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Spin pumping from a ferromagnet into a hopping insulator: Role of resonant absorption of magnons
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Motivated by recent experiments on spin pumping from a ferromagnet into organic materials in which the
charge transport is due to hopping, we study theoretically the generation and propagation of spin current in a
hopping insulator. Unlike metals, the spin polarization at the boundary with ferromagnet is created as a result of
magnon absorption within pairs of localized states and it spreads following the current-currying resistor network
(although the charge current is absent). We consider a classic resonant mechanism of the ac absorption in insulators
and adapt it to the absorption of magnons. A strong enhancement of pumping efficiency is predicted when the
Zeeman splitting of the localized states in external magnetic field is equal to the frequency of ferromagnetic
resonance. Under this condition the absorption of a magnon takes place within individual sites.
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I. INTRODUCTION

The phenomenon of spin pumping from a ferromagnet
(F) into a normal (N) layer is one of the most prominent
approaches to the generation of pure spin currents. A prime
manifestation that pumping indeed takes place in realistic F-N
structures is the additional broadening [1] of the ferromagnetic
resonance (FMR) in F, caused by contact with the N layer.
This additional broadening was first observed experimentally
in Ref. [2]. Another, more delicate, manifestation of pumping
was reported shortly after. Namely, the injected spin current,
entering the nonmagnetic material with spin-orbit coupling
(like Pt) causes a voltage drop across the current direction.
This voltage drop is due to the inverse spin-Hall effect [3]
(ISHE), and has a maximum when the frequency of the
microwave radiation driving the ferromagnet, ω, is equal to
the FMR frequency, ωFMR. Pioneering observations of pumping
via ISHE in Refs. [4–6] utilized Pt as the normal layer [7–9].
They were followed by reports on similar observations of
pumping into different materials [10–13], including prominent
semiconductors GaAs [14], Si [15,16], Ge [17], and, most
recently, graphene [18]. Experimental results on the electric
field generated due to ISHE, E ISHE, are analyzed using the
relation E ISHE ∝ J (s) × σ , where J (s) determines the spatial
direction of the spin current flow and its magnitude, while σ is
its polarization. The magnitude of the spin current is given by

J (s) = g↑↓C

[
m(t) × dm(t)

dt

]
z

, (1)

where the z axis is taken along the static part of the magnetiza-
tion. In Eq. (1) the constant C characterizes the properties of
the normal layer (like ratio of thickness to the spin-diffusion
length) as well as the properties metal-ferromagnet interface,
while m(t) describes the magnetization dynamics in the ferro-
magnet. The expression for J (s) has the same form as the damp-
ing term in the equation that governs m(t). It was a remarkable
experimental finding [5] that ISHE voltage exhibits essentially
the same behavior as a function of microwave power and the
deviation of ω from ωFMR as the additional FMR damping.

Microscopic physics of pumping is encoded in the mixing
constant [1,19,20] g↑↓ in Eq. (1). A fundamental process
underlying the pumping is the inelastic electron-magnon
scattering at the F-N interface. Microscopic treatment of this

scattering [21,22] assumes that electrons of the normal layer
impinging on the interface with ferromagnet are plane waves.
On the other hand, in a number of recent papers [23–26]
spin pumping into organic materials sandwiched between
ferromagnet and Pt has been reported. Strong temperature
dependence of the resistance in these materials [27] suggests
that the charge transport is due to hopping of polarons [24,26],
so that the description of pumping based on plane waves does
not apply. This raises the question about the microscopics of
spin pumping in the localized regime.

In the present paper we consider theoretically the spin
pumping into a hopping insulator using the minimal model
of coupling of localized states to a ferromagnet. Within this
minimal model the ferromagnet is treated as a wide-gap
insulator. We demonstrate that, unlike metals, the underlying
process responsible for pumping is the resonant magnon
absorption accompanied by transitions between localized
states (see Fig. 1). A distinctive feature of pumping into
an insulator is that that the pumping efficiency, commonly
described by a constant, g↑↓, depends strongly on the external
dc magnetic field. This is because, in addition to causing the
spin precession in a ferromagnet, this field modifies the spin
structure of the localized states between which the magnon
is absorbed (see Fig. 1). The effect of external field is most
pronounced when the waiting time for a hop is longer than
the period of the ac field which drives the FMR. Since the
resonance frequency, ωFMR, depends on the orientation of the
external field [28], for certain orientations [29] this frequency
coincides with the Zeeman splitting of the localized states
(Fig. 2). Spin pumping is most efficient for such orientations,
since the absorption of magnon takes place within individual
sites. We also show that, with no charge current, the spin
polarization generated at the F-N boundary, spreads in the
insulator along the same percolation network [30,31] that
determines the electrical resistance.

II. ABSORPTION OF MAGNONS AT F-N BOUNDARY

A. General considerations

Figure 2 illustrates the difference between pumping into a
metal, and into an insulator in an applied magnetic field, H .
While H is responsible for the magnetization precession in the
ferromagnet, it also causes a spin splitting, �z, of the spectrum
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FIG. 1. (Color online) Elementary processes underlying the spin
pumping into a metal (a), and into an insulator (b). In the metal, an
↑ electron, impinging on the N-F boundary, is primarily reflected
elastically with amplitude r↑ (vertical separation of left and right
arrows is a guide to the eye). Spin precession in F gives rise to
inelastic reflection with amplitude r̃↑↓ associated with the emission
of a magnon. A ↓ electron is either reflected elastically with amplitude
r↓, or inelastically, after absorbing of a magnon, with amplitude r̃↓↑.
The injected spin current is proportional to |r̃↑↓|2ω ∂f

∂ε
. In the insulator,

only inelastic processes are at work. Emission and absorption of
magnons take place within pairs of localized states.

in the metallic normal layer [Fig. 2(a)]. This splitting, however,
does not affect the absorption of magnons. The reason is that
the absorption at a boundary does not require momentum
conservation, i.e., the matrix element is constant, and thus
there is no dependence of the spin current, I (s), on the dc field
in the normal layer.

The situation is different for an insulator, where the magnon
absorption takes place between the discrete levels [Fig. 2(b)].

FIG. 2. (Color online) Illustration of pumping in metal (a) and in
insulator (b) in the presence of a Zeeman splitting, �z. In metal, the
absorption (emission) of a magnon, �ω, near the F-N boundary does
not conserve momentum, and thus is insensitive to the ratio �z/�ω.
By contrast, in an insulator, and near the condition �ω = �z, the
absorption (emission) of a magnon is resonant.

In this case, and for a general orientation of H , the Zeeman
levels are the linear combinations of ↑ and ↓ spin states. As
a result, transitions from each of the initial states on site i to
both final states on site j are allowed. This fact distinguishes
absorption of magnons from the conventional absorption of an
ac electric field [32–34], and as we will see below, gives rise to
H dependence of the spin current. Another origin of H depen-
dence is the possibility of intrasite absorption of magnons at
the boundary. We will see that the intrasite transitions dominate
the absorption near the resonant condition �ω = �z. Away
from this condition, the intersite transitions dominate.

B. The model

Consider a pair of localized states, i and j [Fig. 2(b)].
Assume for simplicity that the ferromagnet is an insulator, i.e.,
it is a barrier for electrons in N. Precession, m(t), of magne-
tization in a ferromagnet can be modeled as a time-dependent
correction ∝m(t)σ̂ to the barrier potential. The pumping takes
place since the wave function, �i , can penetrate under the
barrier. As a result, the Hamiltonian of site i has a correction

δĤi = J [σ̂xmx sin ωt + σ̂ymy cos ωt], (2)

where J accounts for tunneling. Projections mx(t) and my(t)
are proportional to the magnitude of the microwave field
and depend in a resonant way on the proximity of ω to ωFMR.
Analytical expressions for these projections can be found,
e.g., in Ref. [9].

The Hamiltonian δĤi of Eq. (2) causes transitions of
electrons between sites i and j . Absorption of energy in the
course of these transitions is quite similar to the absorption of
the ac electric field by pairs of the localized states. However,
the transitions caused by δĤi are accompanied by spin flips,
both from ↑ to ↓, and from ↓ to ↑. With regard to absorption
of energy, one should add up the contributions of both types
of transitions, i.e.,

I (e) = I↓→↑ + I↑→↓. (3)

However, the spin current results from the fact that these
contributions are not equal to each other, so that

I (s) = I↓→↑ − I↑→↓. (4)

Thus, for calculation of the spin current into hopping insulator,
one can use the standard “resonant” phononless absorption
theory [32] and substitute the corresponding rates into Eq. (4).

C. Resonant absorption at H = 0

We first neglect the Zeeman splitting in the normal layer.
In this case resonant transitions happen within pairs of
localized states [Fig. 1(b)]. The correction δĤi causes such
transitions between sites i and j because the corresponding
wave functions |i〉 and |j 〉 have a finite overlap integral, tij
[33]. Due to this overlap, the eigenfunctions of the pair get
modified as

|i〉 =
√

	 + δε

2	
|i〉 +

√
	 − δε

2	
|j 〉,

(5)

|j〉 = −
√

	 − δε

2	
|i〉 +

√
	 + δε

2	
|j 〉,
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for δε = εj − εi > 0. The corresponding energies are

ε̃i,j = εi + εj

2
∓ 	

2
, 	 = [

δε2 + 4t2
ij

]1/2
. (6)

Since both modified eigenfunctions contain |i〉, the matrix
element of δĤi between them is finite, and the golden-rule
expression for the spin-flip part of the i → j transition rate for
εj > εi reads

I
(s)
i→j = −mxmyJ

2F(ε̃i ,ε̃j ,ω), (7)

where the function F is defined as

F(ε̃i ,ε̃j ,ω) = 2t2
ij

(ε̃j − ε̃i)2

1
τ

[f (ε̃i) − f (ε̃j )]

(ε̃j − ε̃i − �ω)2 + (
�

τ

)2

= 2t2
ij

	2

1
τ

[f (ε̃i) − f (ε̃j )]

(	 − �ω)2 + (
�

τ

)2 . (8)

Here we have introduced the phonon broadening of the levels,
τ−1.

It is easy to see that the transition rate to states with εj < εi

is given by Eq. (7) with function F from Eq. (8), but with
f (ε̃i) ↔ f (ε̃j ), and thus the rate has the same sign as Eq. (7).
Physically, this can be seen from the following argument:
Consider the simple case of mx = my . The Hamiltonian of
Eq. (2) implies that for a given site at the interface, spins ↑ are
transferred to states of higher energy (and there is a backflow
of spins ↑ converted from ↓ from those states), while spins ↓
are pushed to states with lower energy (and there is a backflow
of spins ↓ converted from ↑). Since the occupation of the state
at the interface is larger than of those at higher energy, there is
a negative ↓ → ↑ conversion rate because of transitions up the
energy. This is exactly what Eq. (7) suggests. Further, since the
occupation of the state at the interface is lower than of those
at lower energy, there is a positive ↑ → ↓ conversion rate,
or again, a negative ↓ → ↑ one. Hence a simple permutation
f (ε̃i) ↔ f (ε̃j ) suffices to describe transitions to states with
εj < εi .

The product mxmy in Eq. (7) is specific for spin pumping
[see Eq. (1)]. The expression for the net absorption rate
contains 1

2 (m2
x + m2

y) instead. Another difference from the
conventional resonance absorption [31,32] is the structure of
the matrix element in Eq. (7). This, however, modifies the
result of averaging over the sites, j , only by a numerical
factor. A crucial observation in the averaging procedure [32]
is that the relevant sites, j , are located within a narrow
spherical layer with a radius rω which is found from the
condition 2|tij (rω)| = �ω. Assuming the exponential decay
of the overlap integral with distance, |tij (r)| = t0 exp(−rij /a),
we have

rω = a ln
2t0

�ω
. (9)

The result of averaging and summing over sites far away from
the boundary reads

I (s)(ω) = 2π2mxmyJ
2
(
gωar2

ω

)∂f

∂ε
, (10)

where g is the density of states. The transition rate of Eq. (10)
should be interpreted as the spin current generated per a
localized state coupled to the ferromagnet.
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FIG. 3. (Color online) (a) The geometry of FMR; for a fixed
dimensionless frequency, ω̃ = ωFMR/4πMs , the dimensionless mag-
nitude, H̃ = H/4πMs , and orientation, θH , of dc magnetic field are
related via Eq. (17). This dependencies are shown for the values of
ω̃/γ : (b) 0.5, (c) 1.2, and (d) 2. Red dots indicate the values of H ,
for which the condition γH = ωFMR is satisfied.

D. Resonant absorption at finite H

To generalize Eq. (7) to a finite magnetic field in the normal
layer, one must take into account the modification of the spin
eigenstates, as well as the Zeeman splitting in energies of the
latter. The spin structure of the spin-split levels depends on the
orientation of H as follows:

|χH+〉 = cos

(
θH − θM

2

)
|χM+〉 + i sin

(
θH − θM

2

)
|χM−〉,

(11)

|χH−〉 = cos

(
θH − θM

2

)
|χM−〉 + i sin

(
θH − θM

2

)
|χM+〉.

(12)

Here the quantization axes for |χM±〉 and |χH±〉 spinors are
chosen along the static part of the magnetization, and the
external magnetic field, respectively [see Fig. 3(a)]. The states
|χM±〉 at sites i and j are split by �z.

All four transitions between states with |χM±〉 spin wave
functions [Fig. 2(b)] are allowed for a general orientation of
the magnetic field. For spin-conserving transitions (+ → +
and − → −), the frequency dependence of I (s) remains ωr2

ω,
i.e., the same as in Eq. (10). Orientation of H enters into
the prefactor: The product mxmy should be replaced with
1
4 sin2(θH − θM )m2

x for both transitions.
While the spin-conserving transitions do affect the spin cur-

rent density distribution in the sample, they are nonresonant,
and it is the spin flipping ones (+ ↔ −) that are responsible for
the spin current generation at the interface. In other words, no
spin current is possible in a stationary state without the latter
processes. Therefore, in what follows we concentrate on the
frequency and magnetic field dependence of the corresponding
rates.

As far as + → − and − → + transitions are concerned,
only the + → − with absorption of a magnon, and − → +
with emission of a magnon become important in the vicinity
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of the resonance �ω = �z. The other two transitions are
nonresonant, and therefore disregarded here. For the + ↔ −
transitions, the prefactor ω in the spin current remains intact,
since it comes from the difference in the populations of
levels involved. However, despite the upper and lower Zeeman
levels being separated in energy, the overlap of the spatial
wave functions is determined by εi,εj in zero magnetic field.
Thus, the + → − transitions take place between pairs with
(εj − εi) ∼ |�ω − �z|. These pairs have the “shoulder”

r�ω−�z
= a ln

2t0

|�ω − �z| . (13)

Logarithmic divergence of Eq. (13), which is cut off at
|�ω − �z| ∼ �/τ , ensures the resonant character of spin-
flipping transitions that we took into account.

In addition to the replacement of rω by rω−�z
in the spin

current, the prefactor mxmy should be modified as mxmy →
G(mx,my), where the function G is defined as

G(mx,my) = 1
4 [mx + my cos(θH − θM )]2, (14)

so that the absorption, and thus the FMR damping, do not have
the usual form ∝mxmy .

The most spectacular manifestation of the resonance
�ω = �z is that the intrasite transitions become possible, as
illustrated in Fig. 2(b). For these transitions the overlap of the
spatial parts of the on-site wave functions is equal to 1, and the
magnetic-field dependence of absorption is a pure Lorentzian.
Orientation-dependent prefactor, which is the matrix element
of δH̃i between the spinors |χH+〉 and |χH−〉 is the same as
in Eq. (14). Summarizing, we present the expression for spin
current close to the resonance �ω = �z in the form

I (s)(ω) = 2G(mx,my)J 2ω
∂f

∂ε

[ �

τ

(�z − �ω)2 + (
�

τ

)2

+π2ga3 ln2 2t0

|�ω − �z|
]
, (15)

where the first term comes from intrasite and the second term
from intersite transitions. Directly at the resonance, the first
term dominates. This is ensured by the condition ga3

�/τ 
 1.
Since the combination 1/ga3 is the minimal energy spacing
between two sites in the insulator located within ∼a from each
other, the above condition implies that this spacing is much big-
ger than the phonon broadening of individual levels, which is
the definition of the Anderson insulator. As the deviation from
the resonance increases, the behavior of I (s)(ω) is dominated
by the second term. Neglecting the logarithm, the crossover
takes place at |�z − �ω|τ/� � (τ/�ga3)

1/2 � 1. The behav-
ior of spin current near the resonance is shown in Fig. 4(b),
where the logarithm was cut off at |�ω − �z| = t0/15.

III. RESONANT ORIENTATIONS OF EXTERNAL FIELD

Equation (15) is our main result. To make a connection to
the experimental papers Refs. [23–26], below we calculate the
magnitude and orientation of the dc field where the anomalous
behavior of ISHE voltage takes place. Such behavior takes
place when two conditions are met: the Zeeman splitting of
the localized states is equal to �ω, and ω = ωFMR.

FIG. 4. (Color online) (a) The resonant condition γH = ωFMR

is satisfied along the solid lines on the ( H

4πMs
) − θH plane. The

cutoff values of θH are cos−1( 1√
3
) ≈ 55◦ and π − cos−1( 1√

3
).

(b) The behavior of the spin current calculated from Eq. (15) for
ga3

�/τ = 4 × 10−3 and t0τ/� = 15.

We specify the orientation of H and magnetization, M,
using the notations common in the literature (see e.g.,
Refs. [9,15,24], and Fig. 3). We will also introduce dimen-
sionless variables H̃ , M̃ , and ω̃, which stand for H , M ,
and ωFMR in the units of 4πMs , where Ms is the saturation
magnetization. Then the angle θM , corresponding to the
equilibrium orientation of M, is found from the condition
that M is parallel to the effective magnetic field, with the
demagnetizing term taken into account [9],

2H̃ sin(θH − θM ) + sin 2θM = 0, (16)

while the expression for the resonant frequency, ω̃, reads [28]
(

ω̃

γ

)2

= [H̃ cos(θH − θM ) − cos 2θM ]

× [H̃ cos(θH − θM ) − cos2 θM ]. (17)

From these two equations we exclude θM and plot the
dimensionless field H̃ versus θH , for a given FMR frequency
ω̃. Examples of these curves are shown in Fig. 3. Resonant
orientation is obtained by crossing a curve H̃ (θH ) by the
line ω̃ = γ H̃ . Two intersections determine the orientations
for which ωFMR is equal to the Zeeman splitting of the localized
states. Upon changing ωFMR, we get two lines of resonances
[Fig. 4(a)]. They occupy two domains: 0 < θH < cos−1 1√

3

and (π − cos−1 1√
3
) < θH < π . At the boundaries of the

domains H̃ goes to infinity. Then it follows from Eqs. (16)
and (17) that at these boundaries sin(θM − θH ) = 0, and
θH satisfies the equation cos(2θH ) + cos2 θH = 0, yielding
θH = cos−1( 1√

3
) ≈ 55◦.

In Refs. [23,24] on pumping into organics the microwave
frequency driving the resonance was 9.45 GHz, while the
values of 4πMs were very different, namely, 4πMs = 0.175 T
in Ref. [23] and 4πMs = 0.805 T in Ref. [24]. Then from
Fig. 4(a) we find that the resonant angle θH should be close to
45◦ for Ref. [23] and 23◦ for Ref. [24].

IV. SPIN-RESISTOR NETWORK

After the spin polarization is generated at the boundary,
it should spread into the bulk of the insulator to avoid the
backflow [35]. In a metal, where P is a continuous function of
coordinates, this spreading is by spin diffusion accompanied by
the Larmor precession. In a hopping insulator P takes discrete
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FIG. 5. (Color online) “Spin-resistor” network. Polarizations P i

and P j on the sites i,j determine the spin current between these
sites. The coefficients, Rij , are proportional to the electric hopping
resistances.

values, P i , which are the polarizations on the sites, i. The
Larmor precession is accounted for by the on-site Zeeman
splitting, �z, of the levels (see Fig. 2). The frequencies of
electron hops between two sites, i and j , depend strongly on
their energies, εi,εj , and their spatial separation, rij . Then
the issue of spreading of the spin polarization reduces to the
question: What is the spin current I (s)

i→j between the sites with
polarizations P i and Pj , provided that, on average, there is no
charge current between these sites?

If bias were applied between the two sites, then the average
charge current, proportional to this bias, could be found by as-
cribing an effective resistance, Rij , to the pair of sites [30,31].
It is easy to see that the same Rij determines the proportionality
coefficient between I (s)

i→j and P i − Pj , namely,

I (s)
i→j = 2

P i − Pj

Rij
∂f

∂ε

. (18)

In Eq. (18) we have assumed that the difference (εi − εj ) is
much smaller than the temperature, so that ∂f

∂ε
is the same

for both sites. Equation (18) follows from the fact that the
on-site chemical potentials of the local majority and minority
electrons are shifted by ∓|P i |/ ∂f

∂ε
, respectively. The spinors

that correspond to these local spin eigenstates are defined by
the directions of P i ,P j . Importantly, the fact that the chemical
potential splitting is symmetric around the chemical potential
of the unpolarized system ensures the absence of the charge
current, i.e., the net current flow i → j is compensated by the
net current flow j → i. With different spin polarizations of the

sites, the compensation of the charge flows leads to the imbal-
ance of the spin flows, and thus to Eq. (18). Note that Eq. (18)
remains valid in external magnetic field, which enters only
via the magnitudes of polarizations. Overall, Eq. (18) suggests
that polarization built up at the F-N boundary spreads along
the current-carrying resistor network, as illustrated in Fig. 5.

V. CONCLUDING REMARKS

(i) Our result Eq. (15) applies when the phonon-induced
broadening of the levels is smaller than ω. In the opposite case,
ωτ 
 1, the mechanism of absorption is the Pollak-Geballe
relaxation mechanism, Ref. [36]; no sharp dependence of
pumping near the resonance is expected in this regime. Unlike
pumping into metals, the pumping rate Eq. (15) is not simply
proportional to m × dm

dt
. The prefactor in Eq. (14) depends on

the relative orientation of m and the external magnetic field, H .
(ii) Suppose that we are at resonance �ω = �z. The

microwave field acts both by driving the FMR but also directly,
by causing transitions between the Zeeman levels. If the
amplitude of the field in frequency units (Rabi frequency)
exceeds the inverse spin relaxation time, these transitions will
be saturated in the bulk. Then the pumping becomes inefficient.

(iii) In conventional theory of hopping transport the applied
voltage drops not on all the resistors constituting the network,
but on the highest, critical, resistors representing the “hardest”
hops [31]. The spin relaxation rate will be dominated by
hyperfine or spin-orbit environment [37,38] of this hop.

(iv) We did not consider the effects of electron-electron
interaction, and did not describe in detail how finite resistance
of the spin-current network, Secc. IV, affects the measured
value of the spin current. In brief, Coulomb correlations
enhance the absorption of magnons by increasing the number
of singly occupied pairs [33], while the measured spin current
is given by Eq. (15) only in the limit of vanishingly small
bulk resistance. These considerations are, however, completely
standard, and do not change the qualitative picture of spin
current generation by resonant magnon absorption in hopping
insulators, developed in this paper.
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