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Optical response and activity of ultrathin films of topological insulators
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We investigate the optical properties of ultrathin film of a topological insulator in the presence of an in-plane
magnetic field. We show that due to the combination of the overlap between the surface states of the two layers
and the magnetic field, the optical conductivity can show strong anisotropy. This leads to the effective optical
activity of the ultrathin film by influencing the circularly polarized incident light. Intriguingly, for a range of
magnetic fields, the reflected and transmitted lights exhibit elliptic character. Even for certain values almost linear
polarizations are obtained, indicating that the thin film can act as a polaroid in reflection. All these features are
discussed in the context of the time-reversal symmetry breaking as one of the key ingredients for the optical
activity.
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I. INTRODUCTION

Optical activity of a material which refers to its effect
on the polarization of light passing through it in general
originates from some symmetry breaking or anisotropy in the
structure of materials [1,2]. Magneto-optical effects, which
are known for more than one and a half century, have in
particular their roots in the time-reversal symmetry (TRS)
breaking in the presence of a magnetic field. Besides, magneto-
optical effects have applications in measuring instruments,
optical devices, and chemical characterizations [3,4]. Recently,
investigations about the optical properties of low-dimensional
and especially two dimensional (2D) systems have increased
a lot motivated by synthesis of a variety of 2D materi-
als including graphene [5], monolayers of transition metal
dichalcogenides [6], and also the thin film of the topological
insulators (TIs) [7,8]. A great advantage of all these 2D systems
is the tunability of their electronic structure by electric or
magnetic fields which leads to many promising applications in
nanoelectronics, spintronics, as well as optical and photonic
devices.

Among all of the above-mentioned new materials, the
discovery of the TI is of more fundamental importance since
it opens new lines of investigation in the theory of condensed-
matter physics [9,10]. In particular, by reformulating the band
theory, providing better understanding of topological orders,
and contributing to the field of the quantum information and
quantum computing, topological insulators are in the heart
of interest in recent years [7,8]. Topological insulators in
three dimensions are insulating materials in which the strong
spin-orbit interaction causes the band inversion [11]. At the
surface of the TI, the bands turn back to their natural order and
subsequently topologically protected surface states emerge.
These states usually governed by some relativistic dynamics
persist a robust gapless dispersion unless the TRS is broken
by applying magnetic fields or in the presence of magnetic
impurities.
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The strong sensitivity of the TI to any perturbation which
breaks the TRS leads to interesting phenomena in their
magneto-optical responses [12–14]. A key finding has been
provided by Tse and MacDonald revealing a giant magneto-
optical Kerr effect besides a universal Faraday angle, θF =
arctan(α) where the fine-structure constant is α = e2/�c, at
the long-wavelength limit [15–17]. They considered a thin
film of the TI in the presence of a perpendicular magnetic
field which can be described by the microscopic 2D massless
Dirac model. Then using the linear-response theory rather than
topological field theory method [10], the optical conductivity
and the magneto-optical responses have been obtained. As
a result of the interplay between confinement and the Hall
effect of Dirac modes, only quantized currents are induced
by the incident electromagnetic waves and subsequently the
reflected and transmitted waves show an unexpected behavior.
However, the TRS breaking and the gap opening due to the
magnetic field play an important role in the observation of
these optical phenomena.

Remarkably, the optical conductivity of the TI surface
states and a thin film of the TI have been studied the-
oretically [18–20] and the universal value for the optical
conductivity, σ0 = e2/4�, has been obtained. Moreover, the
optical properties of bismuth-based topological insulators have
been experimentally explored [21]. Intriguingly enough, it
has been predicted [22–24] and verified experimentally that
the surface states of the two sides of thin film hybridize
with each other when the thickness of TI thin films becomes
less than six quintuple layers (QLs) [25]. Subsequently, the
hybridization via quantum tunneling opens a gap � in the
band structure, which varies in an oscillatory manner with
the thin-film thickness [22–24]. The variation of thin-film
thickness can even lead to the change of the surface band
Chern numbers and their topological properties [24].

In this paper, we analyze the optical responses of ultrathin
films of the TI in the presence of the in-plane magnetic
field B and the gap due to the overlap between the surface
states. One should note that this gap appears without TRS
breaking unlike the case that an out-of-plane magnetic field
or magnetic impurities are present. The effect of the in-plane
magnetic field is a constant difference in the vector potential
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of the surface states at the two sides. Without hybridization of
surface states such difference can be gauged out without any
physical effect, however the overlap between them prohibits
independent gauge transformations for two sides. Therefore,
the combination of the in-plane magnetic field and hybridiza-
tion leads to the interesting behavior of their optical responses.

We show that the optical conductivity tensor exhibits a
profound anisotropy and its longitudinal components σxx

and σyy change drastically by the variation of the imposed
field. Competition between the hybridization and an energy
scale proportional to B leads to two different phases of
the system. In small B values, the thin film exposes a
gapped dispersion relation, however at some certain value
of the magnetic field, the gap closes and the system enters
into a gapless phase. Some qualitative differences in the
behavior of the optical conductivity are found in those two
phases. Then we investigate the properties of the reflected
and transmitted electromagnetic waves when a right-handed
circularly polarized light is incident normally on the system.
Intriguingly, we obtain, for some certain range of the B around
the band structure, phase transition, the reflected light becomes
elliptic and even nearly linearly polarized while the transmitted
one always remains close to the circular polarization. Far away
from the transition, i.e., for very small B or �, the time-reversal
symmetry is restored and the system behaves similar to a
simple isotropic metal.

This paper is organized as follows. Sec. II is devoted
to the theoretical model and basic formalisms. First, a
model Hamiltonian of the system is introduced and then the
conductivities are calculated by using Kubo formalism. The
model for the optics and propagation of the electromagnetic
waves through thin film is given. In Sec. III we present our
numerical results. Finally, we conclude our main results in
Sec. IV.

II. MODEL AND THEORY

Our model consists of a thin film of TI with the width
d in the direction normal to the plane of the system (z) at
zero temperature and having translational symmetry in the x-y
plane. As shown in several works, one can use the low-energy
Hamiltonian proposed for the bulk TI in the vicinity of the
� point to describe the low-energy behavior of the ultrathin
film versus the in-plane momentum k = (kx,ky). Taking into
account the four hybridized pz orbitals denoted by |τ,s〉 =
|pτ

z ,s〉 where τ = ±1 show even and odd parities and s =↑ , ↓
is the spin, the Hamiltonian of the thin film takes the following
form [24]:

H3D = C − D1∂
2
z + D2k

2

+
(
M(k)σz − iA1σx∂z A2k−σx

A2k+σx M(k)σz + iA1σx∂z

)
.

(1)

Here k± = kx ± ky , k =
√

k2
x + k2

y are moments, M(k) =
M + B1∂

2
z − B2k

2 is the momentum dependent mass term and
constants A1, A2, B1, B2, C, D1, D2, and M are the model
parameters which can be fitted from experiment or ab initio
calculations.

In order to find the effective 2D Hamiltonian for the
ultrathin film of a TI, one can first find the general surface-state
solutions of the above three-dimensional (3D) Hamiltonian (1)
imposing the boundary conditions at z = ±d/2. Then by
projecting the 3D Hamiltonian into the space of surface states
we end up with the effective 2D Hamiltonian H2D . It is known
that the ultrathin film of a TI in the absence of magnetic
field can be described using two degenerate massive Dirac
hyperbolas which are each other’s time-reversal counterpart.
The effective Hamiltonian leading to such Dirac dispersions
can be obtained choosing a variety of bases. One way is to
work in the direct product space of the real spin σ and the
subspace of two hyperbolas denoted by τz = ±1 as carried out
by several groups [22–27]. This approach after some algebra
yields the following Hamiltonian:

H2D = τ0 ⊗ [(E0 − Dk2)σ0 − h(k)] + τz ⊗ σz�(k), (2)

in which h(k) = �vẑ(σ̂ × k) is the Dirac Hamiltonian and
�(k) = �0 − Bk2. Here ẑ shows the direction perpendicular
to the upper surface, σ̂ indicates the Pauli matrices for the
real spin. The parameters E0,�0,D,B in general depend on
the geometry of the thin film (d) and should be obtained self-
consistently by fitting the Hamiltonian to the experimental
band structure. Assuming the width W = 5 QLs we use the
numerical values given in Ref. [25] as �0 = 0.041 meV, D =
−15.3 eV Å

−2
, B = 5 eV Å

−2
, and v = 4.53 × 105 m/s is the

Fermi velocity of the helical states in the TI.
An alternative approach to the effective 2D Hamiltonian is

to work in the subspaces of the spin and two side surface states
assuming a general k-dependent hybridization �(k) coupling
the two surfaces [28]. This particular description is useful
when we have in-plane magnetic field and its effect on the
different surface states can be simply introduced in a gauge
invariant form. The basis in this regard has four kets |u ↑〉,
|u ↓〉, |d ↑〉, |d ↓〉 in which u(d) denotes the top (bottom)
surface. Using a unitary transformation we can obtain a new
effective Hamiltonian from Eq. (2) as

Heff(k) = E0 − Dk2 +
(

h(k) �(k)
�(k) −h(k)

)
. (3)

Applying a magnetic field parallel to the single surface
of the TI just shifts the position of the Dirac cone in the
momentum space and can be gauged out without any physical
implications. While in the case of ultrathin films, as mentioned
above, the in-plane magnetic field induces two different gauge
shifts in two different surfaces and subsequently the band
dispersion can be affected by B. For the sake of definiteness,
we consider B = Byŷ which leads to the gauge field A = zByx̂

and as a result [29] one can write the new Hamiltonian as

Heff(k,qB) = E0 −
(

D|k − qB |2 0
0 D|k + qB |2

)

+
(

h(k − qB) �(k)
�(k) −h(k + qB)

)
, (4)

where qB = eByd/2�x̂. Due to the geometry under consider-
ation and the gauge invariance, the hybridization terms are not
affected by the in-plane magnetic field.

In the absence of the in-plane magnetic field, the electronic
band structure is isotropic in terms of the momentum k and
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FIG. 1. (Color online) Dispersion of the topological insulator
thin film along in the kx direction at the presence of an in-plane
magnetic field and a hybridization �0. Left and right panels
correspond to (a) εB = 0.02 eV (εB < �0) and (b) εB = 0.06 eV
(εB > �0), respectively.

consists of two double degenerate bands separated by the
gap �0 at k = 0. The presence of the magnetic field results
in the anisotropy of the bands dispersion. Considering the
dispersion relation along the x direction ε(kx), two different
phases can be distinguished depending on the value of
the magnetic momentum qB , as discussed in Ref. [30] for
the simpler effective model containing only linear terms in
momentum. The predicted quantum phase transition is due
to the competition between the gap �0 and the magnetic
cyclotron energy εB = �vqB as illustrated in Fig. 1. In small
magnetic fields where εB < �0, the system is gapped while
at εB > �0, two subbands intersect subsequently at the zero
energy and close the gap. It is worth noting that for a thin
film with thickness 5 QLs (∼7 nm) a magnetic field of the
order B ≈ 23 T is needed to reach a typical cyclotron energy
of εB = 0.041 eV. Such a magnetic field is indeed quite large
but at the same time accessible in experiments.

A. Optical conductivity of the thin-film TI

In order to calculate the optical conductivity tensor σαβ(ω),
we invoke the linear-response theory and the Kubo formula
given by [16,31]

σαβ(ω) = i
∑

k

∑
μμ′

fk,μ − fk,μ′

εk,μ − εk,μ′

J μμ′
αβ (k)

�ω + εkμ − εkμ′ + i/2τs

,

(5)
where μ,μ′ denote the different bands and α,β indicate x,y

axes. The Fermi-Dirac distribution function is indicated by
fk,μ at the Fermi level μ and τs = 1/� is a tiny residual scat-

tering time due to impurities. The tensor quantity J μμ′
αβ (k) =

〈k,μ|jα|k,μ′〉〈k,μ′|jβ |k,μ〉 is given by the components of the
current operator jα = e∂H/∂kα which for the ultrathin film of
the TI reads as

jα = −e

(
2Dkα − qBδxα 0

0 2Dkα + qBδxα

)

+ e

(∓�vσᾱ −2Bkα

−2Bkα ±�vσᾱ

)
, (6)

where δxα is the Kronecker δ and α (ᾱ) denotes x or y (y or x).
In our model, since there is no longer perpendicular magnetic
field or magnetization, the Hall conductivity vanishes, σxy = 0
however, the in-plane field makes the conductivity strongly

anisotropic, namely σxx �= σyy . We include only the interband
transitions at zero-Fermi energy and the contribution of the
intraband transitions, which leads to a Drude-like term, is no
longer relevant in this study since the momentum relaxation
time is assumed to be very large. This approximation is valid
at low temperature and a quite clean sample. We also do not
consider the bound state of exciton in the system. To be precise,
the phenomenological scattering rate � is chosen to be � =
1 meV which originates from possible impurity and defects
in the system [16]. Remarkably, we note that in the undoped
case, EF = 0, the Kubo formula only includes the interband
conductivity and thus the intraband part (μ = μ′) vanishes.

In order to calculate the optical conductivities we need to
find the dispersion relations of different bands εk,μ as well
as the eigenstates |k,μ〉. For the effective Hamiltonian (4)
which contains up to quadratic terms in momentum, the energy
and eigenstates can be calculated numerically and we do not
present the lengthy analytical expressions. Throughout the
paper we will use the full quadratic model and the presented
results for the optical conductivities and other quantities
determining the optical activities are calculated numerically
based on this model. However in order to enrich our discussion
in what follows, we will present the analytical expressions
which are available for the simplified Hamiltonian containing
up to linear terms in momentum.

B. Simplified low-energy model

In this part, we discuss the simple model in which only the
terms up to linear in k are kept, and then present analytical
expressions of the eigenstates and the tensors Jαβ . We should
remind that this simple picture is verified if we concentrate
on very low-energy properties of the thin film, as employed in
many other works [28,30,32–37]. The simplified Hamiltonian
of an ultrathin film of TI at the presence of the in-plane
magnetic field can be written as

Hsim =
(

h(k − qB) �0

�0 −h(k + qB)

)
. (7)

The energy dispersion for this model has the
form εs,t,k = s

√
�2v2k2 sin2 φ + g2

t (k) with gt (k) =
�vqB + t

√
�2v2k2 cos2 φ + �2

0. Here s = ±1 shows the
valance (s = −1) and conduction (s = +1) bands and
t = ±1 indicates the bands with larger and smaller gaps,
respectively. From the above expression it is clear that the
presence of the magnetic field leads to the anisotropy of the
dispersion relation indicated by the explicit dependence on
the momentum direction angle φ = arctan(ky/kx).

After straightforward algebra, the four eigenfunctions of
the Hamiltonian Eq. (7) indicated by |s,t〉 are obtained as

|s,+〉 = 1√
2

⎛
⎜⎜⎜⎝

i sin γ

2 eiθ+

−s sin γ

2

is cos γ

2

− cos γ

2 eiθ+

⎞
⎟⎟⎟⎠ , |s,−〉 = 1√

2

⎛
⎜⎜⎜⎝

i cos γ

2 eiθ−

−s cos γ

2

−is sin γ

2

sin γ

2 eiθ−

⎞
⎟⎟⎟⎠,

(8)
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with the newly defined parameters γ and θt in
order that sin γ = �0/

√
�

2v2k2 cos2 φ + �2
0, sin θt =

�vk sin φ/
√

�
2v2k2 sin2 φ + g2

t (k).

Using the wave functions from Eq. (8) and the basis as ψ
†
s,t =

(ψ†
+,+,ψ

†
+,−,ψ

†
−,−,ψ

†
−,+), the longitudinal parts of the quantity

J μμ′
αα (k) are given by

Jxx(k) =

⎛
⎜⎜⎜⎜⎝

cos2 γ cos2 θ+ sin2 γ cos2 θ++θ−
2 sin2 γ sin2 θ++θ−

2 cos2 γ sin2 θ+
sin2 γ cos2 θ++θ−

2 cos2 γ cos2 θ− cos2 γ sin2 θ− sin2 γ sin2 θ++θ−
2

sin2 γ sin2 θ++θ−
2 cos2 γ sin2 θ− cos2 γ cos2 θ− sin2 γ cos2 θ++θ−

2

cos2 γ sin2 θ+ sin2 γ sin2 θ++θ−
2 sin2 γ cos2 θ++θ−

2 cos2 γ cos2 θ+

⎞
⎟⎟⎟⎟⎠ (9)

and

Jyy(k) =

⎛
⎜⎜⎝

sin2 θ+ 0 0 cos2 θ+
0 sin2 θ− cos2 θ− 0
0 cos2 θ− sin2 θ− 0

cos2 θ+ 0 0 sin2 θ+

⎞
⎟⎟⎠. (10)

Furthermore, for the Hall conductivity part, we can write
the Jyx(k) as

Jyx(k) = cos(γ )

2

×

⎛
⎜⎝

sin 2θ+ 0 0 sin 2θ+
0 − sin 2θ− − sin 2θ− 0
0 − sin 2θ− − sin 2θ− 0

sin 2θ+ 0 0 sin 2θ+

⎞
⎟⎠;

(11)

since all the terms of Jyx(k) are odd in θ , we thus conclude
that σyx = 0 as discussed before.

Based on Eqs. (9) and (10), we are able to explore the
selection rules of the optical conductivity in the system. For
the sake of clarification, let us label the eigenfunctions by
(s,t) = (+,+),(+,−),(−,−),(−,+) and corresponding bands
shown in Fig. 1 with numbers from 1 to 4, respectively. As seen
in Eq. (10), the transitions 3 → 1 and 4 → 2 are forbidden.
Also later on, we show numerically that although all transitions
are allowed for σxx , the transitions 3 → 2 and 4 → 1 are
negligible and have a minor effect. Note that in this paper,
we assume EF = 0 so the transitions 3 → 4 and 1 → 2 are
unimportant regardless of the J values.

C. Propagation of electromagnetic waves through the
thin film TI

Here, we explore the properties of the reflected and
transmitted electromagnetic waves of an incident wave which
are completely given by the optical conductivity tensor. We
assume that the thin film lies in the x-y plane and the incident
and scattered lights which are plane waves propagate in the z

direction normal to the thin-film plane. The intensity, phase,
and polarization of the electromagnetic waves can be obtained
from their electric fields Ei , Er , and Et at z = 0 corresponding
to the incident, reflected, and transmitted parts. We should
remind that the electric field here is a complex two-component
vector E = Ex x̂ + Ey ŷ. The reflected and transmitted waves
are related to the incident one with linear relations Er = r̂Ei

and Et = t̂Ei in which r̂ and t̂ are 2 × 2 complex matrices in

the two-dimensional space corresponding to the x-y plane. If
we ignore the thickness of the thin film in comparison with the
wavelength and denote the field in the two sides of the film with
E(u) and E(d), then the boundary conditions for the electric and
magnetic fields will be E(u) = E(d) and −iτ̂y(H(u) − H(d)) =
(4π/c)J = (4π/c)σ̂E. Assuming the incident light hits the
upper side of the film, the electric fields of the two sides are
given by E(u) = Ei + Er and E(d) = Et and magnetic fields
follows the corresponding relations. Adding to these relations
and the boundary conditions, the fact that for the vacuum at
each side H = ẑ × E, we derive the transmission and reflection
matrices as

r̂ =
( −σ̃xx

σ̃xx+2 0

0 −σ̃yy

σ̃yy+2

)
, t̂ =

(
2

σ̃xx+2 0

0 2
σ̃yy+2

)
, (12)

where σ̃αβ = (4π/c)σαβ denotes the dimensionless conductiv-
ity.

Now, we suppose a right-circularly polarized electromag-
netic wave of the form Ei = E0(x̂ + iŷ)/

√
2 is incoming

to the TI plane. Due to the anisotropic conductivity (σxx �=
σyy), which is a consequence of the in-plane magnetic field,
the reflected and transmitted waves will be of elliptical
polarization as

Er = E0(rxx x̂ + iryy ŷ)/
√

2,
(13)

Et = E0(txx x̂ + ityy ŷ)/
√

2

in which the components of matrices r̂ and t̂ are defined in
Eq. (12). It is more convenient to use the circular polarization
bases given by ε̂± = (x̂ ± iŷ)/2 indicating the right- and left-
handed circular polarizations, respectively [38]. The general
elliptically polarized wave is thus described with E = E+ε̂+ +
E−ε̂−.

The eccentricity and the rotation angle of the po-
larization ellipse are given by eP = 2/(

√|E+/E−| +√|E−/E+|) and αP = (ϕ+ − ϕ−)/2 in which ϕ± = arg E± =
arctan(ImE±/ReE±). Then by invoking Eq. (13), the eccen-
tricity and rotation angle of the reflected electromagnetic wave
are

er
P = 2√∣∣ rxx−ryy

rxx+ryy

∣∣ +
√∣∣ rxx+ryy

rxx−ryy

∣∣ , (14)

αr
P = 1

2
arg

(
rxx + ryy

rxx − ryy

)
, (15)
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and the transmitted part obeys the corresponding relation with
rαα replaced by tαα . It is clear that the anisotropy in the
optical conductivity leads to the difference in the reflection
and transmission components (rαα and tαα). In general, we
have elliptically polarized scattered waves with a nonvanishing
eccentricity. We should remind that the eccentricity is a
measure of ellipticity, varying from 0 for circular polarizations
to 1 corresponding to the linearly polarized waves.

Using the matrices r̂ and t̂, we obtain the intensities of
reflected and transmitted waves as

Ir

E2
0

= 1

2

∑
α

|σ̃αα|2
(2 + Reσ̃αα)2 + (Imσ̃αα)2

,

(16)
It

E2
0

= 1

2

∑
α

4

(2 + Reσ̃αα)2 + (Imσ̃αα)2
.

As a result, the absorbed wave intensity is given by

Iabs

E2
0

=
∑

α

2Reσ̃αα

(2 + Reσ̃αα)2 + (Imσ̃αα)2
, (17)

which is always positive due to the fact that Reσαα > 0.
This itself originates from the second law of thermodynamics
revealing power dissipation instead of the power generation.

III. NUMERICAL RESULT AND DISCUSSION

In this section, main results of our study are presented.
First, the results of calculations for the optical conductivity
of the ultrathin film of the TI in the presence of the in-plane
magnetic field are shown as functions of the frequency ω and
also the magnetic energy scale εB . In order to see the optical
activity of the TI, we assume a circular electromagnetic wave
applied perpendicularly to the sample’s plane. The properties
of the reflected and transmitted parts are uncovered by studying
their polarizations and in particular the degree of the ellipticity
and the rotation angle of the polarization ellipse. Finally,
the absorption at different values of the magnetic fields is
discussed. In numerical calculation we set � = 1 meV.

A. Optical conductivity

As we discussed in the previous section, the low-energy
band structure of the system consists of four different bands
which is gapped in the case that εB < �0 while the gap
vanishes in the case that εB � �0. We consider the undoped
system at zero temperature so that there are only four different
types of transitions between those bands. The first and second
types of transition occur between the bands 4 to 1 and 3 to 2,
respectively, which have the largest and smallest gaps. The two
other transitions are between 3 to 1 and 4 to 2 having similar
energy differences. Since at zero temperature and undoped
situation, the two bands 3 and 4 are filled and the others are
completely empty, the two remaining transitions are forbidden.

Figure 2 shows the imaginary and real parts of the optical
conductivity component σxx (scaled by 4π/c) of the ultrathin
film of the TI in the presence of the in-plane magnetic field in
the x direction. In the gapped phase, the real part of the σxx is
almost zero (apart from a small peak, according to transition
from band 3 to band 2) for frequencies below 2�0, but for
higher frequencies the dissipation channel corresponding to
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FIG. 2. (Color online) Imaginary (a),(b) and real (c),(d) parts of
the optical conductivity component σxx , scaled by 4π/c as a function
of the energy when εB < �0 (a),(c) and εB > �0 (b),(d). In (a),(c) the
real part of the σxx is almost zero for frequencies below 2�0, and the
imaginary part shows a peak at ω = 2�0 and the position of peaks
and steplike configuration do not change due to the εB . However,
the peak position does move to higher energy by increasing ε in the
case (b),(d) and Reσxx shows a small peak at very low frequencies ω

according to the transition between 2 and 3 band which was negligible
for εB < �0.

the transitions from 3 to 1 and from 4 to 2 takes the role. On
the same ground, the imaginary part shows a significant peak at
ω = 2�0 where the most profound photon-induced scattering
of electrons between the mentioned bands is occurring. The
value of the peak position for both imaginary and real parts
of the longitudinal coefficient are equal as they are related by
the Kramers-Kroning relations and in addition, the position
of peaks and steplike configuration does not change due to
the εB where εB < �0. However, the main peak position does
move to higher energies by increasing εB in the case that εB >

�0. Therefore, the position of peaks or steplike configuration
of the dynamical conductivity can be controlled by the in-
plane magnetic field. Our results in Figs. 2(a) and 2(c) indicate
that although other transitions are not prohibited according to
Eq. (9), they have a negligible contribution to this component
of optical conductivity. When we pass through the transition
point εB > �0 and the gapless phase is reached, the behavior
of the conductivity changes as shown in Figs. 2(b) and 2(d).
Here Reσxx shows peaks at low frequencies ω corresponding
to the transition between 2 and 3 bands which were negligible
for εB < �0. Another more profound jump appears due to
the previously mentioned transitions from 3 to 1 and from 4
to 2 where the energy differences are not 2�0 anymore and
increases as 2εB by the variation of B. The imaginary part
Imσxx , subsequently, shows a strong peak at ω ∼ 2εB .

When one explores the conductivity component σyy the
selection rules change and importantly, there is no transition
from 3 to 1 and 4 to 2. This can be understood by using
the simplified Hamiltonian and the current operator given by
Eq. (10). Two other transitions at zero doping occur at two
different frequencies. Figure 3 shows the behavior of σyy
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FIG. 3. (Color online) Imaginary (a),(b) and real (c),(d) parts
of the optical conductivity component σxx , scaled by 4π/c as a
function of the energy when εB < 2�0 (a),(c) and εB > 2�0 (b),(d).
Notice that two peaks (jumps) are always present in Imσxx (Reσxx)
corresponding to the smallest and largest energy differences as
2(�0 + εB ) and 2|�0 − εB |. The real part of the conductivity starts
from a finite value and it decreases with the magnetic field.

(scaled by 4π/c), based on the full model, at two different
regimes of εB < �0 and εB > �0 as a function of ω. First
for εB < �0 [panels (a) and (c)] two peaks (jumps) are
always present in Imσxx (Reσxx) corresponding to the smallest
and largest energy differences: 2(�0 + εB) and 2|�0 − εB |.
Therefore, by increasing the magnetic field the two peaks
(jumps) go away from each other and at the transition point
εB = �0 the first peak reaches zero frequency. On the other
hand, when εB > �0 despite the gap closure, there are peaks
at low frequencies corresponding to the transition between the
nearest bands 2 and 3 at k = 0 in which they are separated. In
addition, as indicated in Fig. 3(b) the behavior of the imaginary
part of the conductivity is different and it can be positive in
contrast to the gapped phase.

In order to conclude these results we also plot the conduc-
tivities σxx and σyy as a function of εB for different values
of ω in Fig. 4. First of all, we see that the real part of the
conductivities σxx and σyy starts from zero corresponding to
the dissipationless gapped regime. Moreover, at very large
magnetic fields in which εB � �0 and irrespective of the
frequency, the conductivities tend to a constant finite value.
The dissipative component Reσxx is much larger in the gapless
phase (εB > �0) in comparison with the gapped one (εB <

�0), a behavior which is shown in Fig. 4(c). The variation
of imaginary and real parts of σyy with a magnetic field are
shown in Figs. 4(b) and 4(d). Both parts reveal two peaks
where one of them occurs at εB < �0 and the other at larger
magnetic fields εB > �0. In addition, although the real part of
σyy usually takes higher values for the gapless case εB > �0

similar to σxx , Imσyy changes sign close to the transition point
showing almost antisymmetric form around εB = �0.

As a final remark at this part we note that the variations
and also anisotropy in the conductivity tensor take place in
the vicinity of transition points where both the magnetic field
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FIG. 4. (Color online) Imaginary and real parts of the optical
conductivity, scaled by 4π/c, of the thin-film topological insulator as
a function of magnetic field energy εB .

energy εB and the overlap �0 are finite. When either εB or
�0 becomes much smaller than the other, the conductivities
reach some limiting values which are the same for σxx and σyy .
In particular the real parts of both components vanish at very
small fields εB � �0 and the imaginary parts reach zero for
small overlaps �0 � εB . These are clear signatures of the fact
that for vanishing εB or �0 in fact the time-reversal symmetry
is not broken since either there is no magnetic field or it has no
physical effect and can be omitted by a gauge transformation.

B. Optical activity of ultrathin films of the TI

In the following, we would like to investigate the effect
of the magnetic field on the optical activity of the ultrathin
films when a circularly polarized light hits the film in a
normal direction. This is revealed by the phase shift αP and
eccentricity eP of the reflected and transmitted electromagnetic
waves. Figure 5 shows the behavior of the parameters eP

and αP defined in Eqs. (14) and (15) for the reflected and
transmitted components, respectively. As we apply a circularly
polarized electromagnetic wave to the plane of the TI thin
film, due to the anisotropy in the conductivity, the reflected
and transmitted waves will not be circular anymore but they
are elliptic in general. The eccentricity eP which varies from
0 to 1 is a measure of the stretching of the polarization ellipse
and the two limiting values correspond to a circular and linear
polarization, respectively. The angle αp shows the amount of
the ellipse axis rotation with respect to the x direction.

As indicated in Fig. 5 the reflected light is strongly elliptic
in a wide range of magnetic fields around the transition point
εB = �0 and the eccentricity reaches values even equal to 1,
corresponding to linear polarization. In addition, in the region
of almost linear polarization, the rotation takes place which
becomes more profound for higher frequencies. Far away from
the transition region εB ∼ �0 the polarization becomes almost
circular and almost untwisted since the conductivity tensor
becomes isotropic and the time reversal is not broken.
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FIG. 5. (Color online) Eccentricity (a),(c) and phase shift (b),(d)
of the reflected electromagnetic wave as a function of the magnetic
field potential εB . The legends in (b)–(d) are the same as in (a).

Similar to the reflected wave, the transmitted part becomes
elliptic around εB ∼ �0 but its eccentricity shows few peaks
which depend on the frequency incident wave. Nevertheless,
the ellipticity of the transmitted light is limited and et

P reaches
values of the order of ∼0.1. The ellipse rotation angles α

r,t
P for

the reflected and transmitted electromagnetic waves behave
almost similarly with constant values at very small and large
magnetic fields as seen in Figs. 5(b) and 5(d). Nevertheless,
around the transition point εB ∼ �0 the ellipses are strongly
rotated with a wide range of angles. All these features and the
dependence on the frequency can be seen in Fig. 5 where the
eccentricity and the rotation angle are plotted as a function of
the magnetic energy εB .

Up to now we only discussed the optical activity of the
thin film with respect to its effect on the polarization of the
transmitted and reflected lights. Using Eq. (17) the intensity
of absorbed light of the thin film can be obtained and the
results are shown in Fig. 6. The ultrathin film of TI is
almost transparent and does not absorb the electromagnetic
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2 0

ε
Β
(eV)

FIG. 6. (Color online) The relative intensity of absorbed light
with respect to the incident electromagnetic wave as a function of
magnetic field strength for different frequencies ω.

waves with frequencies less than the band gap. Nevertheless
by increasing the magnetic field which leads to the phase
transition and entrance to the gapless phase an absorption up
to a few percent is possible. Moreover, deep inside the gapless
phase for very large magnetic fields (εB � �0) the absorption
becomes independent of the incident light frequency. We also
note that Iabs reveals a two peak structure which originates from
the similar behavior of σyy as shown in Figs. 4(b) and 4(d).

We conclude our discussion by commenting on the effect
of the finite Fermi energy on the results we have presented
so far. In fact, the main difference in the presence of a finite
doping (EF �= 0) comes from the changes of the lower-lying
energy bands in the vicinity of the Fermi level and subsequent
variation in the optical transitions from those bands. As far
as EF is very smaller to one of the other energy scales �0

and εB , the lower energy bands, the selection rules, and the
transition matrix elements Jαβ will not be influenced. Even
in the case of the comparable Fermi energy with �0 or εB

one only expects some shifts in the place of transition peaks
in the conductivities versus the frequency of electromagnetic
waves. Therefore the qualitative behavior and in particular the
anisotropy in the conductivities as well as the presence of peaks
and cusps in the frequency dependence remain almost similar
to the undoped case. On the other hand, when EF becomes
large in comparison with the hybridization energy, then the
Fermi level becomes closer or lies within the higher bands and
therefore the selection rules and the behavior of conductivities
can be different from the undoped case. Particulary, for highly
doped thin film in which the Fermi energy is much larger than
the hybridization and magnetic cyclotron energies, we expect
the disappearance of the anisotropy in the conductivities.
Therefore, to observe the effects presented in this paper, it
is crucial to have the Fermi energy not being much larger than
both of the energy scales �0 and εB , a regime which is reliable
in the current experimental situations.

IV. CONCLUSIONS

In conclusion, we have investigated the optical responses
of an ultrathin topological insulator film in the presence of
an in-plane magnetic field B. In the absence of overlap �

between the surface states of two sides of ultrathin film, such
magnetic field can be simply gauged out and its presence will
have no physical implications. However, the interplay of the
overlap and in-plane magnetic field leads to the physical effect
of time-reversal symmetry breaking. Then, the magnetic field
results in the strong anisotropy of the optical conductivity,
especially when the magnetic energy scale and the overlap
are of the same order. At this vicinity, by increasing the
magnetic field, the gap of the system closes and a quantum
phase transition takes place which also affects the behavior
of the optical responses. For instance, in the gapped phase
the imaginary part of conductivities dominate while in gapless
phase, the dissipative real parts of σxx and σyy is much larger.

Our numerical results lead to the strong optical activity of
the thin-film TI controllable by the magnetic field strength
and the thickness of the film. Assuming a normally inci-
dent circularly polarized light, the reflected and transmitted
electromagnetic waves are elliptic, in general. In particular,
the reflected light can reach high ellipticity and even linear
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polarization at the vicinity of the phase transition εB ∼ �0.
Therefore, the thin film can act as a polaroid for the reflected
light. We should mention that since we are dealing with
normally incident electromagnetic waves such result must not

be mixed with a well-known effect described as Brewster’s
law. Finally, it is shown that the thin film absorbs the light in
the presence of the in-plane magnetic field which can reach up
to a few percentage points of the incident intensity.
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