
PHYSICAL REVIEW B 92, 045308 (2015)

Spatiotemporal spin fluctuations caused by spin-orbit-coupled Brownian motion
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We develop a theory of thermal fluctuations of spin density emerging in a two-dimensional electron gas. The
spin fluctuations probed at spatially separated spots of the sample are correlated due to Brownian motion of
electrons and spin-orbit coupling. We calculate the spatiotemporal correlation functions of the spin density for
both ballistic and diffusive transport of electrons and analyze them for different types of spin-orbit interaction,
including the isotropic Rashba model and the persistent spin helix regime. The measurement of spatial spin
fluctuations provides direct access to the parameters of spin-orbit coupling and spin transport in conditions close
to thermal equilibrium.
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I. INTRODUCTION

Thermal and quantum fluctuations of observables are
canonical examples of stochastic processes which are inherent
in physical systems. Since the discovery of the random motion
of pollen grains suspended in water by Brown followed by
the theoretical works by Einstein [1] and Smoluchowski [2],
the study of fluctuations has become central to statistical
physics and kinetics. The advances in optical spectroscopy
have triggered the research of fluctuations of electron spins in
atomic systems [3,4] and, more recently, in semiconductor
structures, including bulk materials [5–7], quantum wells
[8–10], quantum wires [11–13]. and quantum dots [14–18].
Owing to the fundamental connection between fluctuations
and dissipation processes, such a spin noise spectroscopy is
becoming a powerful tool for studying the spin dynamics in
conditions close to thermal equilibrium and for determining the
spin-relaxation times, g factors, parameters of exchange and
hyperfine interactions, etc. (see recent review papers [19,20]).

The study of spin noise in semiconductors has been focused
so far on the evolution of spin fluctuations in time (or
the spectral density of fluctuations) [5–12,14–18]. However,
already in the first experiments on spin noise in an electron gas
it was found that the dynamics of spin fluctuations is sensitive
to the spatial size of the probed area of the sample due to
diffusion of electrons out of this area [8]. Moreover, the general
analysis shows that the temporal and spatial correlations of
spin fluctuations emerging in an electron gas are coupled due
to Brownian motion of electrons and spin-orbit interaction.
Therefore, a natural and consistent description of the spin
noise in an electron gas is spatiotemporal. Meanwhile, such
a study of the spin noise has been limited up to now to
one-dimensional systems [13] in which the motion of an
electron in the real space and its spin rotation are locked
and the spin dynamics is rather obvious. In systems of higher
dimensions, the spin dynamics is complicated by the diversity
of electron trajectories, and the one-to-one correspondence
between the real-space shift of electrons and the spin rotation
angle vanishes. Here, we develop a theory of propagating
spin fluctuations in a two-dimensional electron gas confined
in a quantum well (QW). We calculate the spatiotemporal
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correlation functions of the spin density for both diffusive
and ballistic regimes and show that the correlation functions
provide direct information about the spin-orbit coupling in an
electron gas and parameters of the spin transport. We show
that the correlations of spin fluctuations drastically increase
in the regime of a persistent spin helix [21], which suggests a
noninvasive method for probing this intriguing phenomenon.
Since access to an electron spin density with high spatial
and temporal resolutions is experimentally available nowadays
[22–24], the measurements of the fluctuations will enable the
study of spin waves and spin diffusion processes in conditions
close to thermal equilibrium.

II. MICROSCOPIC THEORY

The Gedankenexperiment we consider is illustrated in
Fig. 1. A two-dimensional electron gas confined in a semi-
conductor quantum well is in thermal equilibrium. The gas is
spin unpolarized; however, there are incessant fluctuations of
the spin density. The spin fluctuations propagate in the QW
plane due to Brownian motion of electrons and precess in
the effective magnetic field caused by spin-orbit coupling. In
quantum wells, the frequency of spin precession � depends
linearly on the electron momentum p, which leads to a
relationship between the electron trajectory in real space and
the spin rotation angle. As a result, the Brownian motion of
electrons leads to correlations of the spin density probed at
different spots of the sample. Whether the spin fluctuations
at points r1 and r2 are positively or negatively correlated
depends on the average spin rotation angle when electrons
walk between points r1 and r2, which depends on the distance
r = r1 − r2 and the effective magnetic field strength.

To characterize the fluctuations we introduce the correlation
functions of the spin density S(r1,t1) and S(r2,t2) at different
points of the sample. For spatially and temporally homoge-
nous systems, the correlation functions depend on the time
difference and coordinate difference and are defined by

Kαβ(r1 − r2,t1 − t2) = 〈{Ŝα(r1,t1),Ŝβ(r2,t2)}〉 , (1)

where Ŝα(r1,t1) = ψ̂†(r1,t1)σαψ̂(r1,t1) is the spin density
operator, ψ̂(r1,t1) is the electron-field operator, σα are the Pauli
matrices, {A,B} = (AB + BA)/2 is the symmetrized product
of the operators, and the angular brackets denote averaging
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FIG. 1. (Color online) Probe-probe measurements of the spatial
correlations of spin fluctuations in an electron gas. Fluctuations of
the spin density at points r1 and r2 are correlated due to Brownian
motion of electrons. The sign of the correlation function, positive or
negative, depends on the distance r1 − r2 and the frequency �( p) of
spin precession in the effective magnetic field which acts upon the
electron spins when electrons walk.

with the quantum-mechanical density matrix corresponding
to thermodynamic equilibrium. The necessity to use the sym-
metrized product of Ŝα(r1,t1) and Ŝβ(r2,t2) is caused by the
fact that different components of the spin density operator do
not commute with each other. The correlation functions satisfy
the relations Kαβ(r,t) = K∗

αβ(r,t), Kαβ(r,t) = Kβα(−r,−t)
and Kαβ(r,t) = Kαβ(r,−t); the latter is due to time-inversion
symmetry in the absence of an external magnetic field.

We calculate the correlation functions by using the
fluctuation-dissipation theorem [25] that relates the Fourier
components of the correlation functions Kαβ(q,ω) =∫ ∫

Kαβ(r,t) eiωt−iq·rdt d r to the Fourier components of the
spin susceptibility χαβ(q,ω),

Kαβ(q,ω) = χαβ(q,ω) − χ∗
βα(q,ω)

2i�
coth

�ω

2T
. (2)

Here, χαβ(q,ω) is defined as the linear response, Sα(q,ω) =
χαβ(q,ω)Fβ(q,ω), of the spin density Sα(q,ω) to the “force”
Fβ(q,ω), whose action upon the system is described by the
Hamiltonian perturbation δĤ = − ∫

Ŝ(r,t) · F(r,t)d r , and T

is the temperature.
The electrons confined in the quantum well are described

by the Hamiltonian

H = H0 + V (r) , H0 = p2

2m∗ + �

2
�( p) · σ , (3)

where m∗ is the effective mass, �( p) is the Larmor frequency
corresponding to the effective magnetic field, and V (r) is
the spin-independent disorder potential. We assume that the
electron gas is degenerate and �/τ, �
(pF ) � εF , where τ

is the relaxation time determined by disorder and εF and pF

are the Fermi energy and Fermi momentum, respectively. The
susceptibility χαβ(q,ω) is expressed via retarded and advanced
electron Green’s functions GR,A

ε (r,r ′) as follows:

χαβ(q,ω) = m∗

4π�2
δαβ + i

4

�ω∫
0

dε

2π

∫
d r

∫
d r ′

× Tr
〈
σαGR

ε (r,r ′)σβGA
ε−�ω(r ′,r)

〉
eiq(r ′−r), (4)

+ + +  ...

FIG. 2. Diagrammatic representation of the contributions to the
spin susceptibility which corresponds to the series equation (5).

where δαβ is the Kronecker delta, the angular brackets denote
averaging over the disorder, and it is assumed that �q � pF

and �ω � εF .
Averaging over the disorder leads to the sum of the ladder

diagrams (see Fig. 2). For the case of electron scattering by
short-range potential, 〈V (r)V (r ′)〉 = V 2

0 δ(r − r ′), the series
has the form

χαβ(q,ω)

= m∗δαβ

4π�2
+ i

4

�ω∫
0

dε

2π
Tr

[∑
p

σαGR
p,εσβGA

p−�q,ε−�ω

+ V 2
0

∑
p p′

σαGR
p,εG

R
p′,εσβGA

p′−�q,ε−�ωGA
p−�q,ε−�ω+ · · ·

]
,

(5)

where GR,A
p,ε are impurity-averaged Green’s functions,

GR,A
p,ε = 1

εF + ε − p2/2m∗ − (�/2) �( p) · σ ± i�/2τ
, (6)

and τ = �
3/(m∗V 2

0 ).
Straightforward calculation of the series (5) yields

χαβ(q,ω) = m∗

4π�2
[δαβ + iωτCαβ(q,ω) (7)

+ iωτCαγ (q,ω)Cγβ(q,ω) + · · · ] ,

where the matrix C(q,ω) is given by

Cαβ(q,ω) = V 2
0

2

∑
p

Tr

(
σα

1

εF − H0 + i�/2τ

× σβ

1

εF − �ω − H0 + � q · p/m∗ − i�/2τ

)
.

(8)

The integral over the absolute value of p in Eq. (8) is
determined by the poles of Green’s functions, which yields

Cαβ(q,ω) =
∫

dϕ p

2π

ηδαβ − εαβγ 
γ τ + 
α
βτ 2/η

η2 + 
2τ 2
, (9)

where η( p) = 1 − iωτ + i(τ/m∗)q · p, εαβγ is the Levi-
Civita tensor, ϕ p is the polar angle of the momentum p, and
| p| = pF .

Summing up the geometric progression in Eq. (7), we obtain
the final expression for the spin susceptibility,

χαβ(q,ω) = m∗

4π�2
[δαβ + iωTαβ(q,ω)], (10)
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where we introduce the spin lifetime tensor

T (q,ω) = τ C(q,ω)[1 − C(q,ω)]−1 . (11)

We note that the tensor T (q,ω) describes also the spin density
S(q,ω) emerging in the sample when the spin is generated at
the Fermi level at the rate G(q,ω), Sα = TαβGβ . Calculation of
the spin lifetime tensor T in the framework of the Boltzmann
equation in the stationary and spatially homogenous case for
QWs of different symmetries and arbitrary 
τ is described in
Refs. [26,27].

Combining Eqs. (2) and (10), we obtain the correlation
functions at T � �ω,

Kαβ(q,ω) = m∗T
4π�2

[Tαβ(q,ω) + T ∗
βα(q,ω)] . (12)

Equation (12) together with Eqs. (9) and (11) describes the
spatial and temporal correlations of spin density fluctuations
emerging in a two-dimensional electron gas for an arbitrary
form of the effective magnetic field and an arbitrary parameter

τ . Below, we discuss the correlations for the ballistic
(
τ � 1) and diffusive (
τ � 1) regimes of spin dynamics.
We consider (001)-oriented QWs where the p-linear spin-orbit
coupling is described by the effective magnetic field,

�( p) = [(
D + 
R)py/pF ,(
D − 
R)px/pF ,0], (13)


D and 
R are the Dresselhaus and Rashba field strengths at
the Fermi level, respectively, x ‖ [11̄0] and y ‖ [110] are the
crystal-structure-enforced eigenaxes in the QW plane, and z is
the QW normal [28].

III. RESULTS AND DISCUSSION

A. Ballistic regime

Figure 3 shows the coordinate and time dependence of
the correlation functions Kαβ(r,t) for ballistic transport of
electrons between the spots where the spin fluctuations are
probed. The maps are calculated for the Rashba effective
magnetic field. The pronounced correlations of the spin
fluctuations probed at the spots separated by the distance r
emerge at the time delay t = (m∗/pF )r that follows from
the ballistic behavior of electron transport. The correlation
function contains both the diagonal Kαα and off-diagonal

FIG. 3. (Color online) Spin-density correlation functions
Kαβ (r,t) for the Rashba spin-orbit interaction and coordinate
difference r ‖ x between the points where the spin fluctuations are
probed. Maps are calculated for 
Rτ = 5, which is close to the
ballistic transport of electrons between the points.

Kαβ (α 	= β) components. The latter originate from the
precession of electron spins in the effective magnetic field
when electrons propagate between the spots. The precession is
also responsible for the oscillatory behavior of the correlation
functions. Figure 3 is plotted for r ‖ x. Accordingly, the
Rashba field for electrons propagating between the spots points
along the y axis and couples the x and z components of the
spin density. The frequency of spin precession is given by 
R ,
which results in the oscillations of the correlation functions in
real space with the wave vector q = 
Rm∗/pF .

An analytical expression for the correlation functions in
the ballistic regime can be derived from Eqs. (11) and (12)
by considering the limit 
τ,ωτ,qvF τ � 1. In this case, the
correlation functions are determined by the first diagram in
Fig. 2, C(q,ω) � 1, and T (q,ω) = τ C(q,ω). In the limit of
τ → ∞, Eqs. (11) and (12) yield

Kαβ(q,ω) = m∗T
4π�2

∫
dϕ p

2πi

ω̃δαβ − iεαβγ 
γ −
α
β/ω̃


2 − ω̃2

+ H.c., (14)

where ω̃ = ω − q · p/m∗ + i0. The correlation functions in
real space and time are determined by the poles of the integrand
in Eq. (14) and have the form

K (r,t) = m∗T
8π2�2 r

R
[
�

(
m∗r

t

)
t

]
δ(r − vF |t |) , (15)

where R[�] is the matrix of rotation by the angle � and vF =
pF /m∗ is the Fermi velocity. In particular, the Kzz component
for (001)-oriented QWs assumes the form

K zz = m∗T
8π2�2 r

cos(
�t
√

1 − sin 2φ cos 2ϕr )δ(r − vF |t |) ,

(16)
where 
� =

√

2

D + 
2
R , φ = arctan(
R/
D) and ϕr =

arctan(y/x) is the polar angle of the vector r .

B. Diffusive regime

Now we turn to diffusive transport of electrons. The calcu-
lated dependence of the correlation functions Kαβ(r,t) on the
coordinate and time for this regime is shown in Fig. 4. The fluc-
tuations of spin density at the spots separated by the distance r
get correlated at the time delay t � r2/D, where D = v2

F τ/2

FIG. 4. (Color online) Spin-density correlation functions
Kαβ (r,t) for the Rashba spin-orbit interaction and coordinate
difference r ‖ x between the points where the spin fluctuations are
probed. Maps are calculated for 
Rτ = 0.2, which corresponds to
diffusive transport of electrons between the points.
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is the diffusion coefficient. Despite the diffusive transport, for
which electrons can travel along many different trajectories,
the correlation functions do contain oscillations as a function
of distance. This can be attributed to the fact that the major con-
tribution to correlations is given by the diffusive trajectories,
which are close to the straight line connecting the spots.

An analytical equation for the correlation function in the
diffusive regime can be derived from Eqs. (11) and (12) by
considering the case 
τ � 1 and hence ωτ,Dq2τ � 1. Such
a procedure yields

K (q,ω) = m∗T
4π�2

(
1

−iω + � + Dq2 + 2iD�(q)
+ H.c.

)
,

(17)
where �αβ=τ

∫
(
2δαβ−
α
β) dϕ p/(2π ) is the D’yakonov–

Perel’ spin-relaxation-rate tensor for homogeneous spin distri-
bution [29] and �αβ(q) = ∫

εαγβ
γ q · p dϕ p/(2πm∗). The
tensor �αβ(q) describes the precession of electron spin at
diffusion. At large delay times, the correlations are deter-
mined by the spin excitations with the longest lifetime. The
corresponding correlation functions in real space and time at
t � 1/
2τ can be calculated by using the stationary phase
method. For pure Rashba or Dresselhaus spin-orbit coupling,
such a procedure yields

Kzz(r,t) = 3m∗
T

32πvF �2

e−(7/32)
2τ |t |
√

4πD|t | J0

(√
15

16


r

vF

)
, (18)

where J0 is the Bessel function. The emergence of long-
lived spin-polarization waves with the wave vector q =√

15/16 
/vF under inhomogeneous spin pumping was theo-
retically predicted by Froltsov [30] and observed by means of
transient spin-grating spectroscopy by Weber et al. [23]

C. Anisotropy of spin fluctuations

Finally, we discuss the spin fluctuations in the presence
of spin-splitting anisotropy, caused by interference of the
Rashba and Dresselhaus terms, which can be very pronounced
in asymmetric (001)-oriented QWs [31]. Figure 5 shows the
dependence of the correlation function Kzz on the relative
position of the probed spots in the QW plane. The maps are
calculated for different ratios of the Dresselhaus and Rashba
fields. The anisotropy of spin splitting in the momentum
space leads to an anisotropy of the correlation function in
real space, which turns out to be strong even for a small ratio

D/
R (see Fig. 5). Another striking consequence of the
interplay of the Rashba and Dresselhaus fields is a drastic
increase in the lifetime and amplitude of spin correlations
(see Fig. 5). This is due to the fact that, at equal strengths
of the Rashba and Dresselhaus fields, the SU(2) spin rotation
symmetry emerges in the system, leading to an appearance of
spin-density waves with infinite lifetime (persistent spin helix)
[21,32–38]. We note that the emergence of long-lived waves
with the wave vector along the y axis can be clearly seen
already at 
D/
R = 0.5 [Fig. 5(d)]. An advantage of the spin
noise spectroscopy for the study of the spin helix compared
to the pump-probe technique is that no photoexcited carriers
and hence no additional mechanisms of spin dephasing are
introduced.

FIG. 5. (Color online) (a)–(d) Correlation function of the out-of-
plane spin fluctuations Kzz in real space in a (001)-grown QW. Maps
are calculated for the delay time t = 20/(
2

Rτ ), 
Rτ = 0.2, and
different ratios of the Dresselhaus and Rashba terms. (e) Distributions
of the effective magnetic field on the Fermi circle for different ratios
of the Dresselhaus and Rashba terms.

At large delay times, the correlation function is determined
by the spin-density waves with the longest lifetime. Such
waves are directed along the x or y axis depending on the
sign of the product 
R
D . At 
R
D > 0, the correlation
function Kzz oscillates along the y axis, and Eq. (17) yields its
asymptotic behavior

Kzz(r,t) ∝ T
e−γ̃ t cos(q̃y)

t
, (19)

where the wave vector q̃ and the decay rate γ̃ are given by

q̃ = 
R + 
D

vF

√
1 − 1

16
tan4

(
φ − π

4

)
,

(20)

γ̃ = 9(
R − 
D)2τ

32

(
1 − 2

9

1

1 + sin 2φ

)
.

While the decay rate of the correlation function is mostly
determined by the difference of the strengths of the Rashba
and Dresselhaus fields, the period of oscillations in real space
is determined by the sum of the field strengths.

IV. SUMMARY

To summarize, we have developed a theory of spatiotempo-
ral fluctuations of spin density emerging in a two-dimensional
electron gas with spin-orbit coupling. We have calculated the
correlation functions of spin density for both ballistic and
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diffusive regimes of electron transport and analyzed them for
different types of spin-orbit coupling that can be realized in
quantum wells. The correlations of spin fluctuations at large
delay times are determined by the long-lived waves of spin
density and drastically increase in the regime of a persistent
spin helix.
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