the agreement is not perfect, it
is much better than between theoretical results without SRO.
In other words, experiment and theory indicate that atomic
displacements are sensitive to the atomic configuration and
the magnetic state.

VI. DISCUSSION

In general, static atomic displacements are more difficult to
be determined from diffuse scattering than short-range order
parameters. The reason for this is that there are up to six
unknowns per neighboring shell with 〈xμμ

lmn〉 instead of just
one unknown as with αlmn. Two approaches may be employed
to determine these parameters for concentrated solid solutions:
the Georgopoulos-Cohen method [27] and the 3λ method [9].
A prerequisite of the 3λ method is that elements in the alloy are
nearby in the periodic table, in which case the Georgopoulos-
Cohen method at a laboratory x-ray source is doomed to fail
due to missing scattering contrast. Thus, this method is not
applicable with Fe-Pt.

In two cases, Fe-Cr and Ni-Cr, a comparison of both
evaluation procedures was done using data taken at well-
chosen x-ray energies at a storage ring to reach a good
scattering contrast: excellent agreement in 〈xμμ

lmn〉 was achieved
with Fe-Cr (Ref. [24]) with both methods and to a somewhat
minor degree with Ni-Cr (Ref. [69]). The pros and cons
of both approaches are only partly settled if one employs
neutrons in comparison as access to a linear combination
of the species-dependent static atomic displacements is then
provided: values may nicely agree when one determines them
from the species-dependent displacements as with, e.g., Ni-Al

(Ref. [70]), still there might be an improper separation of A-A
and B-B displacement scattering of the A-B alloy. A procedure
to reduce the number of displacement parameters consists in
employing the radial approximation. Table II shows that this
assumption is doubtful. For example, it is certainly not fulfilled
when the two atomic displacement parameters of a shell differ
in sign. Further points on the displacement parameters in Fe-Pt
might be noted.

(i) For the separation of species-dependent static atomic
displacements by the Georgopoulos-Cohen method, several
requirements have to be fulfilled: a largely different variation of
the scattering factor ratios η and ξ with scattering vector (here
by 20%) and also a high scattering contrast (here 	Z = 52, Z
= atomic number), and good counting statistics at a large
number of symmetry-equivalent positions (∼90 positions).
Still, to test whether the size effect scattering ISE(h) is well
separated within the elastic diffuse scattering, a Borie-Sparks
(BS) analysis [71] may be applied. Here, one deliberately
discards the difference in η and ξ with scattering vector. Such
an approach may then serve as an indicator for the separation
as much less (10 instead of 25) Fourier series have to be
considered. The linear combination of the species-dependent
static atomic displacements of the BS analysis was compared
with the one using Table II and scattering factor ratios η and
ξ that are averaged over the range of scattering vectors. With
γ

μμ

x,lmn being the Fourier coefficients of the Fourier series of
Eq. (2) and

γx,lmn = ηγ PtPt
x,lmn + ξγ FeFe

x,lmn (9)

one obtains −0.0377(2) and −0.242(23) for the 110 shell,
and 0.0278(12) and 0.0373(73) for the 200 shell (first value
is based on the GC, the second comes from the BS analysis).
One notes that comparable data are obtained.

(ii) EXAFS measurements also provide species-dependent
near-neighbor distances. Investigations done by Maruyama
et al. [72] give values at 300 K for disordered Fe-Pt foils
with 26 and 28 at.% Pt quenched from 1073 K and thus allow
of an interpolation to the present composition of Fe-27.1 at.%
Pt. Using the lattice parameter of the present investigation at
RT [a = 3.7507(28) Å], one obtains 〈xPtPt

110 〉 = 0.0180(14) and
〈xFePt

110 〉 = −0.0050(14). Both values are close to 0.02511(11)
and −0.00575(2), respectively, of Table II.

(iii) Local lattice displacements as well as Kanzaki forces
are usually quite well reproduced in first-principles calcula-
tions since they are related to small structural perturbations,
where large errors of the exchange-correlation functionals are
quite well compensated (canceled). In the present investiga-
tion, general agreement is found between theory and exper-
iment on the magnitude of the static atomic displacements.
Still, there is one clear difference that refers to the sign of the
nearest-neighbor displacement of Fe-Fe and Fe-Pt pairs. One
of the possible reasons for such disagreement is actually the
failure of usual local approximations for exchange-correlation
energy to provide accurate results for the equilibrium volume
of different types of metals. In particular, the GGA, which
has been used in the present theoretical investigation, works
reasonably well for 3d metals, while it quite substantially
overestimates the lattice constants of the 5d metals. This
effect is clearly seen if one compares experimental data and
theoretical results, for instance, for the first coordination shell:
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Theory predicts larger separation of Pt-Pt and Fe-Pt atoms and
correspondingly a smaller one for Fe-Fe pairs. Unfortunately,
the use of another approximation, like the local density one,
would not solve this problem since it will produce a smaller
spacing between Fe atoms, although it will work better for Pt
atoms. This means that it is hardly possible to resolve the
existing discrepancy between theory and experiment, until
a new functional, which works properly for both metals is
developed.

The Invar behavior on an atomic scale has been studied in
much detail on Fe-36.8 at.% Ni using diffuse x-ray scattering
[8]. Interestingly, the same outcome as in this study was
noted: a dependence of the static displacements (here in radial
approximation) in the magnetic state is only convincingly
resolvable for the first two neighboring shells. The magnitude
of the species-dependent static atomic displacements at 60 K
was closely reproduced by Liot and Abrikosov [7] by applying
the special quasirandom structure (SQS) method [73] to model
the local lattice relaxations in the lowest-energy ferromagnetic
state. For an assumed nonmagnetic state, the displacements
were found to differ in sign. Thus, the lower magnitudes and
unchanged signs in the static displacements found experimen-
tally at 300 K (note that at this temperature Fe-Ni is still below
the Curie temperature) are very plausible.

It is striking that the long-range part of the displacement
fields in Fe-Pt (Fig. 5) as well as in Fe-Ni (Ref. [8]) are quite
in agreement among the respective cases beyond the nearest
and next-nearest shells. This does, however, not imply that
the subtle differences in subsequent shells are negligible (cf.
Ref. [18]).

There is still another point to be noted on Fe-Pt: the shape
of the order-disorder transition line of the Fe3Pt phase is not
symmetrical with respect to stoichiometry, as found by Osaka
et al. [50]. This situation resembles the case of Fe-Pd on the
Pd-rich side [68]. In Fe-Pd, the reason for strong shifts in con-
gruent ordering off the 3:1 and 1:1 stoichiometry, respectively,
was the composition dependence of the EPI parameters exclu-
sively accessible from diffuse scattering. Ab initio electronic-
structure calculations showed furthermore that the multisite
interactions are strong and also possess a strong dependence
on composition and configuration. Thus, a similar situation
seems to be present with Fe-Pt (cf. Figs. 9 and 10).
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