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Band-gap opening in graphene: A reverse-engineering approach
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Graphene has extremely high mobility with unique linear band dispersions at the Fermi level, referred to
as the Dirac cones, but the absence of the energy gap limits its application for switching devices. To open an
energy gap, theoretical studies so far have introduced certain perturbations to graphene in the real or momentum
space and checked whether they open a gap at the Dirac point. Here, as a reverse approach, we directly enforce
energy splittings at the Dirac point with perturbations in the minimal Hilbert space at the Dirac point and then
characterize the perturbations in the real space to obtain perturbed band structures throughout the Brillouin zone.
Our approach provides refined descriptions of the sublattice symmetry breaking and the intervalley scattering,
distinguishing clearly the sublattice symmetry breaking without intervalley scattering, the sublattice mixing
without intervalley scattering, the intervalley scattering within each sublattice, and the intersublattice intervalley
scattering. For fully gapped cases, the effective mass is obtained as a function of the energy gap. Our present
method can be applied to band-gap engineering of graphene-like hexagonal layered materials, in general.

DOI: 10.1103/PhysRevB.92.045402 PACS number(s): 73.22.Pr, 73.61.Wp, 71.20.−b

I. INTRODUCTION

Graphene is a two-dimensional monolayer of carbon atoms
forming a honeycomb lattice [1–4], and it has drawn enormous
attention from scientists and engineers due to its peculiar
properties [5–9]. The basic characteristics of graphene were
explored by Wallace during his research on the tight-binding
description of graphite in 1947 [10]. Graphene possesses
semimetallic properties with a massless dispersion and a
vanishing density of states at the Fermi point [11]. The
absence of an energy gap in graphene limits its application
for electronic switching devices, so the issue of opening and
tuning the band gap in graphene has attracted great interest.
Many methods have been studied for band-gap engineering
such as dopings [12,13], substrate effects [14–18], patternings
[19–22], hydrogenations [23], adatoms [24], etc. Widely
studied origins of the band-gap opening are the sublattice
symmetry breaking [25] and the interaction between the two
Dirac cones, namely, the intervalley scattering [26–28].

The sublattice symmetry breaking was studied by Se-
menoff [6], who considered the graphite system a diatomic
system and separated the conduction and valence bands
by applying an energy difference on each sublattice. This
suggests the sublattice symmetry is the origin of Dirac
point in graphene [11,25]. Breaking the sublattice symmetry
has been studied by introducing a substrate such as boron
nitride (BN) [29,30]. While graphene on top of a lattice-
matched hexagonal BN has an energy gap of about 50 meV
(Refs. [29,30]) resulting from different potentials on the two
sublattices of graphene, the moiré structures considering the
lattice mismatch of graphene and BN have energy gaps of a
few meV (Ref. [30]).

Effects of the intervalley scattering have been investigated
with graphene-like two-dimensional structures. Chamon [31],
Hou et al. [32], and Lee et al. [33] discussed that the Kekulé
distortion couples the Dirac cones at K and K ′ and thus results
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in a band-gap opening. Mañes et al. [34,35] demonstrated that
long-wavelength perturbations could hybridize the two Dirac
points and discussed that some perturbations could open an
energy gap, while others could merely shift the positions of
the Dirac points in the momentum space.

Theoretical studies so far have introduced certain perturba-
tions to graphene in the real or momentum space and checked
whether they split the degeneracy at the Dirac point and open an
energy gap throughout the Brillouin zone (BZ). In our present
work, as a reverse approach, we directly split the degeneracy
at the Dirac point with perturbations in the minimal Hilbert
space at the Dirac point, then characterize the perturbations in
the real space, and obtain perturbed band structures throughout
the BZ to check any band-gap opening. If an energy gap opens
throughout the BZ or a quadratic band dispersion occurs, we
obtain the effective mass as a function of the energy gap or
the perturbation strength. Our theoretical study is based on
a simple tight-binding method [36] for the band structures
of graphene, and we choose a

√
3 × √

3R30◦ supercell of
graphene [37], which contains six carbon atoms, to consider
both the sublattice symmetry breaking and the intervalley
scattering. With this supercell, the Dirac cones at the K and
K ′ points of the BZ of the unit cell are folded to the � point
of the BZ of the supercell, forming fourfold degeneracy at the
� point [32,34,35,38].

Our present approach can provide refined descriptions
of the sublattice symmetry breaking and the intervalley
scattering, distinguishing clearly (a) the sublattice symmetry
breaking without intervalley scattering, (b) the sublattice
mixing without intervalley scattering, (c) the intervalley
scattering within each sublattice, and (d) the intersublattice
intervalley scattering. We study these four perturbations and,
additionally, the coexistence of perturbations (b) and (c). This
paper consists of four sections. In Sec. II, we describe our
tight-binding method for pristine and perturbed graphene and
the step-by-step procedure of transforming perturbations in the
minimal Hilbert space at the Dirac points to the real space and
obtaining perturbed band structures. In Sec. III, we consider
effects of five different perturbations one by one. In Sec. IV,
we summarize the results.
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II. THEORETICAL FRAMEWORK

It is well known that the low-energy electronic structure
near the Fermi energy in graphene is mainly from the π bond
of the carbon 2pz orbitals normal to the carbon plane, while
carbon 2s, 2px , and 2py orbitals form planar sp2 hybridized
orbitals making the strong σ bonds of the carbon honeycomb
lattice. In our present work, we are interested in the low-energy
electronic structure in graphene, so we can approximately
describe the electronic structure of graphene with a single-band
tight-binding method considering only one 2pz orbital per
carbon atom and the nearest-neighbor interaction [39,40].

To describe the electronic band structure, we introduce
Bloch-like extended states ϕA,�k and ϕB,�k of the wave vector
�k, which are linear combinations of carbon 2pz orbitals at
sublattices A and B, respectively. They are defined as

ϕA,�k = 1√
N

∑
�R

ei�k·(�τA+ �R)ϕ�τA+ �R, (1a)

ϕB,�k = 1√
N

∑
�R

ei�k·(�τB+ �R)ϕ�τB+ �R, (1b)

where �R is the position of a unit cell and �τA and �τB are
positions of carbon atoms at the sublattices A and B inside
a unit cell, respectively. Here, ϕ�τ+ �R is the carbon 2pz orbital
at the position �τ + �R, and N is the number of unit cells in the
layer. Using these extended states, an energy eigenstate ψn,�k
of wave vector �k can be expressed as

ψn,�k = cn,�k,AϕA,�k + cn,�k,BϕB,�k, (2)

where cn,�k,A and cn,�k,B are complex numbers which depend

on the band index n and the wave vector �k. We assume that
two carbon 2pz orbitals are orthogonal to each other when
they are associated with different carbon sites. For a minimal
Hamiltonian Ĥ of unperturbed graphene, we consider only the
on-site energy ε = 〈ϕ�τ+ �R|Ĥ |ϕ�τ+ �R〉 and the nearest-neighbor
interaction t = 〈ϕ�τ+ �R|Ĥ |ϕ�τ+ �R+�d〉, with �d being one of the
three nearest-neighbor positions from a carbon atom. Because
of the C3 rotational symmetry around a carbon atom, t is
independent of the direction of �d. Now we consider the
Hamiltonian matrix represented with respect to ϕA,�k and ϕB,�k .
We need to consider

〈ϕA,�k|Ĥ0|ϕA,�k〉 = 1

N

∑
�R, �R′

ei�k·( �R− �R′)〈ϕ�τA+ �R′
∣∣Ĥ0

∣∣ϕ�τA+ �R
〉 = ε,

(3a)

〈ϕB,�k|Ĥ0|ϕB,�k〉 = 1

N

∑
�R, �R′

ei�k·( �R− �R′)〈ϕ�τB+ �R′
∣∣Ĥ0

∣∣ϕ�τB+ �R
〉 = ε,

(3b)

〈ϕA,�k|Ĥ0|ϕB,�k〉 = 1

N

∑
�R, �R′

ei�k·(�τB+ �R−�τA− �R′)〈ϕ�τA+ �R′
∣∣Ĥ0

∣∣ϕ�τB+ �R
〉

=
3∑

i=1

ei�k· �di
〈
ϕ�τA

∣∣Ĥ0

∣∣ϕ�τA+�di

〉
= (ei�k· �d1 + ei�k· �d2 + ei�k· �d3 )t = α(�k), (3c)

〈ϕB,�k|Ĥ0|ϕA,�k〉 = α∗(�k), (3d)

(b)(a)

(c)
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FIG. 1. (Color online) Atomic and electronic structures of pris-
tine graphene. (a) A

√
3 × √

3R30◦ supercell containing six carbon
atoms. The dotted hexagon shows the supercell boundary. (b) Tight-
binding band structure of the supercell plotted for the full BZ of the
supercell. High-symmetry points are also shown. (c) Tight-binding
band structure along high-symmetry lines of the supercell BZ. (b) and
(c) indicate that Dirac cones are at �. (d) Contour plot of the lowest
conduction band in the supercell BZ from 0 to 3 eV with a contour
interval of 0.3 eV.

where the nearest-neighbor hopping parameter t is approx-
imately −2.7 eV (Ref. [4]) and �di (i = 1,2,3) are relative
positions of the three nearest-neighboring B sites from an
A site, as shown in Fig. 1(a). With these, we can write the
Hamiltonian matrix of pristine graphene for a specific wave
vector �k as [40]

H (0)
uc (�k) =

(
〈ϕA,�k|Ĥ0|ϕA,�k〉 〈ϕA,�k|Ĥ0|ϕB,�k〉
〈ϕB,�k|Ĥ0|ϕA,�k〉 〈ϕB,�k|Ĥ0|ϕB,�k〉

)

=
(

ε α(�k)
α∗(�k) ε

)
. (4)

Then by choosing ε as the reference of the energy, we have the
Hamiltonian equation of unperturbed graphene:

(
0 α(�k)

α∗(�k) 0

)(
cn,�k,A

cn,�k,B

)
= En(�k)

(
cn,�k,A

cn,�k,B

)
, (5)

where En(�k) is the band energy of the wave vector �k of the
nth band and the corresponding energy eigenstate is given by
Eq. (2). It is well known that Eq. (5) has En(�k) = 0 if �k is K

or K ′, which is equal to −K , of the unit-cell BZ. The �k points
for En(�k) = 0 are referred to as the Dirac point.
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If we take the
√

3 × √
3R30◦ supercell of graphene

[Fig. 1(a)], the K and K ′ points of the unit-cell BZ are
folded to the � point of the supercell BZ. Since the supercell
has six carbon atoms, we define six Bloch-like extended
states

ϕ̃j,�k = 1√
Ns

∑
�Rs

ei�k·(�τj + �Rs )ϕ�τj + �Rs
, (6)

where j = A1,A2,A3,B1,B2, and B3 indicate three A-site
carbon atoms and three B-site carbon atoms in the supercell,
respectively, as shown in Fig. 1(a). In Eq. (6), the wave vector �k
is in the first BZ of the supercell, Ns is the number of supercells
in the crystal, which is equal to N/3, �Rs is the position of a
supercell, and �τj is the position of the carbon atom at the

site j inside a supercell, as marked in Fig. 1(a). Using the
unit-cell lattice vectors �a1 and �a2, the carbon atomic positions
are given by �τA1 = 1

3 (�a1 − 2�a2), �τA2 = 1
3 (�a1 + �a2), �τA3 =

1
3 (−2�a1 + �a2), �τB1 = 1

3 (2�a1 − �a2), �τB2 = 1
3 (−�a1 + 2�a2), and

�τB3 = 1
3 (−�a1 − �a2). Using ϕ̃j,�k , a wave function ψ̃n,�k in the

layer can be expressed as

ψ̃n,�k =
∑

j

c̃n,�k,j ϕ̃j,�k, (7)

where c̃n,�k,j are complex numbers. For our
√

3 × √
3R30◦ su-

percell of graphene, the tight-binding Hamiltonian is expressed
as a 6×6 matrix:

H (0)
sc (�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 α1(�k) α2(�k) α3(�k)

0 0 0 α2(�k) α3(�k) α1(�k)

0 0 0 α3(�k) α1(�k) α2(�k)

α∗
1 (�k) α∗

2 (�k) α∗
3 (�k) 0 0 0

α∗
2 (�k) α∗

3 (�k) α∗
1 (�k) 0 0 0

α∗
3 (�k) α∗

1 (�k) α∗
2 (�k) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where the basis states are in the order of ϕ̃A1,�k , ϕ̃A2,�k , ϕ̃A3,�k , ϕ̃B1,�k , ϕ̃B2,�k , and ϕ̃B3,�k and αl(�k) ≡ t · ei�k· �dl for l = 1,2,3. With this
Hamiltonian, we have the eigenvalue equation for unperturbed graphene:

H (0)
sc (�k)

⎛
⎜⎜⎜⎜⎜⎜⎝

c̃n,�k,A1

c̃n,�k,A2

c̃n,�k,A3

c̃n,�k,B1

c̃n,�k,B2

c̃n,�k,B3

⎞
⎟⎟⎟⎟⎟⎟⎠

= Esc
n (�k)

⎛
⎜⎜⎜⎜⎜⎜⎝

c̃n,�k,A1

c̃n,�k,A2

c̃n,�k,A3

c̃n,�k,B1

c̃n,�k,B2

c̃n,�k,B3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9)

where Esc
n (�k) is the nth band energy for the wave vector �k in the supercell BZ and the corresponding wave function is given by

Eq. (7).
Figures 1(b) and 1(c) show the

√
3 × √

3R30◦ supercell band structure of unperturbed graphene obtained from Eq. (9).
Because of the band-folding effect, Esc

n (�k) = 0 occurs at �k = 0 of the supercell BZ, which has one-third the area of the BZ of
the unit cell rotated by 30◦. At the � point of the supercell BZ, where �k = 0, four states are degenerate at zero energy, one state
is located at E = 3t , and one state is at E = −3t . The four degenerate states are the states at the Dirac points at the K and K ′
points of the unit-cell BZ, and the other two states are those at the � point of the unit-cell BZ.

When we have a perturbation which has the periodicity of the supercell, the perturbed Hamiltonian will be generally given by

Hsc(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

DA1 βA1,A2(�k) βA1,A3(�k) αA1,B1(�k) αA1,B2(�k) αA1,B3(�k)

β∗
A1,A2(�k) DA2 βA2,A3(�k) αA2,B1(�k) αA2,B2(�k) αA2,B3(�k)

β∗
A1,A3(�k) β∗

A2,A3(�k) DA3 αA3,B1(�k) αA3,B2(�k) αA3,B3(�k)

α∗
A1,B1(�k) α∗

A2,B1(�k) α∗
A3,B1(�k) DB1 βB1,B2(�k) βB1,B3(�k)

α∗
A1,B2(�k) α∗

A2,B2(�k) α∗
A3,B2(�k) β∗

B1,B2(�k) DB2 βB2,B3(�k)

α∗
A1,B3(�k) α∗

A2,B3(�k) α∗
A3,B3(�k) β∗

B1,B3(�k) β∗
B2,B3(�k) DB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where Dj are diagonal elements, αi,j (�k) are off-diagonal elements between the two sublattices, and βi,j (�k) are off-diagonal
elements within each sublattice. The diagonal elements are independent of �k unless we consider hopping between the fourth-
nearest neighbors. If we consider only on-site energies and hopping energies between the nearest neighbors and between the
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next-nearest neighbors, the Hamiltonian is given by

Hsc(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DA1 tA1,A2f (−�k) tA1,A3f (�k) tA1,B1e
i�k· �d1 tA1,B2e

i�k· �d2 tA1,B3e
i�k· �d3

tA1,A2f (�k) DA2 tA2,A3f (−�k) tA2,B1e
i�k· �d2 tA2,B2e

i�k· �d3 tA2,B3e
i�k· �d1

tA1,A3f (−�k) tA2,A3f (�k) DA3 tA3,B1e
i�k· �d3 tA3,B2e

i�k· �d1 tA3,B3e
i�k· �d2

tA1,B1e
−i�k· �d1 tA2,B1e

−i�k· �d2 tA3,B1e
−i�k· �d3 DB1 tB1,B2f (�k) tB1,B3f (−�k)

tA1,B2e
−i�k· �d2 tA2,B2e

−i�k· �d3 tA3,B2e
−i�k· �d1 tB1,B2f (−�k) DB2 tB2,B3f (�k)

tA1,B3e
−i�k· �d3 tA2,B3e

−i�k· �d1 tA3,B3e
−i�k· �d2 tB1,B3f (�k) tB2,B3f (−�k) DB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where f (�k) = ei�k·�a1 + e−i�k·�a2 + ei�k·(−�a1+�a2) and f (−�k) = f ∗(�k). Here, ti,j is the hopping energy from site i to site j , and we
assumed that hopping energies between the next-nearest neighbors have the C3 symmetry; that is, the next-nearest-neighbor
hopping energy is invariant under 120◦ rotation. Thus, within this model, the Hamiltonian is determined by six on-site energies,
nine hopping energies between the nearest neighbors, and six hopping energies between the next-nearest neighbors. When we
consider the Hamiltonian for �k = 0, which is

Hsc(�k = 0) =

⎛
⎜⎜⎜⎜⎜⎝

DA1 3tA1,A2 3tA1,A3 tA1,B1 tA1,B2 tA1,B3

3tA1,A2 DA2 3tA2,A3 tA2,B1 tA2,B2 tA2,B3

3tA1,A3 3tA2,A3 DA3 tA3,B1 tA3,B2 tA3,B3

tA1,B1 tA2,B1 tA3,B1 DB1 3tB1,B2 3tB1,B3

tA1,B2 tA2,B2 tA3,B2 3tB1,B2 DB2 3tB2,B3

tA1,B3 tA2,B3 tA3,B3 3tB1,B3 3tB2,B3 DB3

⎞
⎟⎟⎟⎟⎟⎠, (12)

each matrix element depends on only one of the on-site or the hopping energies. Thus, if the Hamiltonian for �k = 0 is given, the
Hamiltonian can be generated for any �k within the model, from which the perturbed band structure can be obtained for the full
BZ.

To analyze effects of perturbations on the electronic structure in the
√

3 × √
3R30◦ supercell of graphene, we introduce linear

combinations of ϕ̃j,�k=0 as [32,34,35,38,41]

ξA,K = 1√
3

(ei �K·�τA1 ϕ̃A1,�k=0 + ei �K·�τA2 ϕ̃A2,�k=0 + ei �K·�τA3 ϕ̃A3,�k=0), ξA,K ′ = 1√
3

(ei �K ′ ·�τA1 ϕ̃A1,�k=0 + ei �K ′ ·�τA2 ϕ̃A2,�k=0 + ei �K ′ ·�τA3 ϕ̃A3,�k=0),

ξB,K = 1√
3

(ei �K·�τB1 ϕ̃B1,�k=0 + ei �K·�τB2 ϕ̃B2,�k=0 + ei �K·�τB3 ϕ̃B3,�k=0), ξB,K ′ = 1√
3

(ei �K ′ ·�τB1 ϕ̃B1,�k=0 + ei �K ′ ·�τB2 ϕ̃B2,�k=0 + ei �K ′ ·�τB3 ϕ̃B3,�k=0),

ξA,� = 1√
3

(ϕ̃A1,�k=0 + ϕ̃A2,�k=0 + ϕ̃A3,�k=0), ξB,� = 1√
3

(ϕ̃B1,�k=0 + ϕ̃B2,�k=0 + ϕ̃B3,�k=0). (13)

Using �τA1 = 1
3 (�a1 − 2�a2), �τA2 = 1

3 (�a1 + �a2), �τA3 = 1
3 (−2�a1 + �a2), �τB1 = 1

3 (2�a1 − �a2), �τB2 = 1
3 (−�a1 + 2�a2), �τB3 = 1

3 (−�a1 − �a2),
�K = 1

3 (2�b1 + �b2), and �K ′ = 1
3 (�b1 + 2�b2), where �b1 and �b2 are the reciprocal lattice vectors of the unit cell, we have

ξA,K = 1√
3

(ϕ̃A1,�k=0 + ei 2π
3 ϕ̃A2,�k=0 + e−i 2π

3 ϕ̃A3,�k=0), ξA,K ′ = 1√
3

(e−i 2π
3 ϕ̃A1,�k=0 + ei 2π

3 ϕ̃A2,�k=0 + ϕ̃A3,�k=0),

ξB,K = 1√
3

(ei 2π
3 ϕ̃B1,�k=0 + ϕ̃B2,�k=0 + e−i 2π

3 ϕ̃B3,�k=0), ξB,K ′ = 1√
3

(ϕ̃B1,�k=0 + ei 2π
3 ϕ̃B2,�k=0 + e−i 2π

3 ϕ̃B3,�k=0),

ξA,� = 1√
3

(ϕ̃A1,�k=0 + ϕ̃A2,�k=0 + ϕ̃A3,�k=0), ξB,� = 1√
3

(ϕ̃B1,�k=0 + ϕ̃B2,�k=0 + ϕ̃B3,�k=0). (14)

From these relations, we define a unitary matrix Uij such that
ξj = ∑

i Uij ϕ̃i,�k=0. Using this unitary matrix,

U = 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 e−i 2π
3 0 0 1 0

ei 2π
3 ei 2π

3 0 0 1 0

e−i 2π
3 1 0 0 1 0

0 0 ei 2π
3 1 0 1

0 0 1 ei 2π
3 0 1

0 0 e−i 2π
3 ei 2π

3 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

the Hamiltonian matrix in the ξ basis, H(ξ )
sc , is(

H(ξ )
sc

)
ij

= 〈ξi |Ĥ |ξj 〉 =
∑
m,n

U ∗
mi〈ϕ̃m,�k=0|Ĥ |ϕ̃n,�k=0〉Unj

=
∑
m,n

U ∗
mi(Hsc(�k = 0))mnUnj . (16)

Here, we define H(ξ )
sc only for �k = 0. The inverse transforma-

tion is

[Hsc(�k = 0)]ij =
∑
m,n

Uim

(
H(ξ )

sc

)
mn

U ∗
jn. (17)
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Without perturbation, the Hamiltonian matrix in the ξ basis
is

H(ξ )
sc =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 3t

0 0 0 0 3t 0

⎞
⎟⎟⎟⎟⎟⎠, (18)

where the basis states are in the order of ξA,K , ξA,K ′ , ξB,K ,
ξB,K ′ , ξA,� , and ξB,� . Here, the top left 4×4 block of H(ξ )

sc

for ξA,K , ξA,K ′ , ξB,K , and ξB,K ′ is a null matrix because the
four states span the fourfold degeneracy whose energy is set
to zero. It is necessary to introduce nonzero matrix elements
in this 4×4 block in order to perturb the fourfold degeneracy
at the Fermi energy.

In the next section, for perturbed graphene, we will
introduce nonzero matrix elements in the top left 4×4 block of
H(ξ )

sc of Eq. (18) for ξA,K , ξA,K ′ , ξB,K , and ξB,K ′ . Then we will
transform the 6×6 Hamiltonian H(ξ )

sc of Eq. (18) to Hsc(�k = 0)
of Eq. (12) with respect to the basis of ϕ̃A1,�k=0, ϕ̃A2,�k=0, ϕ̃A3,�k=0,

ϕ̃B1,�k=0, ϕ̃B2,�k=0, and ϕ̃B3,�k=0. From Hsc(�k = 0), we generate

Hsc(�k) for any �k in the whole BZ using Eq. (11), diagonalize
it to obtain the band structure throughout the BZ, and find the
effects on the Dirac cones. In our method, we clearly categorize
perturbations by introducing them in the basis of ξA,K , ξA,K ′ ,
ξB,K , and ξB,K ′ , determine tight-binding parameters for the
perturbations, and find their effects on the electronic structure
in the whole BZ.

In our present work, we consider five different perturba-
tions: (a) the sublattice symmetry breaking without interval-
ley scattering, (b) the sublattice mixing without intervalley
scattering, (c) the intervalley scattering within each sublattice,
(d) the coexistence of the sublattice mixing without intervalley
scattering and the intervalley scattering within each sublattice,
and (e) the intersublattice intervalley scattering. In the next
section, we will describe these perturbations and present their
effects on the electronic structure.

III. RESULTS

A. Sublattice symmetry breaking without
intervalley scattering

In this section, we consider a perturbation which produces
a sublattice symmetry breaking without intervalley scatter-
ing. Since the Dirac cones of graphene originate from the
sublattice symmetry [25], breaking the sublattice symmetry
can open an energy gap at the Dirac point. Such symmetry
breaking has been studied, for example, with graphene on
top of a lattice-matched hexagonal boron nitride [29,30] and
with large superstructures considering the lattice mismatch
of graphene and boron nitride [30]. In the lattice-matched
case, the lowest-energy configuration has boron atoms under
carbon atoms and nitrogen atoms under the centers of
carbon hexagons [29,30], breaking the sublattice symmetry of
graphene.

We generate the sublattice symmetry breaking without
intervalley scattering by differentiating the two sublattices
with different diagonal elements in the ξ -basis Hamiltonian

: On-site energy applied

(c)(a)

(e)

(b)

-10

-5

 0

 5

 10

 E
ne

rg
y 

[e
V

] 

 kx

 ky
K’s Ks

Ms

Γ

 t  0.04t

MΓK

En
er

gy
 [e

V
]

S S
-10

 0

 10

Ks

Ks

Ks

K’s

K’s

K’s

(d)

 0.00

 0.02

 0.04

 0.06

 0.08

 0.10

 0.12

 0.0  0.2  0.4  0.6  0.8  1.0

Ef
fe

ct
iv

e 
M

as
s [

m*
/m

e]

Energy Gap [eV]

Γ-K
Γ-M

S
S

Γ
1 eV

3 eV

FIG. 2. (Color online) Graphene with the sublattice symmetry
breaking without intervalley scattering. (a) Schematic representation
of the perturbed Hamiltonian (21) with � = 1.0 eV. Solid dots
represent nonzero on-site energy (= 2

3 �) at carbon sites, and dotted
lines represent nonzero next-nearest-neighbor hopping matrix ele-
ments (=− 1

9 � = 0.04 t). Solid lines represent the nearest-neighbor-
neighbor hopping matrix elements, t = −2.7 eV. (b) Tight-binding
band structure of perturbed graphene in the full BZ of the supercell.
(c) Tight-binding band structure of perturbed graphene along high-
symmetry lines. (d) Contour plot of the lowest conduction band from
1 to 3 eV with a contour interval of 0.3 eV. (e) The effective mass
of the lowest conduction band at � as a function of the energy gap
(=�). The effective mass in the �-KS direction is the same as that in
the �-MS direction.

matrix at the � point. For simplicity, we introduce a diagonal
perturbation � for only the ξA,K and ξA,K ′ states. Then, our
perturbed Hamiltonian at the � point is

H(ξ )
sc =

⎛
⎜⎜⎜⎜⎜⎝

� 0 0 0 0 0
0 � 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 3t

0 0 0 0 3t 0

⎞
⎟⎟⎟⎟⎟⎠. (19)

Here, the perturbation simply lifts the fourfold degeneracy into
two sets of double degeneracy without making any intersublat-
tice or intervalley interaction. By the unitary transformation,
[Hsc(�k = 0)]ij = ∑

m,n Uim(H(ξ )
sc )mnU

∗
jn, we can obtain the
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ϕ̃-basis Hamiltonian Hsc(�k = 0):

Hsc(�k = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
3� − 1

3� − 1
3� t t t

− 1
3� 2

3� − 1
3� t t t

− 1
3� − 1

3� 2
3� t t t

t t t 0 0 0

t t t 0 0 0

t t t 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

This Hamiltonian matrix shows that the diagonal perturbation � for the ξA,K and ξA,K ′ states corresponds to introducing the
on-site energy value of 2

3� on the A sublattice and the hopping energy of − 1
9� between the next-nearest neighbors of the

A sublattice. Figure 2(a) shows this perturbation schematically in the honeycomb lattice. From the Hamiltonian (20), it is
straightforward to obtain the Hamiltonian for a k point in the BZ:

Hsc(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3� −�

9 f (−�k) −�
9 f (�k) tei�k· �d1 tei�k· �d2 tei�k· �d3

−�
9 f (�k) 2

3� −�
9 f (−�k) tei�k· �d2 tei�k· �d3 tei�k· �d1

−�
9 f (−�k) −�

9 f (�k) 2
3� tei�k· �d3 tei�k· �d1 tei�k· �d2

te−i�k· �d1 te−i�k· �d2 te−i�k· �d3 0 0 0

te−i�k· �d2 te−i�k· �d3 te−i�k· �d1 0 0 0

te−i�k· �d3 te−i�k· �d1 te−i�k· �d2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

from which we obtain the perturbed band structure.
Figures 2(b) and 2(c) show the obtained electronic band structure when � = 1.0 eV. The band gap at the Dirac point is 1.0 eV

simply because � is the perturbation strength which we introduced to shift the band energies of the A-sublattice states at the
Dirac point. With the band-gap opening, we can calculate the effective mass m∗,

m∗ = �
2

(
d2E

dk2

)−1

, (22)

as a function of the perturbation strength �, which is equal to the energy gap. The calculated effective mass of the lowest
conduction band at � increases with the energy gap Eg(=�), as plotted in Fig. 2(e). By analytic calculations, we can derive

m∗ = 6�
2Eg

|�a1|2
(
9t2 − E2

g

) , (23)

which is in good agreement with the numerical results shown in Fig. 2(e).

B. Sublattice mixing without intervalley scattering

As a perturbation other than the sublattice symmetry breaking, we consider, in this section, a perturbation which mixes A and
B sublattices without making any intervalley scattering. The perturbed ξ -based Hamiltonian is

H(ξ )
sc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 �1 0 0 0

0 0 0 �2 0 0

�∗
1 0 0 0 0 0

0 �∗
2 0 0 0 0

0 0 0 0 0 3t

0 0 0 0 3t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

As can be seen from the Hamiltonian matrix, this perturbation represents mixing between different sublattices within each K or
K ′. By the unitary transformation, [Hsc(�k = 0)]ij = ∑

m,n Uim(H(ξ )
sc )mnU

∗
jn, we express the Hamiltonian at � using the ϕ̃ basis:

Hsc(�k = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 λ1 + t λ2 + t λ3 + t

0 0 0 λ2 + t λ3 + t λ1 + t

0 0 0 λ3 + t λ1 + t λ2 + t

λ∗
1 + t λ∗

2 + t λ∗
3 + t 0 0 0

λ∗
2 + t λ∗

3 + t λ∗
1 + t 0 0 0

λ∗
3 + t λ∗

1 + t λ∗
2 + t 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

045402-6



BAND-GAP OPENING IN GRAPHENE: A REVERSE- . . . PHYSICAL REVIEW B 92, 045402 (2015)

(b)(a)

 1.12t  0.75t
-10

-5

 0

 5

 10

 E
ne

rg
y 

[e
V

] 

(c)

 kx

 ky
K’s Ks

Ms

Γ

Ks

Ks

Ks

K’s

K’s

K’s

Ms

Ms

3 eV

Γ 0 eV

FIG. 3. (Color online) Graphene with the sublattice mixing without intervalley scattering. (a) Schematic representation of the perturbed
Hamiltonian (27) with �1 = e−i 2π

3 �2 and �2 = 1 eV. (�1 is complex and �2 is real.) The solid and dotted lines show variation of the
nearest-neighbor hopping matrix elements, which are 1.12t and 0.75t , respectively. (b) Tight-binding band structure of perturbed graphene
in the full BZ of the supercell. (c) Contour plot of the lowest conduction band from 0 to 3 eV with a contour interval of 0.3 eV. The arrows
indicate the directions in which the Dirac cones are shifted.

where the elements in the nearest-neighbor hopping energies are abbreviated as

λ1 = 1
3e−i 2π

3 (�1 + �2), (26a)

λ2 = 1
3

(
�1 + ei 2π

3 �2
)
, (26b)

λ3 = 1
3

(
ei 2π

3 �1 + �2
)
, (26c)

which should be real numbers to make hopping matrix elements real. Extending this Hamiltonian at � to a k point in the BZ
gives

Hsc(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 (λ1 + t)ei�k· �d1 (λ2 + t)ei�k· �d2 (λ3 + t)ei�k· �d3

0 0 0 (λ2 + t)ei�k· �d2 (λ3 + t)ei�k· �d3 (λ1 + t)ei�k· �d1

0 0 0 (λ3 + t)ei�k· �d3 (λ1 + t)ei�k· �d1 (λ2 + t)ei�k· �d2

(λ∗
1 + t)e−i�k· �d1 (λ∗

2 + t)e−i�k· �d2 (λ∗
3 + t)e−i�k· �d3 0 0 0

(λ∗
2 + t)e−i�k· �d2 (λ∗

3 + t)e−i�k· �d3 (λ∗
1 + t)e−i�k· �d1 0 0 0

(λ∗
3 + t)e−i�k· �d3 (λ∗

1 + t)e−i�k· �d1 (λ∗
2 + t)e−i�k· �d2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

In the case that �1 is equal to |�2|, �2 = e−i 2π
3 �1 makes all hopping energies real, and in the case that �2 is equal to |�1|,

�1 = e−i 2π
3 �2 makes all hopping energies real. Figure 3(a) shows the nearest-neighbor hopping energies of the perturbed system

for �1 = e−i 2π
3 �2 and �2 = 1 eV, and Fig. 3(b) shows the calculated band structure of this system. This perturbation certainly

breaks the fourfold degeneracy at the � point, but it does not open an energy gap. The Dirac points are shifted from their original
positions toward the MS point, as shown in Fig. 3(c), and the shapes of the Dirac cones are deformed. One way to induce such
changes in the hopping matrix elements is to apply a uniaxial strain. Our present results are consistent with previous reports that
a uniaxial strain does not open a gap [42,43] but causes splitting at the Raman G peak [44] and shifts the Dirac cones away from
the K point in the BZ [45].

C. Intervalley scattering within each sublattice

We consider a perturbation which produce intervalley scattering within each sublattice. The perturbed ξ -based Hamiltonian is

H(ξ )
sc =

⎛
⎜⎜⎜⎜⎜⎝

0 �3 0 0 0 0
�∗

3 0 0 0 0 0
0 0 0 �4 0 0
0 0 �∗

4 0 0 0
0 0 0 0 0 3t

0 0 0 0 3t 0

⎞
⎟⎟⎟⎟⎟⎠, (28)
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FIG. 4. (Color online) Graphene with the intervalley scattering within each sublattice. (a) Schematic representation of the perturbed
Hamiltonian (31) with �1 = e−i 2π

3 �2 and �2 = 1 eV. (�1 is complex and �2 is real.) The red solid and blue dotted lines show variation
of the next-nearest-neighbor hopping matrix elements, which are −0.02t and 0.04t , respectively. Red and blue dots represent variation of
on-site energies, which are 2

3 and − 1
3 eV, respectively. (b) Tight-binding band structure of perturbed graphene in the full BZ of the supercell.

(c) Contour plot of the lowest conduction band from 0 to 3 eV with a contour interval of 0.3 eV. The arrows indicate the directions in which
the Dirac cones are shifted.

which induces mixing between states at the K and K ′ points of the same sublattice. By the unitary transformation, [Hsc(�k =
0)] = ∑

m,n Uim(H(ξ )
sc )mnU

∗
jn, we express the Hamiltonian using the ϕ̃ basis:

Hsc(�k = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ2(�3) ρ3(�3) ρ1(�3) t t t

ρ3(�3) ρ1(�3) ρ2(�3) t t t

ρ1(�3) ρ2(�3) ρ3(�3) t t t

t t t ρ2(�4) ρ1(�4) ρ3(�4)
t t t ρ1(�4) ρ3(�4) ρ2(�4)
t t t ρ3(�4) ρ2(�4) ρ1(�4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

Here, the matrix elements are defined as

ρ1(�) = 1
3 (� + �∗), (30a)

ρ2(�) = 1
3

(
ei 2π

3 � + e−i 2π
3 �∗), (30b)

ρ3(�) = 1
3

(
e−i 2π

3 � + ei 2π
3 �∗) (30c)

for � = �3 or �4. This perturbed Hamiltonian shows that nonzero on-site energies are introduced to the system, while the sum
of all on-site energies is zero because ρ1(�) + ρ2(�) + ρ3(�) = 0 for any �. In addition, while the nearest-neighbor interaction
is not changed, nonzero next-nearest-neighbor interactions are introduced within each sublattice with an assumed 120◦ rotational
symmetry around each perturbed site. These hopping matrix elements are visualized in Fig. 4(a). Extending this Hamiltonian at
� to a k point in the BZ gives

Hsc(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ2(�3) ρ3(�3)f (−�k)
3

ρ1(�3)f (�k)
3 tei�k· �d1 tei�k· �d2 tei�k· �d3

ρ3(�3)f (�k)
3 ρ1(�3) ρ2(�3)f (−�k)

3 tei�k· �d2 tei�k· �d3 tei�k· �d1

ρ1(�3)f (−�k)
3

ρ2(�3)f (�k)
3 ρ3(�3) tei�k· �d3 tei�k· �d1 tei�k· �d2

te−i�k· �d1 te−i�k· �d2 te−i�k· �d3 ρ2(�4) ρ1(�4)f (�k)
3

ρ3(�4)f (−�k)
3

te−i�k· �d2 te−i�k· �d3 te−i�k· �d1 ρ1(�4)f (−�k)
3 ρ3(�4) ρ2(�4)f (�k)

3

te−i�k· �d3 te−i�k· �d1 te−i�k· �d2 ρ3(�4)f (�k)
3

ρ2(�4)f (−�k)
3 ρ1(�4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

The band structure obtained from the Hamiltonian (31) with �3 = e−i 2π
3 �4 and �4 = 1 eV shows that the Dirac cones are simply

shifted from their original positions in the BZ toward KS and K ′
S points, maintaining the shapes of the cones without opening an

energy gap at the Dirac point, as shown in Figs. 4(b) and 4(c).
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D. Coexistence of the sublattice mixing without intervalley scattering and the intervalley scattering within each sublattice

In this section, we consider a perturbation which produces sublattice mixing without intervalley scattering and intervalley
scattering within each sublattice simultaneously. The ξ -basis Hamiltonian with the perturbation is

H(ξ )
sc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 �3 �1 0 0 0
�∗

3 0 0 �2 0 0
�∗

1 0 0 �4 0 0
0 �∗

2 �∗
4 0 0 0

0 0 0 0 0 3t

0 0 0 0 3t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

Using the unitary transformation from the ξ to the ϕ̃ basis, that is, [Hsc(�k = 0)]ij = ∑
m,n Uim(H(ξ )

sc )mnU
∗
jn, we have

Hsc(�k = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ2(�3) ρ3(�3) ρ1(�3) λ1 + t λ2 + t λ3 + t

ρ3(�3) ρ1(�3) ρ2(�3) λ2 + t λ3 + t λ1 + t

ρ1(�3) ρ2(�3) ρ3(�3) λ3 + t λ1 + t λ2 + t

λ∗
1 + t λ∗

2 + t λ∗
3 + t ρ2(�4) ρ1(�4) ρ3(�4)

λ∗
2 + t λ∗

3 + t λ∗
1 + t ρ1(�4) ρ3(�4) ρ2(�4)

λ∗
3 + t λ∗

1 + t λ∗
2 + t ρ3(�4) ρ2(�4) ρ1(�4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

where λi=1,2,3 are functions of �1 and �2 as defined by Eq. (26) and ρi=1,2,3(�) are the same as defined by Eq. (30). Extending
this Hamiltonian at � to a k point in the BZ gives

Hsc(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ2(�3) ρ3(�3)f (−�k)
3

ρ1(�3)f (�k)
3 (λ1 + t)ei�k· �d1 (λ2 + t)ei�k· �d2 (λ3 + t)ei�k· �d3

ρ3(�3)f (�k)
3 ρ1(�3) ρ2(�3)f (−�k)

3 (λ2 + t)ei�k· �d2 (λ3 + t)ei�k· �d3 (λ1 + t)ei�k· �d1

ρ1(�3)f (−�k)
3

ρ2(�3)f (�k)
3 ρ3(�3) (λ3 + t)ei�k· �d3 (λ1 + t)ei�k· �d1 (λ2 + t)ei�k· �d2

(λ∗
1 + t)e−i�k· �d1 (λ∗

2 + t)e−i�k· �d2 (λ∗
3 + t)e−i�k· �d3 ρ2(�4) ρ1(�4)f (�k)

3
ρ3(�4)f (−�k)

3

(λ∗
2 + t)e−i�k· �d2 (λ∗

3 + t)e−i�k· �d3 (λ∗
1 + t)e−i�k· �d1 ρ1(�4)f (−�k)

3 ρ3(�4) ρ2(�4)f (�k)
3

(λ∗
3 + t)e−i�k· �d3 (λ∗

1 + t)e−i�k· �d1 (λ∗
2 + t)e−i�k· �d2 ρ3(�4)f (�k)

3
ρ2(�4)f (−�k)

3 ρ1(�4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

Figures 5(a)–5(c) show calculational results using this Hamiltonian with �2 = �4 = 1 eV and �1 = �3 = e−i 2π
3 �2. With the

perturbation, two bands with quadratic dispersion touch at the Fermi energy without a gap opening, as shown in Fig. 5(c). With
�2 = �4 = � and �1 = �3 = e−i 2π

3 �, the effective mass of the upper quadratic band is obtained and plotted as a function of
the perturbation strength � in Fig. 5(d).

E. Intersublattice intervalley scattering

We further consider a perturbation which produces intersublattice intervalley scattering. The ξ -basis perturbed Hamiltonian is

H(ξ )
sc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 �1 0 0
0 0 �2 0 0 0
0 �∗

2 0 0 0 0
�∗

1 0 0 0 0 0
0 0 0 0 0 3t

0 0 0 0 3t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

Here, the four states ξA,K , ξA,K ′ , ξB,K , and ξB,K ′ are mixed between different K points and different sublattices simultaneously.
By the unitary transformation [Hsc(�k = 0)]ij = ∑

m,n Uim(H(ξ )
sc )mnU

∗
jn, we express the Hamiltonian using the ϕ̃ basis as

Hsc(�k = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 λ2 + t λ1 + t λ3 + t

0 0 0 λ3 + t λ2 + t λ1 + t

0 0 0 λ1 + t λ3 + t λ2 + t

λ∗
2 + t λ∗

3 + t λ∗
1 + t 0 0 0

λ∗
1 + t λ∗

2 + t λ∗
3 + t 0 0 0

λ∗
3 + t λ∗

1 + t λ∗
2 + t 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (36)
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where λi=1,2,3 are functions of �1 and �2 as defined by Eq. (26) in Sec. III B. We note that λi are positioned differently in
matrix (36) compared with matrices (25), (27), (33), and (34). The parameters �1 and �2 are complex numbers in general, but
they should satisfy the constraint that all λi are real. Extending the Hamiltonian (36) at the � point to a k point in the BZ gives

Hsc(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 (λ2 + t)ei�k· �d1 (λ1 + t)ei�k· �d2 (λ3 + t)ei�k· �d3

0 0 0 (λ3 + t)ei�k· �d2 (λ2 + t)ei�k· �d3 (λ1 + t)ei�k· �d1

0 0 0 (λ1 + t)ei�k· �d3 (λ3 + t)ei�k· �d1 (λ2 + t)ei�k· �d2

(λ∗
2 + t)e−i�k· �d1 (λ∗

3 + t)e−i�k· �d2 (λ∗
1 + t)e−i�k· �d3 0 0 0

(λ∗
1 + t)e−i�k· �d2 (λ∗

2 + t)e−i�k· �d3 (λ∗
3 + t)e−i�k· �d1 0 0 0

(λ∗
3 + t)e−i�k· �d3 (λ∗

1 + t)e−i�k· �d1 (λ∗
2 + t)e−i�k· �d2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Thus the perturbed graphene has variation in the nearest-
neighbor hopping energies, as shown in Fig. 6(a).

Figures 6(b) and 6(c) show the electronic band structure
obtained from this perturbed Hamiltonian with �1 = e−i 2π

3 �2

and �2 = 1 eV. With the perturbation strength � such that
�1 = e−i 2π

3 � and �2 = �, the energy gap Eg is 2�, and the
effective mass of the lowest conduction band at �, defined
as Eq. (22), increases as the band gap increases, as shown in
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FIG. 5. (Color online) Graphene with both the sublattice mixing
without intervalley scattering and the intervalley scattering within
each sublattice. (a) Tight-binding band structure of perturbed
graphene in the full BZ of the supercell when �1 = �3 = e−i 2π

3 �2

and �2 = �4 = 1 eV in the Hamiltonian (34). (�1 and �3 are
complex and �2 and �4 are real.) (b) Contour plot of the lowest
conduction band from 0 to 3 eV with a contour interval of 0.3 eV.
Arrows indicate high-symmetry lines for (c) and (d). (c) Tight-binding
band structure of perturbed graphene along high-symmetry lines.
(d) The effective mass of the lowest conduction band at � as a
function of the perturbation strength � when �1 = �3 = e−i 2π

3 �

and �2 = �4 = �. The effective mass is slightly different in the
�-KS and �-MS directions.

Fig. 6(e). By analytic calculation, we can derive

m∗ = 12�
2Eg

|�a1|2(6t − Eg)(3t + Eg)
, (38)

which is in good agreement with the numerical results shown
in Fig. 6(e).
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If we apply strain with 120◦ rotational symmetry [46], we
may introduce the variation in hopping matrix elements with
the symmetry shown in Fig. 6(a). This type of perturbation is
often called as Kekulé distortion [31,33,47]. As can be seen
from the calculated band structure, such a distortion results in a
band-gap opening in the graphene system. A similar band-gap
opening also occurs in nitrogenated holey two-dimensional
carbon structures [48] and in graphyne [49].

IV. SUMMARY

In our present work, we classified perturbations to graphene
and investigated their effects on the electronic structures using
a simple tight-binding method. We distinguished different
types of perturbations: (a) the sublattice symmetry breaking
without intervalley scattering, (b) the sublattice mixing without
intervalley scattering, (c) the intervalley scattering within each
sublattice, (d) the coexistence of the sublattice mixing without
intervalley scattering and the intervalley scattering within each
sublattice, and (e) the intersublattice intervalley scattering.
Our approach shows that the energy gap is opened by the
sublattice symmetry breaking without intervalley scattering
and by the the intersublattice intervalley scattering. When
such perturbations open an energy gap, the charge carriers
have nonzero effective mass which increases as the energy

gap increases. This suggests that when a band gap opens in
graphene, the mobility of the charge carriers may inevitably
decrease because of the increase of the effective mass.

Our results also show that when the sublattice mixing
occurs without intervalley scattering, graphene is still metallic,
although the Dirac cones are shifted in k space and the shapes
of the cones are deformed. In addition, when the intervalley
scattering occurs without sublattice mixing, graphene is metal-
lic, although the Dirac cones are shifted in k space, maintaining
the isotropy of the cones. Even when the sublattice mixing
without intervalley scattering and the intervalley scattering
within each sublattice occur simultaneously, graphene is
metallic, although the band dispersion at the Dirac point
changes from the linear one to the quadratic.

Our present work is to introduce perturbations directly in the
small Hilbert space at the Dirac point of graphene and to obtain
the band structure throughout the BZ. This approach provides
a very straightforward theoretical framework for classification
and analysis of perturbations to graphene, and it is applicable
to band-gap engineering of graphene-like hexagonal layered
materials in general.
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