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Spin vibronics in interacting nonmagnetic molecular nanojunctions
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We show that in the presence of ferromagnetic electronic reservoirs and spin-dependent tunnel couplings,
molecular vibrations in nonmagnetic single molecular transistors induce an effective intramolecular exchange
magnetic field. It generates a finite spin accumulation and precession for the electrons confined on the molecular
bridge and occurs under (non)equilibrium conditions. The effective exchange magnetic field is calculated here to
lowest order in the tunnel coupling for a nonequilibrium transport setup. Coulomb interaction between electrons
is taken into account as well as a finite electron-phonon coupling. We show that for realistic physical parameters,
an effective spin-phonon coupling emerges. It is induced by quantum many-body interactions, which are either
of electron-phonon or Coulomb type. We investigate the precession and accumulation of the confined spins as
function of bias and gate voltages as well as their dependence on the angle enclosed by the magnetizations
between the left and right reservoir.
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I. INTRODUCTION

Understanding the interplay between Coulomb interaction
and the coupling of the electronic charge to vibrational degrees
of freedom has motivated intense research in several areas
of condensed matter physics in the recent years. Transistors
in future nanoelectronic applications will ideally work with
only a few physical carriers of information. Inherently, the
dimension of the devices are scaled down, such that response
times shorten and fast switching between the two states of
a transistor (or a quantum dot) becomes possible. For few-
electron quantum dots, the relevant physical properties, such
as the number of confined electrons, effective g-factor, and
spin-orbit coupling strengths, are coherently controllable by
tuning respective gate voltages in experiments (see Refs. [1,2]
and references therein). Suitable physical setups include semi-
conducting heterostructures as well as carbon nanotubes [3]
or gated nanowires [4] in order to confine a small number of
electrons. Mechanical degrees of freedom are inherent to the
particular geometry of these devices.

In molecular transistors (or nanojunctions), the electronic
and/or spin states of a molecule are used in a controlled way
to realize logical operations [5,6]. Aside from their electronic
properties, molecules inherently possess significant internal
vibrational degrees of freedom. Characteristic frequencies of
internal mechanical vibrational modes of a molecule are used
to witness a working device in a transport setup [7,8]. In
general, nanomechanical systems designed by means of a
clamped nanobeam, exhibit vibrational degrees of freedom
as well [9]. By properly adjusting electrostatic gates, nanome-
chanical quantum dots with a vibrational degree of freedom
are created. Depending on the particular situation, the energy
scales of the electronic energies and the vibrational motion
may compete and may generate rich physical phenomena.
For example, electronic energies can be significantly shifted
due to a strong electron-vibrational coupling. This gives
rise to the Franck-Condon blockade as observed in carbon
nanotubes [10], as well as a strong coupling between the
tunneling of electrons and the mechanical motion [11].

In addition to controlling charge states, the electronic spin
degree of freedom has been addressed as well in electronic

devices [12]. In quantum dots, electron spin resonance
measurements allow to determine the particular state of the
confined particle. Also in clean nanotubes, spin-orbit coupling
effects serve to further split the single-particle energy spectrum
in the absence of an external magnetic field. There, spin and
valley degrees of freedom may be used to define appropriate
qubits [3,13,14]. Since the electron spin is a natural two-state
system, control and coherent manipulation of a system with a
few confined spins is desirable for applications in spintronics
and for encoding quantum information.

As a generic theoretical model for all the mentioned
scenarios, the Anderson-Holstein model has been established
in recent years. A quantum dot or a molecular nanojunction
with a few electronic orbitals and a finite electron-phonon
coupling is tunnel coupled to large reservoirs of free elec-
trons. The interplay between the electronic states and the
mechanical motion in Anderson-Holstein setups has been
in focus recently. Franck-Condon blockade effects together
with large Fano factors have been studied [15] as well as
the transport properties of the system in the presence of a
finite-temperature bias [15,16]. Both cases were analyzed in
the weak-to-intermediate coupling regime. Thereby, tunneling
processes up to second order in the dot-lead hybridization
have been taken into account. For slow phonons (i.e., small
phonon frequencies), the adiabatic phonon regime has been
addressed [17,18]. Also in this regime, Jovchev et al. [19] have
performed a scattering state renormalization group study in
order to compute the I (V ) characteristics and to determine the
spectral function under the condition of thermal equilibrium.
An advanced perturbative treatment of the electron-phonon
coupling under nonequilibrium conditions has also been
worked out [20]. Likewise, Monte Carlo simulations have
been performed in the transient regime [21]. Restricting the
Hilbert space to the subspace of a singly occupied electronic
device, Flensberg et al. [22,23] have used an incoherent
rate-equation approach together with the assumption that
the phonon is in thermal equilibrium to reproduce the main
experimental features on a qualitative level [24]. The influence
on transport of a nonadiabatic phonon has been studied in
Refs. [15,25]. In addition, the crossover between the regime of
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the adiabatic and the weak tunneling has been addressed by the
iterative summation of nonequilibrium quantum path integrals
in Ref. [26], suggesting that the Franck-Condon blockade
arises also at low temperatures.

Further interesting effects come into play when quantum
dots are contacted by ferromagnetic leads. Then, the reservoirs
can induce effective exchange magnetic fields for the electrons
in the quantum dot. This has become known as the spin-
valve effect. Here, the electronic spin quantum number is
no longer a good quantum number, and the confined spins
are allowed to precess coherently [27–29]. Ferromagnets
may be characterized by their difference in the density of
states of the majority and the minority spins. When two
reservoirs are present (say, the left and the right one) with
different magnetizations, the tunneling magnetoresistance
(TMR) depends sensitively on the angle enclosed by the
directions of the two magnetizations. Certainly, this opens up
the possibility to manipulate spin states and initialize or read
out the particular states. A proper theoretical description has
to include a description of the quantum coherences appearing
in the system. In the present context, quantum coherences
arise due to the coherent spin evolution. A detailed study
of the coherent time evolution of the electron spin in the
presence of an electron-phonon coupling has not been reported
so far in the literature. The influence of the electron-phonon
coupling in quantum transport setups with ferromagnetic leads
has been studied by means of nonequilibrium Green’s function
for the two limiting cases of vanishing Coulomb interaction
(U = 0) and infinitely large Coulomb interaction (U → ∞) in
Refs. [30,31], respectively. Also, the case of a single coupled
ferromagnet used as a switch for the current polarization
has been investigated recently [32]. A Hartree-Fock–type
approximation is used to close the set of equations for the
causal electronic Green’s functions, yielding the tunneling
current and the tunneling magnetoresistance [33]. We note
that within these approximations, a quantum coherent spin
evolution on the quantum dot is not obtained due to the absence
of inhomogeneous magnetic fields and/or approximations
regarding the Coulomb interaction between electrons. In the
context of nanocooling a quantum dot by spin-polarized
nonequilibrium currents, a similar setup as suggested here
has been investigated [34,35]. There, the focus has been on the
dynamical cooling and heating of the phonon mode in presence
of a magnetic molecular junction.

In this work, we consider a nonmagnetic molecular bridge
with weak coupling to ferromagnetic leads. We include,
besides the electronic degrees of freedom, also a coupling
of the electrons to a single mode of a molecular vibration.
Furthermore, we restrict our analysis to the sequential tun-
neling regime, which we explore by means of a real-time
diagrammatic approach for the reduced density matrix of
the molecular bridge. After introducing the ferromagnetic
Anderson-Holstein model in Sec. II, we discuss the necessary
modifications in the quantum kinetic equation due to the spin-
polarized leads, as opposed to the case of nonmagnetic leads.
Most importantly, we find an exchange magnetic field which
acts on the dot electrons and which is generated by the coupling
of the electrons to the vibrational mode. We discuss this effect
for realistic experimental parameters in Sec. III. We calculate
the relevant spin observables and discuss spin precession and

accumulation also in terms of specific elements of the reduced
density matrix in Sec. IV. Transport observables (such as
the charge current) for a nonequilibrium situation as well as
for different polarization angles of the leads are presented in
Sec. V. We show that the phonon-induced exchange magnetic
field generates a current blockade which is weaker as compared
to the pure spin-valve effect. To complete the physical picture,
we also provide the results for the general case when both
the Coulomb and the electron-phonon couplings are present.
We underpin these numerical findings in terms of an attractive
effective Anderson model for the polarons. We conclude and
summarize our findings in Sec. VII.

II. MODEL AND DIAGRAMMATIC TECHNIQUE

In order to model the Anderson-Holstein spin-valve geom-
etry, we use the Hamiltonian

H = Hmol + HT + Hleads. (1)

The central region [see Fig. 1(a)] is denoted as “dot,” or,
equivalently, as “molecule” in what follows and may be given
as, e.g., a single electronic level of a quantum dot or a molecule.
Its Hamiltonian reads as (� = 1)

Hmol =
∑

σ

εσ d†
σ dσ + Un↑n↓ + �b†b + λx̂(d†

↑d↑ + d
†
↓d↓).

(2)

The fermionic operators dσ (d†
σ ) annihilate (create) an electron

with spin σ = ↑/↓ on the dot. Moreover, the electron number
operator on the dot is nσ = d†

σ dσ . The single-particle energy
is given by εσ and may be controlled by an applied gate
voltage and/or an external magnetic field. In the absence
of an additional external magnetic field, we have that ε↑ =
ε↓ = ε0. Onsite Coulomb interaction is taken into account
by the parameter U . Furthermore, the vibrational mode is
characterized by the bosonic operators b/b†, and its frequency
is denoted by �. The (spin-independent) electron-phonon
coupling strength is provided by λ. The oscillator displacement
operator is denoted by x̂, and the harmonic eigenstates are
labeled by the quantum numbers |m〉. In the absence of the

εσ
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λ

ΓLσ ΓRσ
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FIG. 1. (a) Sketch of the Anderson-Holstein spin-valve geometry.
The spinful electronic level with energy εσ is coupled to a single
mechanical harmonic mode with frequency � with a coupling
constant λ. The electrons are able to tunnel from the spin-polarized
leads to the nonmagnetic device due to finite tunneling couplings
�L/Rσ . The left and right ferromagnets have different magnetizations,
which are characterized by an angle φα,α = L/R. (b) The underlying
coordinate system where φ is the relative angle between the two
directions nL/R of the left and the right magnetizations.
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coupling to the phonon, λ = 0, the electronic eigenstates
{|0〉,|↑〉,|↓〉,|d〉} correspond to the empty, the two singly, and
the doubly occupied states of the quantum dot.

Spin-dependent transport features emerge due to ferromag-
netic leads. We allow for different hybridizations for the up-
and the down-spin electrons between the leads and the dot and
describe them by the Hamiltonian

Hleads =
∑
kατ

(εkτ − μα)c†kατ ckατ . (3)

Electrons in lead α = L/R with energy εkτ are created (anni-
hilated) by the fermionic operators c

†
kατ (ckατ ), where τ = ±

labels the majority/minority spin species. The quantization
axis of the left and right lead, respectively, is defined by the
respective magnetization directions nL and nR . Both enclose
an angle φα with the x-axis [see Fig. 1(b)]. We denote by μα

the electrochemical potential of the lead α. Ferromagnetism
is included by assuming different densities of states ρτ=± at
the Fermi energy for majority/minority spin electrons in the
respective lead. The polarization of the ferromagnetic lead α

is defined by pα = ρα+−ρα−
ρα++ρα−

. For nonmagnetic leads, pα = 0,
whereas pα = 1 corresponds to a fully polarized lead hosting
majority spins only. The dot and the leads are tunnel coupled
with an amplitude tα , leading to the Hamiltonian [27,28]

HT =
∑
kαστ

{
tαc

†
kατU

α
τσ dσ + H.c.

}
, (4)

where the unitary operator Uα
τσ describes the rotation of

the spin coordinate system of the on-dot electron to the
common reference frame. As in Refs. [27,28], we choose
the quantization axis for electron spins on the dot along the
z-axis of the system that is spanned by ex = (nR + nL)/|nR +
nL|, ey = (nR − nL)/|nR − nL|, and ez = ex × ey [see also
Fig. 1(b)]. In passing, we note that for spinors which are rotated
by an angle θ about an axis parallel to the direction of the unit
vector n̂, the following transformation holds:

ei(θ/2)(n̂·σ ) = cos(θ/2) + in̂ · σ sin(θ/2), (5)

where σ = (σx,σy,σz) is the vector of the Pauli matrices.
Accordingly, the coordinate system is rotated by the opposite
angles, such that [see Fig. 1(b)] the tunneling Hamiltonian
assumes the form

HT =
∑
kα

tα[c†kα+(eiφα/2d↑ + e−iφα/2d↓)

× c
†
kα−(−eiφα/2d↑ + e−iφα/2d↓)] + H.c. (6)

Here, we have used two rotations in series about the z- and
y-axis, respectively, such that Uτσ = ei(φα/2)σzei(π/2)σy . For a
finite difference in the electrochemical potentials between
the left and right lead, eV = μL − μR , a net charge current
will flow and the system is in general in a nonequilibrium
situation. For pα �= 0, the hybridization between the dot and
the lead α becomes in general spin dependent and we may
introduce the tunneling coupling strength �α± = 2π |tα|2ρα±.
Hence, electronic states with spin σ = ↑/↓ acquire a finite
linewidth �α = ∑

σ=± �ασ /2 due to their hybridization with
the reservoirs.

Before we proceed with the calculation of the nonequi-
librium density matrix, we apply a polaron transformation,

such that the electrons and the phonon decouple according
to H ′ = SHS† [22,36]. Here, S = e(λ/�)(b†−b)

∑
σ d

†
σ dσ . By

this, the eigenenergies of the bare electronic system are
shifted by the polaron energy, such that εσ → εσ − λ2/�.
Successively, also the Coulomb repulsion strength gets shifted:
U → U − 2λ2/�. In passing, we note that typical terms
of the tunneling Hamiltonian transform under S according
to dσ → dσ e(λ/�)(b†−b) and, correspondingly for the creation
operators (see Ref. [22] for the details).

Since we are interested in the physical properties of the dot
in the first place, the lead and the bosonic degrees of freedom
are traced out, thereby yielding the reduced density matrix of
the system. In order to proceed analytically, we exploit the
fact that the lead and phonon Hamiltonians are quadratic in
the fermionic and bosonic operators. By performing the trace,
we implicitly assume that both of these subsystems remain
in thermal equilibrium, even in the presence of a finite-bias
voltage. Otherwise, dynamic nonequilibrium occupations of
the phonon states and/or the lead electronic states have to be
explicitly taken into account as well before tracing over them.
The reduced density matrix of the system in general has six
nonvanishing entries and includes the coherences due to the
coherent spin evolution driven by the ferromagnetic leads. By
following the steps described in Refs. [37,38], we may obtain
the kinetic equation for the elements of the reduced density
matrix

d

dt
ρχ1

χ2
(t) = −i

∑
χ

(
hχ1χρχ

χ2
− hχχ2ρ

χ1
χ

)
(t)

+
∑
χ ′

1χ
′
2

∫ t

−∞
dt ′�χ1χ

′
1

χ2χ
′
2
(t,t ′)ρχ ′

2

χ ′
1
(t ′) , (7)

with the irreducible self-energy kernels �
χ1,χ

′
1

χ2,χ
′
2
(t,t ′). They

include transitions of the system between even- and odd-parity
states that are induced by the tunneling Hamiltonian. The
internal coherences are covered by the first term and are
generated by the molecular Hamiltonian Hmol. They are
given by the Hamiltonian matrix elements hχχ ′ of Hmol,
with χ,χ ′ ∈ [{|0〉,|↑〉,|↓〉,|d〉} ⊗ |m〉] of the dot-plus-phonon
system in the absence of the coupling to the leads. We note
that for a spin-independent electron-phonon interaction λ, a
contribution to zeroth order in the hybridization �α arises,
which is diagonal in the basis of the phonon.

To determine the irreducible self-energy kernels, we employ
the real-time diagrammatic technique [37,38] which gives a
systematic expansion of the kinetic equation in orders of �α .
The first nonvanishing order includes all terms which change
the number of electrons on the dot by one. For practical
purposes, we shall include the maximal number n of states
in the bosonic Hilbert space and verify convergence with
respect to increasing n. Then, all 4n diagonal elements of
the density matrix are in general nonzero and represent the
occupations of the respective polaron states of the dot. In
addition, the overlap between the singly occupied states with
spin up and down is finite in the presence of ferromagnetic
leads [27,28]. In the presence of the vibrational degree of
freedom, the appearing Fermi functions are dressed by the
Franck-Condon matrix elements (see Refs. [37,38]). They
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simplify if we assume the vibrational mode to be always at
thermal equilibrium [15,16,22,23,36]. Then, we find

F±
α (�,ε) =

∫ ∞

−∞

dω

2π
f ±

α (ω + ε)C±
� (ω), (8)

where C+
� (ω) = 2π

∑∞
n=−∞ Pn(λ/�)δ(ω − n�) (see

Ref. [23]) is the Fourier transform of the correlator

C+
� (t) = 〈

e−(λ/�)(b†ei�t−be−i�t )e−(λ/�)(b†−b)
〉
. (9)

Moreover, we have the detailed balance relation C+(ω) =
C−(ω)eβω. For completeness, we comment that the Pn(x) have
an expansion in terms of modified Bessel functions [36]. For
practical reasons, infinite sums are truncated once convergence
is achieved for the observables of interest. Typically, n = 20
is sufficient for large λ/� � 10 as studied in the following.

Charge current and spin expectation values are the interest-
ing observables, which are also accessible in experimental
setups. In the following, we focus on the symmetric case
�L = �R and μL = −μR = eV/2 as well as pL = pR = p

and φL = −φR = φ/2 (a generalization is straightforward).
We present results for the differential conductance dI/dV in
the following, derived from the symmetrized tunneling current
I = (IL − IR)/2, with

Iα(t) = −e
d

dt

∑
kασ

〈c†kασ ckασ 〉. (10)

We note that the current operator has a similar structure as the
tunneling Hamiltonian. Within the diagrammatic formalism,
we have to replace a tunneling vertex by a current vertex and

use the corresponding transition rates �
Iχ1,χ

′
1

χ2,χ
′
2

(t,t ′) (for details
see Ref. [38]). Information about the spin state of the system is
obtained from the reduced density matrix ρχ ′

χ , which is related
to the vector of the average spin σ = (σx,σy,σz). We then have
for the averages of the spin projections

〈σx〉 = ρ
↑
↓ + ρ

↓
↑

2
, 〈σy〉 = i

ρ
↑
↓ − ρ

↓
↑

2
, 〈σz〉 = ρ

↑
↑ − ρ

↓
↓

2
.

(11)

III. EXCHANGE MAGNETIC FIELD

Ferromagnetic leads induce a coherent spin dynamics on
the dot although the quantum dot itself is nonmagnetic. In
lowest order in the lead-dot tunneling coupling, a contribution
to an effective exchange magnetic field is generated from each
of the two leads. It points in the respective direction of the lead
magnetization. We follow the derivation in Refs. [27,28] and
explore the fact that the charge as well as the spin degrees of
freedom obey rate equations. The dynamics of the spin can be
formulated in terms of a time-evolution equation for the spin
vector σ (t) which describes the dynamics of the spin of the
confined electron. This vector equation can be decomposed
into three parts according to

dσ

dt
=

(
dσ

dt

)
acc

+
(

dσ

dt

)
rel

+
(

dσ

dt

)
rot

, (12)

where accumulation, relaxation, and rotation of the spin are
identified by the three terms. Correspondingly, the dynamical
equation of motion for the charge degrees of freedom can be

decomposed in a similar manner. As opposed to Refs. [27,28],
all energies or differences of energies between singly and dou-
bly occupied states have to be replaced by the corresponding
energies of the respective polaron states (see Sec. II). A closer
look to the third term in Eq. (12) yields the representation(

dσ

dt

)
rot

= σ × (BL + BR) (13)

in terms of an effective exchange magnetic field with the
contributions Bα [28]. It is well known that for standard spin
valves without a vibrational mode, the Coulomb interaction
U between electrons can generate a finite exchange magnetic
field [see Eq. (14) for λ = 0]. In presence of the electron-
phonon coupling, the vibrational coupling generates an ef-
fective attractive Coulomb interaction. In turn, the resulting
exchange magnetic field depends on λ as well as on U . Overall,
we find the analytic expression for the exchange magnetic field

Bα = −pα�α

π

[
�α

(
ε − λ2

�

)
− �α

(
ε + U − 3λ2

�

)]
nα,

(14)

which acts from contact α on the spin of the electron confined
on the dot. Here, �α(x) = Re �[1/2 + iβ(x − μα)/(2π )],
with the digamma function � [39]. It is important to realize
that even in the absence of the Coulomb interaction, i.e., for
U = 0, a finite exchange field Bα in the direction nα of the
magnetization of the lead α exists when an electron-phonon
coupling is present λ �= 0. Consequently, the spin of a confined
electron, which is subject to electron-phonon coupling, will
precess in the effective exchange magnetic field generated
when λ �= 0. Equation (14) includes previous results in the
case of λ = 0. Furthermore, it is interesting to realize that
for Coulomb interaction strengths U < 2λ2/�, the exchange
magnetic field points into the direction opposite to that of
the lead magnetization. Moreover, it vanishes exactly when
U = 2λ2/�. The exchange magnetic field is shown in Fig. 2
as a function of the bias and the gate voltages in a color scale
plot in units of � for three different cases. In Fig. 2(a), only
pure Coulomb interaction is present while the electron-phonon
coupling is switched off (U = 30kBT , λ = 0). In turn, in
Fig. 2(b), only pure electron-phonon interaction is present
while the Coulomb term is absent (U = 0, λ = 10kBT ).
Here, we have chosen the frequency of the oscillator as
� = 5kBT . Finally, in Fig. 2(c), both interactions are present
(U = 30kBT , λ = 10kBT ). In the presence of the Coulomb
interaction alone and for a fixed bias voltage, the exchange
field shows sharp resonances. In-between these resonances,
the field decreases, goes through zero, reverses its sign, and
increases again to the adjacent resonance in Fig. 2(a). For
pure electron-phonon coupling and in absence of a Coulomb
interaction U = 0 [see Fig. 2(b)], the analogy to an effective
attractive Coulomb interaction appears in two respects: First,
there is a finite exchange field induced by the phonon on
the dot. Second, as opposed to Fig. 2(a) it has a reversed
sign. As in Fig. 2(a), we find two resonances, which are
shifted to higher values of ε0 here. This is a general feature
which is due to the opposite sign of the effective Coulomb
interaction constant. In Fig. 2(c), the parameters are chosen
such that λ2/� ≈ U . The exchange magnetic field is still
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FIG. 2. (Color online) Effective exchange magnetic field in units
of � induced by the electron-phonon and Coulomb interaction. The
color scale shows the sum Bex = BL + BR . Panel (a) shows the result
for pure Coulomb interaction U = 30kBT without electron-phonon
coupling λ = 0. In (b), the electron-phonon coupling is set to
λ = 10kBT , � = 5kBT , while U = 0. The finite λ broadens the
resonances, shifts it to larger values of the gate voltage, and reverses its
direction as compared to panel (a). In (c), both interactions are present.
The remaining parameters are kBT = �, φ = π/2, and p = 0.9.

visible, although being smaller in amplitude as opposed to
Fig. 2(a). The width of the resonance is broader than in Fig. 2(a)
which reflects the dominance of λ. For those parameters, we
have that λ2/� > U/2 and the tendency is as in Fig. 2(b). In
contrast, the choice U/2 > λ2/� would result in a reversed
direction of the effective exchange field again. In what follows,
we discuss how the results are modified in comparison to the
case U �= 0, λ = 0 by a finite electron-phonon coupling.

IV. SPIN PRECESSION AND SPIN ACCUMULATION

The immediate consequence of the interaction-induced
exchange magnetic field is a spin accumulation and spin
precession of single-electron spins on the dot. Whenever
the dot is doubly occupied, these effects are expected to be
less pronounced since the spin-singlet state is not sensitive
to inhomogeneous magnetic fields. Spin measurements have
been performed in order to determine the strength of the
exchange magnetic field, e.g., in carbon nanotubes contacted
by ferromagnetic leads [40]. In the following, we address the
spin expectation values along the three spatial directions with
the coordinate system being defined as indicated in Fig. 1(b).
We show results for the angle φ = π/2 between the left
and right magnetization directions. This corresponds to the
configuration nL ⊥ nR . From Refs. [27,28] it is known that for
small bias voltages, a finite spin accumulation occurs along
the direction nL − nR = ey . It also occurs in the absence
of the exchange field. It is important to realize that a finite
〈σx〉 �= 0 and/or 〈σz〉 �= 0 is a clear signature of a finite
exchange field generated by Coulomb or electron-phonon
interactions.
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FIG. 3. (Color online) Interaction-induced spin accumulation il-
lustrated by the spin expectation values 〈σx〉 (left column), 〈σy〉
(middle column), and 〈σz〉 (right column) for varying bias and gate
voltages and for U = 30kBT . The upper row shows the results for
pure Coulomb interaction without electron-phonon coupling λ = 0.
The lower row refers to the case with an additional electron-phonon
interaction λ = 10kBT , � = 5kBT . The remaining parameters are as
in Fig. 2.

The induced spin accumulation is illustrated in Fig. 3 by
the spin expectation values 〈σx〉, 〈σy〉, and 〈σz〉 for varying
bias and gate voltages. The upper row shows the results for
the case of pure Coulomb interaction U = 30kBT and λ = 0.
For φ = π/2, spin is accumulated in the direction nL − nR

due to the conservation of the total angular momentum. This
maximal spin-valve effect competes with the spin precession
around the induced exchange field which points in the direction
nL + nR . The latter induces finite x- and z-component of
the spin. Since two addition energies are present, also two
distinct resonance lines appear in the upper left panel. The
same substructure also emerges in the upper middle panel. In
this case, the transitions on the dot between the states |↑〉 and
|↓〉 and the empty or doubly occupied state are nondegenerate
due to the finite spin accumulation. In the lower row of Fig. 3,
we depict the results for U = 10kBT and λ = 10kBT which
illustrate the modification of the spin accumulation and the
spin precession due to a finite electron-phonon coupling λ.
They are in accordance with Fig. 2(c), where a finite exchange
field is shown. Although the spin expectation values are about
one order of magnitude smaller than the exchange field, the
qualitative physical behavior is the same. The electrons couple
to the phonon mode differently depending on their spin due
to the lead polarization. By this, an effective spin-phonon
coupling emerges. On the other hand, the electron-phonon
coupling compensates the repulsive Coulomb interaction and
allows the dot to be occupied by two electrons.

Angular dependence

The choice of two independent magnetizations in the left
and right lead, characterized by the relative angle φ, generates
two noncollinear magnetic fields for the spin of an electron
on the dot. When the dot is occupied by a single electron,
the spin state is sensitive to these fields. Then, also the
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FIG. 4. (Color online) Same as in Fig. 3, but as a function of
the enclosed angle φ for a single-particle energy ε0 = 30kBT and
for U = 30kBT . The upper row shows the results for λ = 0, while
the lower row shows the case with an additional electron-phonon
interaction λ = 10kBT , � = 5kBT .

dependence of the spin accumulation on φ is relevant. In
Fig. 4, we show the spin expectation values as a function
of the bias voltage and the enclosed angle φ. We have fixed
the gate voltage to ε0 = 30kBT and the remaining parameters
are as in Fig. 3. Again, the three upper panels refer to pure
repulsive Coulomb interaction with U > 0. The device is
largely singly occupied and we find a clear precession of the
spin with finite x- and z-component of the spin operator. In
contrast to the spin accumulation, the spin precession vanishes
for the collinear configurations, when φ = 0, ± π . As the
spin-dependent effects are absent for zero bias voltage, we find
that increasing the bias voltage favors a specific spin direction,
either up or down. This is accompanied by the precession
of the spin with the same or the opposite components of the
spin vector. This is depicted in the left and right panels of
the upper row in Fig. 4. The results for finite λ are shown in
the lower row. The spin accumulation is sensitive to the change
of the angle as well, similar as the behavior discussed above.
However, the characteristics of the precession is different since
it is determined by the value of the exchange magnetic field. We
note that always a positive x-component of the spin emerges,
whereas the z-component may reverse its sign, when either
the angle or the bias voltage are changed from positive to
negative values. Since the Franck-Condon blockade is well
developed in the central areas of the panels, spins of any kind
are blocked to enter the dot in this regime. Hence, neither spin
accumulation nor spin precession occurs here.

V. TRANSPORT SPECTROSCOPY

Measurements of the current give precise insight into the
spectrum of the interacting quantum dot. In this section, we
present results for the differential conductance dI/dV , with
the current defined in Eq. (10). The differential conductance
as function of eV and ε0 is shown in Fig. 5(a) for U = 0, λ =
0, � = kBT , and φ = π/2. A single conductance line is visible
since the system possesses only one addition energy Eadd =
ε|d〉 − ε|↑/↓〉 = ε|↑/↓〉 − ε|0〉 = ε0. The finite conductance is
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FIG. 5. (Color online) Differential conductance of the Anderson-
Holstein spin valve as a function of the bias and the gate voltage in
units of Gtunn = (e2/h)�/(2πkBT ). In (a), the noninteracting case
is shown: U = λ = 0, while (b) refers to U = 30kBT , λ = 0. In
panel (c), we set U = 0, λ = 10kBT , and in (d), we have chosen
U = 30kBT , λ = 10kBT , � = 5kBT . All calculations have been
performed with � = 5kBT , p = 0.9, and φ = π/2.

accompanied by the inset of the spin accumulation on the dot
(see the discussion related to Fig. 3). In Fig. 5(b), we depict
the result for U = 30kBT , λ = 0. Without the ferromagnetic
leads, two addition energies exist in this case, ε0 and ε0 + U .
Then, for ε0 � 10�, the dot is in the doubly occupied state,
whereas for increasing gate voltages, the singly occupied state
is favored. This gives rise to the diamond in the center region
of Fig. 5(b). For large gate voltages ε0 � 30�, the dot is empty
again. The linewidths are determined by the temperature, and
we find pronounced satellite lines with negative values. This
negative differential conductance originates from a partial
blocking of spins, a competition between spin accumulation
and interaction-induced spin precession. Spin accumulation
hinders electrons, which do not have the right spin projection,
to enter the drain, whereas spin precession counteracts to
lift the blockade. The specific positions of the lines are
obtained from the shape of the induced exchange field (see the
discussion in Sec. III). With the lead magnetizations chosen
such that φ = π/2, a maximal spin-valve effect is present.
The charge degeneracy points are located at ±ε0 = −U/2,
where a maximal current flows. In Fig. 5(c), we show a typical
Franck-Condon differential conductance. There is a large
range of bias and gate voltages (|eV | � 40kBT , 30kBT �
|ε0| � 50kBT ), where transport is largely blocked. Once the
bias voltage provides enough energy, which is of the order of
the polaron energy λ2/�, electrons are able to tunnel through
the dot and a current can flow. We see equidistant lines in
the spectrum that are associated with the energy differences
between neighboring states. The regular appearance could be
explained in terms of Franck-Condon parabolas that allow or
forbid transitions from one vibrational state to another, when at
the same time the number of electrons is changed [15,22,23].
Due to the polaronic energy shift ε0 → ε0 + λ2/�, charge-
state degeneracies are shifted differently as compared to the
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FIG. 6. (Color online) Differential conductance in the crossover
regime (see text) for U = 30kBT , λ = � = 10kBT . The remaining
parameters are as in Fig. 5.

situation shown in Fig. 5(b). In particular, the shift occurs
to positive values of ε0. The effective attractive Coulomb
interaction tends to put the dot in the doubly occupied state.
Clearly, features of a negative differential conductance as in
Fig. 5(b) are absent then. In Fig. 5(d), we depict results for
the scenario that both interactions are finite, i.e., U = 30kBT

and λ = 10kBT . For this particular choice of parameters, the
polaron energy approximately equals the Coulomb repulsion
and we obtain a competition between the effects of the
regimes described in Figs. 5(b) and 5(c). The parameters
are λ = � = 10kBT , U = 30kBT . Decreasing the polaron
energy further results in a crossover to the behavior shown
in Fig. 5(b). There, the negative differential conductance is
fully developed, whereas the Franck-Condon steps vanish
successively. In Fig. 6, we depict the results for the crossover
regime, where we find a superposition of modulated negative
differential conductance lines (blue) and Franck-Condon steps
in the dI/dV curve.

Angular dependence

The transport spectrum dI/dV as a function of the
noncollinearity of the lead magnetizations φ is shown for
a fixed gate voltage ε0 = 30kBT in Fig. 7. For a vanishing
electron-phonon coupling, dI/dV (φ,eV ) for λ = 0 is shown
in Fig. 7(a). The dot is essentially unoccupied. The symmetry
of the figure is due to the symmetry of the underlying setup,
and we recall that we calculate the symmetrized current.
For small bias voltages, a positive conductance peak appears
for varying φ. Along φ, we recover the known suppression
of the conductance away from the maximum according to
sin2 φ (see Refs. [27,28]). With increasing bias voltage, the
dot is more populated. Depending on the noncollinearity,
spin is accumulated on the dot and precesses. Transport
is then reduced, and hence, a clear negative differential
conductance feature occurs. For even larger bias voltages,
transport is independent of φ. In Fig. 7(b), we show the
results for U = 30kBT and λ = 10kBT . Again, conductance
lines are symmetric with respect to φ = 0, eV = 0, and the
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FIG. 7. (Color online) Angular dependence of the differential
conductance for U = 30kBT without electron-phonon coupling λ =
0 in (a), and with λ = 10kBT , � = 5kBT in (b). The remaining
parameters are as in Fig. 5.

strong Franck-Condon blockade is independent of the enclosed
angle. Since the electron-phonon coupling favors a doubly
occupied dot state, a spin-singlet state is formed. This singlet is
independent of any magnetic field and thus is not influenced by
changes of the angle of the lead magnetizations. As a function
of φ, the respective lines show a maximum for φ = 0, and the
reduction follows again a ∼ sin2 φ functional form.

VI. NONEQUILIBRIUM PHONON MODE

In the discussion above, we have assumed that the phonon
mode is always kept at thermal equilibrium. In this section,
we address the situation when this no longer holds and
the phonon mode is treated fully nonadiabatically. Starting
from the Hamiltonian in Eq. (2), we have to truncate the
phonon Hilbert space at a certain number K of energy
eigenstates. When calculating the kernels within the real-time
diagrammatic approach, we explicitly keep the dependence on
these basis states. Clearly, the truncation of phonon absorption
and emission processes becomes increasingly cumbersome
for large electron-phonon coupling. Especially in the context
of cooling or heating the environment (see Ref. [34]), the
full density matrix of the electron and phonon degrees of
freedom is of importance in order to monitor the effective
temperature which refers to the mean energy contained in the
vibrational mode. In order to include nonequilibrium effects
in the phonon subspace, we trace over the bosonic degrees of
freedom only when we compute electronic observables, such
as the current or the spin expectation values. Otherwise, we
keep the (4K)2 elements of the density matrix of the dot. We
show in Fig. 8(a) the differential conductance as a function of
the bias voltage for λ = 2.5�, � = 5�, kBT = �, U = 30�,
and ε = −40�. The solid line refers to the results with the
assumption of a thermally equilibrated phonon, whereas the
dashed lines mark the results for different numbers of phonon
states that are taken into account. The red (blue) line is for
K = 9 (K = 10) phonon states. We find a good agreement for
small to intermediate bias voltages 0 � |eV | � 30�. Small
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FIG. 8. (Color online) (a) Comparison of the differential conduc-
tance for equilibrated and nonequilibrated phonon modes. Within a
voltage range |eV | � 20� we do not find significant deviations from
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Same as in (a) but for the nontrivial spin projection along the z-axis.
We note that 〈σz〉 �= 0 reflects the finite exchange magnetic field from
the leads. Other parameters are chosen as λ = 2.5�, kBT = �, φ =
π/2, � = 5�, ε = −40�.

side peaks develop at larger bias voltages, which are associated
to the influence of the nonequilibrium phonon distribution.
However, the key features, such as the appearance of the
negative differential conductance and the Lorentzian peaks
at |eV | = U/2 + λ2/� are reproduced by the equilibrium
phonon distribution as well. The height of the peaks differs to
some extent between the equilibrium and the nonequilibrium
phonon model. For larger values of λ > 3�, it is difficult to
obtain numerically converged results and the calculation in the
Franck-Condon regime becomes increasingly cumbersome. In
Fig. 8(b), we compare, as an example, the z-component of the
spin for both models. Again, the qualitative form of the spin
expectation value as a function of the bias voltage agrees for
both types of calculations, apart from small deviations and
different peak heights.

VII. CONCLUSIONS

The interplay of ferromagnetism, Coulomb and electron-
phonon coupling in quantum dots or molecular transistors
gives rise to interesting spintronic effects under nonequi-
librium conditions. In the presence of ferromagnetic leads,
the nonmagnetic molecular bridge supports a coherent time
evolution of the spin between the |↑〉 and |↓〉 states. When
the tunnel coupling is weak, we obtain the stationary density
matrix in the presence of a finite bias voltage by means of
the real-time diagrammatic technique. Thereby, we include
all quantum coherences that govern the coherent evolution
of the confined electron spin. As a central result, we find a
phonon-induced exchange magnetic field which acts on the
electron spins confined in the intrinsically nonmagnetic dot.
The electron-phonon coupling induces an effective attractive
Coulomb interaction, which, together with the spin-valve
effect, induces a precession of the confined electron spins in the
dot. Interestingly enough, we find that the induced exchange
magnetic field points in the opposite direction when λ �= 0,
as compared to U �= 0. The phonon-induced exchange field
shows much broader resonances than the Coulomb-induced
exchange field. This behavior is related to the small energy
spacings between the adjacent energy levels in the polaron
picture. However, once a single spin is confined on the dot,
it starts to precess in the effective exchange field. When
λ is finite, Franck-Condon physics emerges. In particular,
the Franck-Condon blockade gives rise to an empty dot,
and counteracts the spin-valve physics. Nevertheless, if both
interactions are of the same order of magnitude, spin-valve
physics survives, and spin accumulation together with a spin
precession is observable. These effects are to some extent
weaker as compared to the standard pure spin-valve scenario.
Also, the symmetrized tunneling current and the differential
conductance are accessible. In addition to the known results for
the conventional quantum dot spin valve and the established
Franck-Condon sidebands, we propose a combined dI/dV

diagram, where the negative differential properties of the
quantum dot spin valve are modulated by the Franck-Condon
sidebands. These theoretically proposed effects might be
observable in ultraclean carbon nanotubes or gated single-
molecule setups, for instance, by magnetic scanning tunneling
microscope experiments in the near future.
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