
PHYSICAL REVIEW B 92, 045404 (2015)

Effective properties of superstructured hyperbolic metamaterials: How to beat the diffraction limit
at large focal distance
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Superstructured hyperbolic metamaterials (HMs) have been recently introduced to realize media with effective
index −1 with the ultimate goal of designing flat lenses of super-resolution power for optical imaging applications.
In this work, we analyze the impact on their effective optical properties of defect metallic layers periodically
added in HMs. The effective index and losses are systematically calculated in both homogenization and diffractive
regimes and with respect to the ratio of dielectric and metallic layers. Although the superstructuring can
dramatically decrease the effective losses, we demonstrate that the extent of the hyperbolic dispersion curve in
k space plays an even more fundamental role for breaking the diffraction limit. Optimized superstructured HMs
working in a regime between the homogenization and diffractive regimes are shown to present simultaneously low
effective losses and a high optical resolution for visible light. These superstructured HMs present an effective index
of −5 and extend the subwavelength focalization distance up to 2λ, which is twice as large as for regular HMs.
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I. INTRODUCTION

Hyperbolic metamaterials (HMs) are artificial anisotropic
materials characterized by effective permittivity or permeabil-
ity tensors presenting positive and negative principal com-
ponents [1]. This property allows expansion of the classical
electromagnetic materials’ frontiers and opens attractive routes
for the design of novel photonic systems [2,3]. Hyperbolic
metamaterials have, for example, been shown to reduce the
Purcell factor [4–6], to enhance the optical absorption [7–10],
or to break the thermodynamic radiation limits [11,12]. These
effects are essentially related to the particular dispersion
relation of photons, which is characterized by a hyperboloid
shape in the wave vector space. As a consequence, the
whole spectrum of evanescent waves emitted by a given
source is converted into propagating waves inside HMs. This
canalization mechanism, associated with a negative refraction
phenomenon, leads to the concept of flat lenses that can
break the diffraction limit [13–17]. Several results demonstrate
the efficiency of this canalization regime in the microwave
regime where metallic losses are weak [18–20]. This ability
of flat lenses made of metal-dielectric multilayers to form
super-resolved images has been theoretically studied, and a
lens equation has been established to determine the focal
distance [21,22]. A superstructuring of the multilayer has also
been proposed for realizing HMs of −1 effective index [23].
These superstructured HMs made of Ag-TiO2 layers have been
experimentally studied for ultraviolet light, and an all-angle
negative refraction has been demonstrated [24]. However,
according to the authors, super-resolution was not reached
because of the optical losses due to the metallic absorption.
In this framework, it could seem surprising to define an
effective index for HMs, since they are intrinsically anisotropic
materials. This contradiction was lifted in [21], where the
calculation of this optical effective index was done by a direct
derivation from the curvature of the hyperbolic dispersion.
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This approach leads to an analytical expression of the effective
optical index in terms of the effective permittivity tensor
components in the long-wavelength limit. In the diffractive
regime, this effective index is retrieved by the numerical
calculation of the curvature of the dispersion curve in k space.
Guided by this theory, HMs of −5 effective index have been
shown to produce subwavelength images for visible light
when the focal distance is smaller than the wavelength. The
superstructuring of hyperbolic metamaterials has also led to
the concept of hypercrystals, which makes a link between the
metamaterial and photonic-crystal approaches [25]. Hyper-
crystals are characterized by a scale of the superstructuring
very large compared to that of hyperbolic metamaterials.
In this regime, hypercrystals sustain surface states of long
propagation distances that may have an important impact on
super-resolution.

The aim of this work is to study the effective properties of
superstructured HMs that consist of a set of metallic defect
layers introduced at a scale close to that of the HM period.
Particular attention is paid to the evaluation of the optical
resolution of flat lenses based on superstructured HMs that
present an effective index of −1 as in the experiment of Xu
et al. [24]. We found that the superstructuring lowers the
effective losses, which favors the focalization of subwave-
length images. This result is, however, tempered by a detailed
analysis of the hyperbolic dispersion. We demonstrate that the
spatial extension of the dispersion curve in k space plays a
crucial role for beating the diffraction limit. By studying the
maximal optical resolution, which derives from a cutoff for the
transverse wave vector, we demonstrate that superstructured
HMs working in the diffractive regime as in the experiment
of Xu et al. [24] cannot surpass Abbe’s limit. We show
nevertheless that metallic defects actually enhance the optical
properties of HMs between the homogenization and diffractive
regimes. This systematic study of superstructured HMs leads
to the design of a flat lens able to focus subwavelength images
in the visible spectrum of light and for large focal distances
up to 2λ.
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The present article begins with essential definitions for cal-
culating the complex effective index, and the homogenization
and diffractive regimes are defined. Section III analyzes the
impact of the metallic defects on the effective properties in the
homogenization regime. Section IV extends this study to
the diffractive regime, where resonant behaviors are found for
the effective index and the associated effective losses with
respect to the wavelength and the size of the defect layers. In
Sec. V, we demonstrate that the spatial extension of the hyper-
bolic dispersion in k space is a crucial parameter to consider
for obtaining a high optical resolution. In Sec. VI, we consider
a regime between the homogenization and diffractive regimes
which allows us to find a compromise design that supports
moderate effective losses and a high optical resolution. These
superstructured HMs are shown to beat the diffraction limit
for focal distances up to two wavelengths.

II. OPTICAL EFFECTIVE PARAMETERS FOR
HYPERBOLIC METAMATERIALS

Hyperbolic metamaterials consist of a periodic set of
stacked metal (M) and dielectric (D) layers with respective
thicknesses and permittivities (hm,ε̄m) and (hd,ε̄d ). The lattice
period of the multilayer is defined by D = hm + hd and the
filling factors in metal and dielectric are respectively fm =
hm/d and fd = hd/d. We consider silver and TiO2 layers as
in [24]. The permittivities considered here are both complex
since the optical absorption cannot be neglected at optical
frequencies [26]. Metals present a permittivity with a negative
real part, whereas dielectrics have a permittivity with a positive
real part. For p-polarized light and in the long-wavelength
limit (λ � D) the (MD) multilayer is equivalent to an
anisotropic medium whose effective permittivity principal
elements are [14,27]

ε̄x = ε̄mfm + ε̄dfd, ε̄y =
(

fm

ε̄m

+ fd

ε̄d

)−1

. (1)

With an appropriate choice of the metal filling factor, opposite
signs for the real parts of the effective components can be
obtained, εx > 0 and εy < 0, so that the (MD) multilayer
presents a hyperbolic dispersion relationship:

k2
x/ε̄y + k̄2

y/ε̄x = (ω/c)2. (2)

Note that the homogenization procedure that allows this
effective dispersion relation to be derived is based on two
assumptions: the quasistatic limit (λ � D) and small trans-
verse wave vectors (kx � k0) [27]. This latter condition has
been proved to be crucial in several studies [28–31]. We have
recently demonstrated that an effective complex index can
be extracted from the previous dispersion relation [21]. This
refractive index is related to the curvature of the isofrequency
curves (IFCs) and can be introduced by approximating the
photonic dispersion by the following parabolic expression:

k̄y(kx) = k̄y(0) − γ̄ k2
x/2k0, (3)

where the complex curvature γ̄ = −k0(∂2k̄y/∂kx
2)|

kx=0. The
effective index is introduced by identifying the curvature
of a HM with that of a homogeneous medium. With this
definition the complex effective index n̄ = n + iκ is linked
to the complex curvature by

n = 1/Re(γ̄ ) (4)

and

κ = |Im(γ̄ )/Re(γ̄ )|. (5)

The calculation of the complex effective index allows
a systematic optimization of hyperbolic metamaterials. In
particular, the effective losses are determined with the figure
of merit (FOM) defined by F = |n/κ| that helps in the
design of efficient flat lenses [21]. Here, we want to specify
the validity domain of the homogenized regime. Figure 1
represents the dispersion diagram for an (MD) multilayer and
three isofrequency curves (IFCs) calculated with the exact
dispersion relation given in [27]. We found a good agreement

FIG. 1. (Color online) (a) Dispersion diagram for an (MD) multilayer computed at λ = 350 nm and for hm/hd = 1. The solid and dashed
curves are respectively the first and second Bloch bands. (b) Isofrequency curves calculated from three reduced frequencies D/λ. The dashed
blue curve is obtained from the homogenized dispersion relation given by Eq. (2).
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FIG. 2. (Color online) Superstructured hyperbolic metamaterial
characterized by a supercell (MdDMDMd ).

with the ICF calculated with the analytical expression of
Eq. (2) [dotted line on Fig. 2(b)] for reduced frequencies D/λ

smaller than 0.05 (and for kx < 2k0). In practice it amounts
to realizing thin metal and dielectric layers of thicknesses
about 10 nm at λ = 340 nm. For higher reduced frequencies
the exact IFCs cannot be reproduced by the homogenization
approach even for lattice periods D as small as 0.16λ. On
the contrary, a very great variation of the curvature of the
IFCs is observed as the reduced frequency approaches the
top of the first band around D/λ = 0.2. This results led us to
distinguish three main regimes: the homogenization regime for
D/λ < 0.05 where the effective permittivities given in Eq. (1)
are valid; the diffractive regime for D/λ > 0.14 where the
lattice period drastically modifies the dispersion of light; and a
regime in between for 0.05 < D/λ < 0.14 with an anisotropy
similar to that observed for the homogenization regime but
with effective properties that cannot be derived from the
analytical formulas of Eq. (1). The next section is devoted to the
study of the effective properties of superstructured hyperbolic
metamaterials operating in the homogenization regime.

III. STUDY OF THE COMPLEX EFFECTIVE INDEX IN
THE HOMOGENIZATION REGIME

In this section, we first demonstrate that the hyperbolic
feature of the metal-dielectric multilayer is conserved in the
homogenization regime when an additional metallic defect
layer is periodically introduced. Second, we show that the
effective index can be tuned by varying the thickness of
the defect layer denoted (Md ). For that purpose, we con-
sider the superstructured hyperbolic metamaterial depicted on
Fig. 2. The supercell is described by the following sequence:
(MdDMDMd ) where the defect layer (Md ) is composed of
the same metal (Ag) of permittivity ε̄m but has a different
thickness h. To study the impact of this metallic defect, we

choose h = hm(1 + τ )/2 where τ = (2h − hm)/hm represents
the variation of the (Md ) thickness from that of the regular
layer (M). The superperiod of the multilayer is given by 	 =
2D + τhm. To demonstrate that the hyperbolic characteristic
of the metamaterial is preserved, the effective permittivities
(ε̄s

x,ε̄
s
y) for the superstructured HM are expressed in terms of

those of the (MD) structure:

ε̄s
x = (ε̄x + ρε̄m)/(1 + ρ),

(6)
1/ε̄s

y = (1/ε̄y + ρ/ε̄m)/(1 + ρ),

where ρ = τfm/2. For example, the modification of the
effective properties induced by the defect (Md ) is plotted on
Fig. 3 for fm = fd and at λ = 350 nm. When the thickness of
(Md ) increases, i.e., when ρ > 0 (and τ > 0), the real part of
εs
x decreases while that of εs

y increases. As a consequence,
the superstructured HM conserves its original hyperbolic
properties since the signs of the principal values of the
effective permittivity tensor remain unchanged. Moreover, a
large variation of the defect layer thickness is required to
noticeably modify the effective permittivities. These variations
however have a significant impact for beam shaping operations
even in the homogenization regime. This effect is caught by
the complex effective index calculated with Eqs. (4) and (5)
where the complex curvature for the superstructured HM is
given by

γ̄ s =
√

ε̄s
x

ε̄s
y

. (7)

A global picture of the impact of the (Md ) layer on the
effective index and the figure of merit F = |n/κ| is shown
in Fig. 4 where these parameters are plotted as functions of
the wavelength, the metal-dielectric ratio, and for three values
of τ . The effective index is mostly affected by (Md ) for low
metal-dielectric ratio hm/hd or for wavelengths higher than
360 nm. For hm/hd ranging between 0.5 and 1, the effective
index increases when a supplementary fraction of metal is
added in the HM. The maximal FOM remains constant at about
3 and shifts to a lower metal-dielectric ratio as τ increases
with a constant wavelength centered around 390 nm. Finally,
in the long-wavelength regime, the modification brought by
the introduction of the defect metallic layer is real, but weak.
Actually, the optimal operating regime in terms of maximal
FOM F always corresponds to the same effective index of
about −5 whatever the thickness of the defect layer. We also
remark that effective indices around −1.5 arise for F smaller
than 1, indicating that these conditions are not suitable for
realizing an efficient lens. Since in this homogenization regime
the FOM is not enhanced by the additional defect layers, we
conclude that the optical resolution of a flat lens based on
superstructured HMs is not improved compared to the simplest
(MD) multilayers. Let us now analyze the impact of such
metallic defects in the diffractive regime.

IV. STUDY OF THE COMPLEX EFFECTIVE INDEX IN
THE DIFFRACTIVE REGIME

In the diffractive regime the photonic dispersion strongly
depends on the interaction of photons with the periodic
lattice. This leads to a dramatic modification of the effective
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FIG. 3. (Color online) (a) and (b) represent respectively the real and imaginary parts of the effective permittivities ε̄x and ε̄y calculated with
Eq. (6) as functions of the thickness of the defect layer. Dotted lines show the effective permittivities for the (MD) structure.

properties of HMs when the reduced frequency is set at about
D/λ = 0.16 [21]. In this section, we present the method for
computing the complex curvature and the related complex
effective index for superstructured HMs. Then we analyze the
modification ofF when the thickness of the defect layer varies.

Since the effective permittivities cannot be derived in
this resonant regime, the complex wave vector k̄y has to be
numerically calculated from the complex band diagram. For
that purpose, the transfer matrix T̄ of the supercell depicted
in Fig. 2 is computed and the Bloch wave vector is then

FIG. 4. (Color online) Maps of the effective index and FOM, for three values of τ , with respect to the metal-dielectric ratio (hm/hd ) and
the wavelength. These results are obtained in the homogenization regime by applying Eqs. (4) and (5) with Eq. (7).
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FIG. 5. (Color online) (a),(b) Isofrequency curves computed for λ = 358 nm, hm/hd = 1.1, and τ = 0. (a) and (b) are respectively obtained
without and with material absorption. The dotted blue circle represents the air IFC. Solid and dashed arrows represent the wave vector and the
group velocity. In (c) and (d) are plotted the imaginary part of Ky without and with material absorption, respectively.

obtained by applying k̄y = arccos[tr(T̄ )] where tr(T̄ ) desig-
nates the trace of the matrix T̄ . The numerical computation
of the isofrequency curves allows calculation of the complex
curvature and the complex effective index by applying the
definitions of Eqs. (4) and (5).

To understand the effect of the band folding introduced by
the superstructuring, the isofrequency curves are plotted in the
first Brillouin zone (−π/2D,π/2D) of the superstructured
(MdDMDMd ) sequence which presents a double lattice
period � = 2D. Figures 5(a) and 5(b) are respectively
obtained without any optical losses and when the material
absorption is taken into account. Moreover, we choose τ = 0
in order to compare this band diagram to that of the (MD)
sequence. In the first Brillouin zone of the superstructured
HM, these ICFs almost match the air IFC (dotted blue
circle) indicating that the effective index is close to −1. We
also observe that the ICFs present a limited extension for
transverse wave vectors kx in the approximate range [−k0,k0].
Beyond this domain the IFCs flatten and correspond to

nonpropagative Bloch modes since the imaginary part of Ky

grows rapidly [Figs. 5(c) and 5(d)]. As the reduced frequency
approaches the upper limit of the first dispersion band (Fig. 1),
the extent of the IFCs diminishes and the curvature decreases.
Since for τ = 0 the (MdDMDMd ) and (MD) sequences are
equivalent, we also represent the IFCs in the first Brillouin
zone (−π/D,π/D) of the (MD) multilayer [Figs. 5(a)
and 5(b)]. Applying Eq. (4) to these IFCs leads again to a −1
effective index. This analysis leads to the conclusion that in
order to apply correctly the definition of the curvature index
given in Eqs. (4) and (5), the complex curvature γ̄ has to be
computed in the second Brillouin zone of the superstructured
lattice. This principle, well known for photonic crystals,
allows any confusion about the optical mechanisms at
work to be avoided. This band folding effect has also been
evidenced in [32] where the role of the Bloch mode of the
second Brillouin zone for the superstructured HM have been
highlighted. In the unfolded band structure, it appears that
no left-handed properties can be associated with these HMs
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FIG. 6. (Color online) Maps of the effective index and FOM for three values of τ and as a function of the metal-dielectric ratio (hm/hd )
and the wavelength. These results are obtained for the reduced frequency D/λ = 0.16 in the diffractive regime.

since the product of the wave vector (solid arrow) and the
group velocity (dashed arrow) is always positive: k · vg > 0.

Using this approach, we are now able to study the
modification of the effective index induced by the defect layer
Md in the diffractive regime for D/λ = 0.16. The effective
index and the FOM computed from Eqs. (4) and (5) are
plotted as functions of the wavelength, the ratio hm/hd , and
for three values of τ (Fig. 6). Since in the diffractive regime the
dispersion relations are very dependent on the lattice period,
small variations of the (Md ) layer strongly modify the effective
properties of the hyperbolic metamaterial. This behavior is
observed for the isoindex curves calculated for τ = ±0.5
that present complex shapes and rapid variations with both
the wavelength and the metal-dielectric ratio. Even more
importantly, the smooth variations of the FOM for the (MD)
sequence (for τ = 0) are replaced by sharper maps when the
(Md ) layer is introduced. The FOM quadruples for some pairs
of the metal-dielectric ratio and wavelength and attains large
values of 12 for a negative effective index around −1.6. These
results seem to be encouraging for achieving optimized flat
lenses with superstructured HMs since a large FOM ensures a
good transmission of evanescent waves through the multilayer.
However, as demonstrated in the next section a large FOM
is not sufficient to realize flat lenses making super-resolved
images.

V. OPTICAL RESOLUTION OF FLAT LENSES BASED ON
SUPERSTRUCTURED HYPERBOLIC METAMATERIALS

In the previous section we demonstrated that metallic
defects enhance the transmission of waves of large wave vector
throughout superstructured HMs when they operate in the
diffractive regime. In this section, we add another parameter
linked to the amount of waves that can be focalized by a lens
and enable the diffraction limit to be surpassed. As shown by
the following expression of the transmitted electromagnetic
field through a HM, the transmission coefficient contains all
the information about the optical efficiency of the lens [33,34]:

U (x,y) =
∫ ∞

−∞
A(kx)T (kx)t0(kx,y)eikxxdkx. (8)

In this Fourier integral, t0(kx,y) = eiy
√

k2
0−k2

x is the
transfer function in the air medium and A(kx) =
W0/(2

√
π ) exp[−(kxW/2)2] is the spectrum of the incident

Gaussian beam in k space. Because of the optical absorption,
the transfer function of the multilayer has been proven to be
well approximated by T (kx) = eik̄y (kx )L since its spectrum is
free of sharp resonances [21]. Here L is the total thickness
of the lens and k̄y represents the complex Bloch wave vector
extracted from the dispersion relation of the infinite structure.
Using the parabolic expansion of Eq. (3), the transmission
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FIG. 7. (Color online) Maximal optical resolution in units of λ for three values of τ as a function of the metal-dielectric ratio (hm/hd )
and the wavelength. The dashed curves are the −1 isoindex curves. These results are obtained for the reduced frequency D/λ = 0.16 in the
diffractive regime.

coefficient is expressed in terms of the effective index n and
of the FOM (F):

T (kx) = eik̄y (0)Le−k2
x/2k0L/|n|Fe−i(k2

x/2k0)(L/n). (9)

The attenuation of the waves with high-k wave vector inside
the lens is then driven by the FOM, which has to be as high
as possible to provide a full reconstruction of the object in the
image plane. However, a large FOM is not the sole condition
for getting super-resolution. The Fourier transform of Eq. (10)
is relevant under the assumption that the integral holds for very
large transverse wave vector kx . But, as seen on Fig. 5, in the
diffractive regime, the IFCs present a finite-size extension in
k space, which leads us to introduce a cutoff for the transverse
wave vector named kcut

x . Beyond this cut wave vector, no modes
are allowed to propagate within the structure. One can estimate
the maximal resolution, when a large FOM is assumed, by
replacing the transmission coefficient by a top-hat function
Tp(kx) = 1 for |kx | < kcut

x and null otherwise. By substituting
the transmission coefficient with Tp(kx) in Eq. (9) and for an
image focalized close to the output interface, we obtain the
following Fourier transform:

U (x,L) =
∫ kcut

x

−kcut
x

eikxxdkx, (10)

which yields U (x,L) = 2kcut
x sinc(kcut

x x). The full width at
half maximum of the intensity profile U 2(x,L) gives the
maximal resolution 
 = π/kcut

x . To estimate the maximal
resolution attainable for a flat lens made of HMs operating
in the diffractive regime at D/λ = 0.16, we calculate 
 as
a function of the wavelength and the filling ratio in metal;
see Fig. 7. Since the effective index also varies with the
thickness of the defect layer, the −1 isoindex curve is potted
as a reference. For the (MD) multilayer, i.e., when τ = 0,
the maximal resolution cannot surpass 0.4/λ along this −1
isoindex curve. When the defect layer is added, for τ = 0.5,
the isoindex curve is redshifted, and the optical resolution of
the flat lens is severely degraded. This behavior is amplified
for larger metallic defect thicknesses. Very similar results are
obtained for the flat lens studied in the experimental work
of Xu and co-authors which correspond to τ = 1. In that

case, the maximal resolution is close to λ/2 for λ = 363 nm
and a metal-dielectric ratio hm/hd = 1.14. This demonstrates
that, whatever the enhancement of the FOM provided by the
metallic defect, the limiting parameter is clearly the maximal
transverse wave vector kcut

x . For the structure explored in [23],
similar IFCs to those of Fig. 5(a) are obtained, with a shape
that matches the air IFC. In that situation kcut

x = 2π/λ and thus
the optical resolution 
 = λ/2 cannot surpass the diffraction
limit. The same conclusion applies for a thinner defect layer;
when τ = −0.5, both the −1 isoindex curve and the diffraction
limit are blueshifted. Finally, in the diffractive regime, it is very
difficult to find an operating point that presents simultaneously
a large FOM and maximal optical resolution.

VI. DESIGN OF FLAT LENSES MADE OF
SUPERSTRUCTURED HYPERBOLIC METAMATERIALS

In the previous section, we have shown that HMs scaled
to work in the diffractive regime do not provide the required
optical conditions to design a flat lens able to surpass the
diffraction limit. The problem originates from the small
transverse wave vectors attainable which limit the transmission
of subwavelength optical information through the lens. In
contrast, HM designs in the long-wavelength regime offer large
IFCs that increase the optical resolution, but the metallic defect
cannot enhance the FOM. In this section, we consider a regime
between the homogenization and diffractive regimes in order
to find an optimized structure that presents simultaneously a
large FOM and a large cutoff wave vector. We consider the
reduced frequency D/λ = 0.11 and explore the properties of
three lenses presenting the same effective index but different
FOMs and maximal resolutions 
.

We start with an (MD) multilayer (τ = 0) characterized by
a maximal FOM F = 4 for a blue radiation of 400 nm and for
a metallic ratio hm/hd = 1.4. This lens (LA), operating at the
working point A on Figs. 8(a) and 8(b), presents an effective
index of −5 and a maximal resolution 
 = 0.12λ. We now
introduce an (Md ) layer of thickness h = 2hm (i.e., for τ = 1)
into the HM. The −5 isoindex curve now presents a complex
shape and a narrow region appears where the FOM attains
very high values (typically larger than 20). We consider two
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FIG. 8. (Color online) (a) and (b) Figure of merit (FOM) and resolution 
 for τ = 1 and D/λ = 0.11. (c) and (d) Figure of merit and
resolution for τ = 1 and D/λ = 0.11. The dashed curves are the −5 isoindex curves.

working points B and C for a superstructured HM character-
ized by the same −5 effective index but having different FOMs
and maximal resolutions, Figs. 8(c) and 8(d). The lens (LB)
works at point B for a low FOM F = 2.4 but a high resolution

 = 0.1λ achieved at λ = 430 nm and for hm/hd = 0.65.
The lens (LC) operates at point C corresponding to a high
FOM F = 28 and a maximal optical resolution close to

 = 0.2λ at λ = 375 nm and for hm/hd = 0.45.

To compare the optical efficiency of these three lenses, we
simulate the propagation of a Gaussian beam of subwavelength
waist (equal to λ/100) which is focalized at the input interface.
The simulations are done with free software based on an exact
modal method [35]. We also recall that, for a source located at
the input interface of the lens, the position of the image satisfies
the lens equation f = −L/n, where n represents the effective
index defined by Eq. (4) [22]. Here, the total thickness L of the
lens is varied to determine the optical resolution as a function
of the focal distance f . The full width at half maximum of the
focalized beam is then recorded at f (Fig. 9). The lens (LA)
is seen to focalize with a subwavelength resolution until the
focal distance reaches 0.8λ, a result in agreement with [21].
The lens (LB) shows worse optical performance with an
optical resolution larger than Abbe’s limit for a focal distance
upper than λ/2. This result highlights the fact that, despite

the high maximal resolution of λ/10, the low FOM of 2.4
hinders the high-k waves from propagating efficiently through

FIG. 9. (Color online) Optical resolution with respect to the focal
distance expressed in units of wavelength for the three flat lenses. The
dashed curve corresponds to lens (LA) based on an (MD) sequence.
The solid and dotted curves correspond respectively to lenses (LC)
and (LB ) based on a superstructured HMs.
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the lens, which severely degrades the optical resolution. The
lens (LC) demonstrates the best optical performances since
subwavelength resolution occurs for a focal distance as large
as f = 1.9λ. Moreover, the high FOM F = 28 of lens LC

enables an image to be focused in the vicinity of the outgoing
edge of the lens (for f = 0.2λ) with an optical resolution of
0.24λ very close to the maximal optical resolution 
 = 0.2λ.
This again highlights the positive impact of a high FOM in
getting an optimal resolution.

VII. CONCLUSION

We have demonstrated that superstructured HMs that
integrate periodic metallic defects have a modified effective
permittivity tensor. These variations are quantified through
the calculation of an effective index and the associated
figure of merit. For HMs that are designed to work in the
homogenization regime, this superstructuring is shown to have
a modest impact on the optical properties. In contrast, in
the diffractive regime, the effective losses are very greatly
decreased by the additional metallic defect layers for appro-
priate choices of the metal-dielectric ratio and wavelength.
Additionally, the superstructuring provides an efficient way to
realize HMs of −1 effective optical indices operating in the

visible spectrum of light. However, the reduced extension of
the dispersion curve in k space is demonstrated to definitely
prevent subwavelength focusing. In the diffractive regime, a
cutoff hinders propagation of waves with a very high transverse
wave vector, so that they are not channeled through the
HM. This explains the experimental results obtained in [24],
where the super-resolution is totally absent. In order to reach
super-resolution, HMs must be optimized both in terms of
absorption losses (i.e., they must reach a high figure of
merit) and in terms of the transverse-wave vector cutoff.
Finally, we have demonstrated that large FOMs associated with
high optical resolution are obtained with optimized structures
designed to work in an intermediate regime between the
homogenization and diffractive regimes. Based on that finding,
electromagnetic simulations show that these superstructured
HMs provide super-resolved visible images (at 375 nm) and for
large focal distances up to 2λ. These tools provide the method
for producing optimized HMs and open several questions as
to why such enhanced optical properties emerge.
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