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Magnetotransport properties of nearly-free electrons in two-dimensional
hexagonal metals and application to the Mn+1 AXn phases
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We propose a general, yet simple model for describing the weak field magnetotransport properties of nearly-free
electrons in two-dimensional hexagonal metals. We modify this model so as to apply it to the magnetotransport
properties of the Mn+1AXn phases, a particular class of nanolamellar carbides and nitrides. We argue that the
values of the in-plane Hall coefficient and the in-plane parabolic magnetoresistance are due to the specific shape
of the Fermi surface of almost two-dimensional hole and electron bands. If the contribution of the electron
pockets to in-plane resistivity is often (but not always) predicted to be a minor one, in contrast, both holes and
electrons should substantially contribute to the overall value of the in-plane Hall coefficient. The relevance of our
model is supported by elementary considerations and a set of experimental data obtained from single crystals of
V2AlC and Cr2AlC. In particular, we obtain a high ratio between the in-plane (ρab) and parallel to the c axis (ρc)
resistivities.
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I. INTRODUCTION

Explaining transport in metals is often a complex matter,
because transport coefficients are mainly determined by the
local curvature of the Fermi surface [1–3], and the Fermi sur-
face of even the most common metallic elements may indeed
reveal a very complex and intricate shape, with the presence of
both electrons and holes [1–3]. Isotropic effective mass models
usually work well for describing the gross features of electron
transport in semiconductors because all the relevant physics
occurs near the top or the bottom of the valence and conduction
band, respectively, so that the dispersion law is parabolic. Even
if the effective mass is anisotropic, transport phenomena do not
qualitatively change, but the fact is that this anisotropy may
give rise to a magnetoresistance. In contrast, the relevance
of such models to metals is highly uncommon because the
Fermi level EF is located much deeper inside the bands, so
that the Fermi surface often exhibits a very complex shape.
In metals, the transport coefficients essentially depend on this
shape and on the relaxation time values, the latter depending
partly on the former [1–4]. Most often, the dependence of the
resistivity ρ with temperature T primarily reflects the variation
of the relaxation time with T , whereas the carrier density does
not appreciably vary [3], yet the Hall coefficient RH may
change with T [5] or, even stranger, may reverse its sign when
sweeping either T or the magnetic field B [2].

Among the family of compensated metals, Mn+1AXn

(or “MAX”) phases form an interesting class of hexagonal

*thierry.ouisse@phelma.grenoble-inp.fr

carbides and nitrides (M is a transition metal, A belongs
to groups 13–16, and X is the C or N element) [6]. In
their single-crystalline form, they possess a highly anisotropic
nanolamellar structure [6,7]. They can be viewed as a stack
of hexagonal planes, each plane including only one kind of
chemical element. They combine interesting properties of
ceramics to that of metals [6,7]. They are expected to play
a major role in applications requiring high chemical stability,
high temperature, shock resistance, and good electrical con-
ductivity [6,7]. These phases can also behave as self-healing
materials [8]. Additionally, the planes of the weakly bonded
A atoms can be chemically removed in order to form a new
class of two-dimensional (2D) systems called MXenes [9].
Some recently engineered MAX phases also exhibit potentially
attractive magnetic properties [10].

So far, most of the produced samples were highly poly-
crystalline, so that it was not possible to evidence anisotropic
physical properties in a straightforward manner. In recent
years, several groups have produced single crystals of MAX
phases in the form of bulk crystals [11–13] or thin layers
[14–17]. It thus becomes feasible to investigate anisotropic
physical properties such as electrical transport [16]. In poly-
crystalline phases, Hall data indicate that these materials
behave as compensated metals (or semimetals). They exhibit a
small RH and an almost parabolic positive magnetoresistance
[18–22]. Interpretation of the data is usually made by assuming
the existence of two isotropic bands of electrons and holes with
similar densities ([6], and references therein). In this paper,
we will refer to this model as the isotropic or “conventional”
two-band model. Further data extraction then shows that both
carrier mobilities should also be quite similar [6]. This would
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tend to indicate that electrons and holes exhibit very similar
properties, a point yet to be explained in the literature about
MAX phases [6]. A review of electrical transport data in
those phases can be found in chapter 5 of [6]. Recently, and
based on density functional theory (DFT) calculations, some
authors have argued that, for Ti2AlC, hole transport should
prevail in the basal plane, whereas electron transport would
dominate along the c axis [16]. Electrons and hole properties
would thus be very different, in contrast with the interpretation
given by the conventional two-band model. Additionally, we
note that, if transport is highly anisotropic in single crystals,
data obtained from isotropic polycrystalline phases depend in
a complex manner on the grain size and orientation, grain
boundaries, texture, etc., so that it is difficult to draw firm
general conclusions about single crystals from data obtained
from polycrystals and reciprocally.

The first purpose of this paper is to derive a simple though
hypothetical model, based on general properties of nearly-free
electrons (NFEs) in 2D hexagonal metals. A nice introduction
to the physical phenomena which determine magnetotransport
properties in 2D metals can be found in Ong’s paper [1]. In
Sec. II, we apply some of the principles presented in [1] to
the case of a hexagonal symmetry. This model is subsequently
modified so as to adapt it to the description of in-plane transport
in the MAX phases. It would be naı̈ve to think that the NFE
approach can capture the physics of all MAX phases, but we
show that it can be used to mimic the Fermi surface of some of
them convincingly and to point out the two essential features
which govern transport: the local Fermi velocity vF and the
local curvature of the Fermi surface. None of those quantities
are simply related to the real electron and hole densities. This
analysis forms the first part of this article (Sec. II). Our second
goal is to provide both in-plane and c axis transport data
measured from single crystals. The latter are grown in a high
temperature metallic solution and processed so as to form Hall
bars, Van der Pauw samples, and devices aimed at measuring
ρc when the crystal aspect ratio is not favorable. Interestingly,
combining basic results about the Fermi surface of a 2D
hexagonal metal to simple geometric considerations and to
reasonable orders of magnitude for physical quantities, such
as the relaxation time and the number of valence electrons,
allows us to recover many experimental facts, at least in the
case of the two investigated phases (Cr2AlC and V2AlC). This
forms the second part of our report (Sec. III). Eventually, we
summarize our results. We also discuss the relevance of using
isotropic one- or two-band models and address open problems.

II. THEORY

A. Adaptation of the NFE model to the MAX phases

As emphasized by Ashcroft and Mermin in 1976, the
free-electronlike Fermi surfaces are essential in understanding
the real Fermi surfaces of many metals [3]. We intend to argue
that at least some MAX phases probably make no exception.
Determining the Fermi line of NFEs in a pure 2D hexagonal
metal is elementary. It involves only one energy term U , the
Fourier component of the periodic potential for a wave vector
joining the centers of two adjacent Brillouin zones (BZs). By
following a procedure exposed, e.g., in Ref. [3], and for a high

FIG. 1. (Color online) (a) Dispersion curves of NFEs in a 2D
hexagonal lattice (b) contour plot of the energy (the red lines are
the Fermi lines of the hole and electron bands), and (c) Fermi
surfaces obtained by combining an in-plane, 2D NFE dispersion,
and a tight-binding coupling between the transition metal planes (in
the lower figure, the interplane-induced splitting and N are such
that only the electron pockets with a lower energy are populated).
Different splitting are assumed for the holes and electrons.

enough number of electrons per unit cell, we obtain electron
pockets and a hole band centered at the origin [Figs. 1(a) and
1(b)]. We define N as the number of electrons per unit cell
populating all partially filled bands, and in order to compare
the model to the case of the M2AX phases, or to compute
three-dimensional (3D) carrier densities from the 2D model,
we assume that we have four 2D planes per unit cell (one must
thus divide N by a factor of 4 to get the number of electrons
per plane in partially filled bands). There is already a striking
similarity between the Fermi line of the 2D model [Fig. 1(b)]
and the computed 3D Fermi surface of Ti2AlC [Fig. 2(b);
calculation details are given in Appendix A]. However, a major
difference lies in the splitting of the hole band appearing in
Fig. 2(b). Direct inspection of the atomic lattice [Fig. 2(a)]

FIG. 2. (Color online) (a) Atomic structure of Ti2AlC in real
space. The dotted line corresponds to a TiC plane. (b) Fermi surface
as computed by DFT calculations and (c) contour plot of the density
of electrons around the Fermi level in a TiC plane, as computed by
DFT calculations.
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shows that, for a M2AX phase, the M planes form close pairs
separated by an X plane, which are in turn separated from one
another by the more distant A planes. Figure 2(c) shows the
density of electrons lying in the partially occupied bands as a
function of the position in a “TiC” plane [defined by the dotted
line in Fig. 2(a)]. It shows that, in real space, the electrons at
EF are confined in the M planes, as confirmed by the many
reported density of states calculations, which all evidence that
the M states dominate at EF (see [16] and [23] among others).
If we first neglect the different zigzag orientations between
two adjacent A planes, we can form a reduced lattice with
two inequivalent M planes per reduced unit cell, which are
responsible for the large band splitting. Then in the spirit of
what is often achieved for the quasi-2D cuprates, we treat
independently the electrons as nearly free in the M planes and
as strongly confined along c. This allows us to apply a simple
tight-binding approach to the wave vector component along
c, resulting in a c axis dispersion and splitting of the form
E = E0 ± (β2 + γ 2 + 2βγ cos(kzc))1/2, where E0, β, and γ

are energy terms fixed by the lattice properties (we roughly
assume that interplane coupling does not preferentially occur
at given atom lattice sites). Summing the in-plane and out-of-
plane energy contributions gives rise to Fermi surfaces as in
Fig. 1(c). The similarity with DFT calculations [Fig. 2(b)] is
striking, even if so simple a model can obviously not reproduce
the smallest details. In particular, this approach neglects an
additional but quite small splitting, which dissociates each
hole surface into almost undistinguishable surfaces. This can
be attributed to the fact that two consecutive M2X planes are
inequivalent [see Fig. 2(a)]. The DFT calculations also indicate
that only the lowest split electron pockets are occupied,
whereas each of the split hole bands are occupied (there are
thus four occupied hole bands and just one set of occupied elec-
tron pockets). This is not predicted by our simplified model.

In order to further simplify the calculation of all transport
parameters, we move one last step further and replace the 3D
structure by a fully 2D model, neglecting any energy variation
along c (so that we can only predict the values of in-plane
transport coefficients). This gives Fermi lines such as the one
presented in Fig. 3. It is obtained by using the right number of
electrons per unit cell lying in partially filled bands for Ti2AlC,
N = 6. Comparing it to the projection of a full numerical
computation in the basal plane demonstrates that only the small
features are not reproduced, as well as the lack of degeneracy of
the electron pockets with respect to that of the holes (Fig. 3). In
the case of Ti2AlC, the roughest approximation is to consider
that the electron pockets form open tubes, which is actually
not predicted by DFT calculations [see Fig. 2(b)], and we also
have to reduce the valley degeneracy of the electron pockets
gn by a factor of 2 with respect to that of the hole bands.
The former point means that the simplified model probably
slightly overestimates the contribution of electrons to in-plane
transport. Such a point can be empirically improved by finding
a set of energy parameters which slightly underestimates the
extent of those electron pockets (as achieved in Fig. 3).

Compiling the published expectations for other MAX
phases shows that the overall structure of the Fermi surface
is most often formed by hexagonally shaped hole bands in the
center of the zone and by trigonal electron pockets extending
over three hexagonal BZs and centered at the corners of the

FIG. 3. (Color online) Projection in the basal plane of the Ti2AlC
Fermi surface obtained from the DFT calculations (all colors but
red), along with the fit of the Fermi line given by the 2D model using
U = 0.35 eV, N = 6, and an appropriate interplane-induced splitting
(red lines).

BZ hexagon [16,23,24]. Some of the electron pockets often
form open tubes too. The number of bulges appearing in the
open tubes over one unit cell is a direct function of the integer
n appearing in the Mn+1AXn formula. In one case (Ti3AlC2),
the “electron” bands are repelled at energies high enough for
being totally unoccupied [24]. Although not so many Fermi
surface calculations are available in the literature, most of them
roughly support the NFE origin of the Fermi surface shape.
Our purpose is therefore to use the 2D model as a reasonable
approximation of the Fermi surface shape (which works at least
for Ti2AlC) because it allows us to simplify the calculation of
the transport parameters considerably and to focus on physical
aspects. Of course, this approximation is totally unable to
reproduce the fine structure of the electron pockets which is
sometimes found by DFT calculations (see, e.g., [16,22–24]),
and it restricts the analysis to in-plane transport, but accurate
results would not only require an exact knowledge of the Fermi
surface. They demand a precise knowledge of the dependence
of the scattering times τn (electrons) and τp (holes) upon wave
vector kF and temperature, a thing which is simply impossible
to obtain experimentally. Our model allows us to vary τn and τp

independently and therefore to assess whether a modification
of their ratio may have observable consequences. We can
also compute the magnetoresistance. Those two possibilities
are not available from the commercial numerical codes used
by previous authors [16,22–24]. Therefore, our simplified
model is aimed at finding correct orders of magnitude on
a physical basis and at identifying the essential parameters
governing transport. When the Fermi surface is complex,
isotropic transport models do not rely on a realistic basis,
yet they are the only ones which can easily be used for data
extraction (e.g., for giving carrier densities and mobilities). We
aim at discussing if these extracted parameters can bear any
resemblance to the real physical values.

B. Transport formalism

Here, we briefly summarize the principle used for cal-
culating the transport coefficients. As usual, we start from
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Boltzmann’s equation, where F is the force, including the
electrical and Lorentz contributions, f0 is the equilibrium
distribution, and τ is the relaxation time

F
�

∇k(f0 + �f ) + �f

τ
= 0. (1)

From this equation, the out-of-equilibrium part �f of the
distribution function is expressed as

�f = −
[

1 + eτ

�
(v × B)

∂

∂k

]−1

eτ v. ε
∂f

∂E
, (2)

where v is the velocity, B the magnetic field, and ε the
electric field. If B is parallel to c (itself parallel to z) and ε is
parallel to x, expanding the denominator gives (Jones-Zener
approximation) [25]

�f = −
[

1 − eτ

�

(
Bvy

∂

∂kx

− Bvx

∂

∂ky

)
+ order 2

]

× eτ v.ε
∂f

∂E
. (3)

The first term inside the parentheses gives rise to the direct
conductivity σXX (without the magnetoresistance contribu-
tion), the second term (first order in B) gives rise to the
transverse conductivity σXY , and the third term (second-order
term in B) is at the origin of the magnetoresistance [here, we
do not write its lengthy expression, but it is trivial to obtain
it from Eq. (2)]. Here, �f is used to compute any current
component through

j = e

2π2

∫
v(k)�f d2k. (4)

Computing jx gives σXX and the magneto-resistance, and
jy leads to RH . Additionally, a considerable simplification is
obtained for a 2D system, since any transport integral can then
be put into the form of a circulation along the Fermi line.
Grouping all terms appearing in Eq. (3) except ∂f/∂E under
the form of a function g(k), any transport integral can be put
in the polar form∫

g(kx,ky)
∂f

∂E
dkxdky

∼=
∫

g(kF )
dkF

�vF

=
∫

g(kF )
1

�vF

√
k2
F +

(
∂kF

∂θ

)2

dθ.

(5)

Roughly speaking, this means that, for interpreting mag-
netotransport, we just have to examine what the holes and
electrons do along the Fermi line as a function of time
(including scattering). From the calculations of the direct
conductivities σ i

XX and transverse conductivities σ i
XY for each

band of index i, one can obtain the overall resistivity and Hall
coefficient values from summations of the kind

ρab =
∑

i σ
i
XX(∑

i σ
i
XX

)2
+

(∑
i σ

i
XY

)2 ,

(6)

RH =
∑

i σ
i
XY(∑

i σ
i
XX

)2
+

(∑
i σ

i
XY

)2

1

B
.

C. Predicted results for a simple 2D hexagonal metal

In this section, we use the simplest model, not directly
mimicking the MAX phase Fermi surface, so as to emphasize
and isolate various physical phenomena. The lattice parameters
are nevertheless that of Ti2AlC. As a first example, we
select just a few electrons per unit cell, so that we only
have holes as free carriers (Fig. 4.1), yet the calculations
give a substantial magnetoresistance [Fig. 4.1(d)], and RH

is quite small, RH = 1.178 × 10−11 m3C−1. An isotropic one-
band model would lead to an apparent hole density papp =
1/eRH = 5.30 × 1029 × m−3, extremely far from the assumed
value, p = 2.30 × 1028 m−3. To interpret these results, we first
remember that, in a semiclassical approximation, the wave
vector changes with time according to �∂k/∂t = ev × B due
to the Lorentz force, so that holes with an energy EF cycle
clockwise along the Fermi line, until they are scattered to
another part of it by a collision. If we focus on the concave
part, and in contrast to this clockwise rotation, the hole
velocity, which is perpendicular to the Fermi line, rotates
counterclockwise with time [see Fig. 4.1(a)]. In real space,
the holes are thus turning anticlockwise, so that during a
fraction of time in between two collisions, they truly exhibit
an electronlike behavior. It is only at the corners with a convex
shape that their velocity rotates clockwise with time, so that
they turn clockwise, as free holes would do in real space
[Fig. 4.1(a)]. This phenomenon is discussed, e.g., in [1–2]. It
dramatically affects the value of RH . The holes behaving part
of the time as electrons, and another part as holes, this leads
to an apparent compensation and a smaller RH value. Ong’s
theorem for 2D metals provides an elegant way to describe
this [1]. It states that σXY is given by

σ 2D
XY = 2e3

h2
AlB, (7)

where Al is the algebraic (i.e. oriented) area spanned by the
mean free path as the wave vector cycles over one full orbit of
the Fermi line. If the mean free path λ = vkτk is a constant (e.g.
for pure impurity scattering), one obtains a circle whose sign
corresponds to the right type of carriers [1], but λ may vary with
kF [for instance, if the relaxation time τk is isotropic and vF is
not constant along the Fermi line, see Figs. 4.1(b) and 4.2(b)].
For holes, the oriented area now exhibits outer flaps affected
by a negative sign [see Fig. 4.1(c)], corresponding to the
electronlike parts of the Fermi line. They must be subtracted
from the holelike contribution [central part in Fig. 4.1(c)]. If
the flaps get bigger than the central part, RH can even reverse
its sign [1]. For similar reasons (holes partially behaving as
electrons and leading to seemingly compensated transport),
holes alone can give rise to a magnetoresistance [1]. This is
the case of our hexagonal 2D model [see Fig. 4.1(d)]. Using an
extraction procedure assuming the existence of two kinds of
carriers and n = p, as described in Appendix B, the parameters
of Fig. 4.1 would lead to almost equal mobilities (96.2 and
93.5 cm2/V.s, respectively) and concentrations napp = papp =
7.36 × 1027 m−3. Here, we draw an intermediate conclusion
(which is not original, see, e.g., Refs. [1,2]): Finding a small
RH value and a substantial magnetoresistance does not prove
that two kinds of carriers are at play. Figure 4.1 even shows that
a system involving just holes can mimic compensated transport
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FIG. 4. (Color online) (1) (a) Fermi line, (b) polar plot of the velocity along the Fermi line, (c) polar plot of the mean free path, and (d)
magnetoresistance of a 2D hexagonal system of NFEs with N = 2 (τp = 10−14 s, U = 0.25 eV, four 2D planes per unit cell, c = 1.36 nm
and a = 0.304 nm). (2) (a) Fermi line, (b) radial plot of the velocity, and (c) mean free path for N = 6 (τp = τn = 10−14 s, U = 0.75 eV,
c = 1.36 nm and a = 0.304 nm).

with almost perfectly balanced electron and hole properties.
With a higher N , we now have both hole and electron bands,
and the considerations developed above now apply to both
kinds of carriers (Fig. 4.2). Increasing the value of U makes
the hole Fermi line smoother and tends to reduce the flap size
(as has been done, e.g., in Fig. 4.2 with respect to Fig. 4.1).
However, as long as the Fermi line appreciably deviates from
a circle, the mean free path curve, even if it is devoid of flaps
[as that of electrons in Fig. 4.2(c)], also departs from a circle
and leads to a substantial modification of RH , as well as to
magnetoresistance.

For such a simple system, does a conventional two-band
model provide reliable density values? In order to answer this
question, we plot the real electron and hole densities as a
function of N (Fig. 5), as well as the apparent values napp =
papp, which would be extracted by using a procedure such
as that described in Appendix B. Figure 5 indicates that napp

always stays around 1028 m−3, whereas both the real electron
and hole densities considerably depart from that range. Here,
RH is quite small and, depending on N , can be either positive or
negative. This example also shows that, in spite of considerable
variations of the real densities, napp can remain remarkably
stable, even if both the sign and magnitude of RH vary.

Another lesson can be taken from Fig. 5, which can explain
a relative insensitivity of the apparent densities to the electron
band filling. A small value of RH can indeed be due to several
reasons. It may be induced by a compensation between holes
and electrons [which cancels the numerator of RH as given by
Eq. (6)], or to a large number of just one kind of carriers (which
acts on both the denominator and numerator), but it is only in
the isotropic case that the common observation of a small value

of RH and of magnetoresistance indicate the presence of two
kinds of carriers. Additionally, it is a common misconception
to believe that Fermi lines of different perimeters (and thus
of different densities) necessarily give rise to widely different
σXY values, everything otherwise fixed. What matters is the
variation of the mean free path along the Fermi line, as
indicated by Eq. (7). If the velocities and the scattering times
exhibit similar values for both the hole and electron bands,

τ

FIG. 5. (Color online) Variation of carrier densities in the various
bands as a function of the number of electrons per unit cell N (left)
and Hall coefficient versus N (right); hexagonal 2D NFE model. The
line entitled “electron density in all partially filled bands” includes
the total electron densities in both the hole and electron bands.
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then the mean free paths plots will also be similar, and the
number of carriers in each band is not necessarily the relevant
property: both bands will give the same absolute contribution
to σXY , but with opposite signs, leading to compensation and
a very small RH . In our model, similar velocities are precisely
expected because both bands are derived from the very same
free electron curve [see Fig. 4.2(b)]. Increasing N in Fig. 5, the
electron pockets start to get filled above some threshold (and
the hole concentration p decreases). After a steep variation
of RH on a narrow interval at the onset of electron filling, the
pockets expand, and one rapidly reaches a kind of plateau with
a negative value (Fig. 5). This plateau is a direct consequence
of the considerations developed above. The degeneracy of the
hole band is 1 and that of the electron pockets is 2. The
mean free path curves of the hole band and one of the two
electron pockets almost cancel one another out [Fig. 4.2(c)],
and the net contribution to σXY is due to the second electron
pocket. Since the velocity does not appreciably vary with the
filling, RH exhibits a plateau, whose value is fixed by the
uncompensated electron pocket, yet p substantially decreases,
whereas n increases.

D. Predicted results for MAX phases

We simply use the lattice parameters of the MAX phases
and select a set of energy parameters aimed at recovering
the Fermi surface of a given phase. Here, we shall focus on
the case of Ti2AlC, but we draw conclusions which can be
extended to other MAX phases. Figure 6 gives the results
obtained for a Fermi line mimicking the full Fermi surface of
Ti2AlC (Fig. 3, valley degeneracy gn = 1 for the electron band
and gp = 2 for each hole band). The curves are obtained for
equal electron and hole relaxation times τn = τp = 10−14 s,
which represent a common order of magnitude for metals [3].
Figure 6 indicates that, in spite of a minor electron contribution
to ρab (as postulated in [16]), there is a substantial contribution
of all carriers to RH . Holes alone would lead to a value
of RH almost twice higher than the expected one for the
case gn = 1 and gp = 2 (see Fig. 6; for gn = gp = 2, the

ΩΔρ
ρ

FIG. 6. Transport parameters corresponding to the 2D Fermi line
mimicking the projection of the Fermi surface of Ti2AlC (see Fig. 4)
as a function of magnetic field. From left to right: magnetoresistance,
resistivity, and Hall coefficient (gn = 1).

difference is still larger). Any band, considered alone, exhibits
a substantial magnetoresistance (see the left graph of Fig. 6),
but the measured magnetoresistance is due to holes, since they
give the major contribution to the overall resistivity.

A two-band isotropic model (here applied to the case gp =
2 and gn = 1) would give napp = papp = 3.94 × 1027 m−3,
and mobilities μp

∼= 148 cm2/V.s and μn
∼= 125 cm2/V.s,

respectively (polycrystals give values around 1027 m−3 [6]).
A one-band model would give only holes with papp = 4.60 ×
1028 m−3. Here, the true values are p = 2.02 × 1028 m−3 and
n = 2.07 × 1027 m−3 (we note that, for a more realistic band
structure, the real densities would probably be different, but
would nevertheless depart from the apparent ones for the
very same reasons). From this example, it is quite obvious
that neither a conventional two-band model, nor a one-band
model can give reasonable estimates of the true densities. The
small value of RH and the apparent compensation must not
be attributed to the fact that the hole and electron densities
compensate one another, since they are quite different. Firstly,
we note that the velocities remain of the same order of
magnitude in most parts and in any band (close to the free
electron velocities). Secondly, with phonon scattering, we
can reasonably expect an almost isotropic scattering time.
If τn and τp are similar, the mean free path curves of any
hole and electron bands are thus more or less similar. In
the case of impurity scattering, we also expect similar mean
free path values. Therefore, we can reasonably expect that all
bands give roughly similar values of σXY . The two electron
pockets per unit cell roughly compensate two hole bands. The
two remaining hole bands (gp = 2) give the net contribution
to σXY , and since the hole density is high, RH is small.
Additionally, RH is not only fixed by the hole density, but
also by the local curvature of the Fermi line. If the hole
and electron bands were in equal numbers (gn = gp = 2), we
would expect an even larger compensation, not resulting from
similar electron and hole concentrations. Also, in this example,
the magnetoresistance is entirely due to the shape of the hole
Fermi line and is not a signature of compensated transport.

Some substantial modifications are expected if τn and
τp become different. Figure 7 shows the variation of the
apparent two-band model density as a function of the ratio
τn/τp (two cases are shown, gn = gp = 2 or gn = 1 and
gp = 2). In practice, this ratio can differ from unity because,
e.g., acoustical phonon scattering depends on the number of
available final states after a collision, and the lengths of the
Fermi lines of holes and electrons are different (from Fermi’s
golden rule, the scattering rate of a 2D isotropic band would
be roughly proportional to the length of the Fermi line).
Impurity scattering may also differ for electrons and holes.
Figure 7 shows that a moderate change in τn/τp can produce
a noticeable change in the extracted density and even reverse
the sign of RH . This sensitivity to moderate changes of some
physical parameters is expected to affect the experimental
data significantly. For instance, a variation of τn/τp with T

might induce an apparent density variation. To confirm this,
we incorporate a temperature dependence by combining the
impurity and phonon scattering times τimp and τph according
to Matthiessen’s rule 1/τ = 1/τimp + 1/τph. We take 1/τph

proportional to T and maintain constant the mean free path
for impurity scattering λimp, so that τimp = λimp/vk. Figure 8
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FIG. 7. For the same Fermi line as in Fig. 6, plot of the two-band
model carrier density, Hall coefficient, and resistivity as a function of
the electron relaxation time τn (τp being fixed).

shows the predicted temperature dependence of napp = papp

(conventional two-band model) and proves that a modification
of τn/τp can lead to an apparent variation of the carrier density.
Reasonable ratios can even lead to a substantial decrease of
these densities with T , a phenomenon which cannot be ex-
plained within the frame of a physically sound isotropic model.
Although not shown here, it is also not difficult to find sets of
parameters for which RH becomes almost independent of T .

=Kph
n

ph
p ττ

=Kph
p

ph
n ττ

T
W

O

FIG. 8. For the same Fermi line as in Fig. 6, plot of the
two-band model carrier density with temperature, for different room
temperature ratios between the electron and hole scattering times.
The insert shows the mobility.

We can now list some predictions of our 2D model, so
as to compare them with the experiment reported in Sec. III.
They are not only based on the data presented above, but on
additional calculations carried out using, e.g., other values
of U , N, band splitting, etc. First, one should observe a large
anisotropy in order to justify the applicability of a 2D model to
in-plane transport (ρc � ρab). Secondly, for in-plane transport
and assuming reasonable relaxation times for metals (from
10−15 to some 10−14 s [25]), a conventional two-band model
should give extracted densities napp = papp of some 1027 m−3,
and mobilities in the range of 10–500 cm2/V.s. Here, RH

should be small, from 0 to some 10−10 m3C−1, and either
negative or positive. The magnetoresistance should be of a
few percent for B around 10 T.

III. EXPERIMENT

A. Sample processing and measurement principle

We can produce single crystals of Cr2AlC, V2AlC, Ti3SiC2,
Nb2AlC, and Ti2SnC. However, the size of Nb2AlC and
Ti2SnC crystals remains quite small (platelet area around
100 × 100 μm), and Ti3SiC2 crystals are often of a lower
quality and more irregular. The data reported here are thus
restricted to Cr2AlC and V2AlC crystals of macroscopic size
(less than centimeter range). Unfortunately, the calculation of
the Fermi surface of those two MAX phases has not yet been
achieved, so that we cannot directly use our 2D model with
properly adjusted energy parameters, yet the 2D model allows
us to make general predictions, and the aim of this section is
to compare them with the experiment. The single-crystalline
platelets were produced by high temperature solution growth
(any practical detail can be retrieved from Refs. [11,12]). The
crystal plane is always perpendicular to the c axis. The biggest
crystals have areas in the range of a few centimeters squared
for Cr2AlC, and around 1 cm2 for V2AlC, with thicknesses
t of the order of 100–200 μm for Cr2AlC and 30–70 μm for
V2AlC. The Cr2AlC crystals are first polished so as to obtain
a uniform thickness. The as-grown V2AlC samples do not
require polishing because their thickness does not vary more
than a few percent over the crystal area. Samples are patterned
in two different ways: some are cut with a diamond wire saw
so as to form parallelepipeds; others are defined by laser cut
in order to produce Hall bars with well-defined and aligned
lateral arms. Van der Pauw and Hall bar measurements are
conducted from T = 4 to 300 K and magnetic fields B from
0 to 11 T. Injected currents are typically 10 mA. For in-plane
transport measurement, the final silver paint or silver epoxy
points joining the wires to the sample spread over the full edge
of the samples so as to ensure a correct current injection.

All samples exhibit a small aspect ratio, which makes a
correct extraction of ρc difficult. For such geometries, the
Montgomery method [26] is not well suited, especially if
the anisotropy ratio is high and varies with T [27]. The
most appropriate strategy is to use conditions as close as
possible to a direct measurement of ρc and ρab. Here, we
use a specific device structure, as proposed by Charalambous
[27] and Charalambous et al. [28] a few decades ago for
analyzing the anisotropies of the normal state resistivity of
YBa2Cu3O7−x . Figure 9 illustrates the device structure and
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FIG. 9. Factor used for correcting the raw values of ρc measured
using a device as described by the schematics inserted in the graph
(c axis is perpendicular to the device plane).

measurement principle. The current is injected through large
square contacts consisting of a stack of Ti or Cr (a few
nanometers thick) and Cu (around 1 μm) layers. The voltage
is measured through smaller lateral contacts (see Fig. 9). The
raw resistance data are corrected using a factor f which
is a function of sample geometry. Here, f is computed by
conformal mapping of the sample [27] and is plotted in
Fig. 9 as a function of the relevant geometrical factor s/tel ,
where s is the extent of the lateral contacts and spacing (see
Fig. 9), and tel is the electric thickness tel = t(ρc/ρab)1/2 (we
note that, for practical purposes, and since Ref. [27] is not
available, we found that f can be approximated as ln(f ) ∼=
−0.03791 + [0.7486 − 0.6617 × (s/tel)0.307] × ln(s/tel); the
relative error between this formula and the original integral
form is kept below a few 10−3 for s/tel ranging from 0.03 to
1). The resistivity is calculated from [27]

ρcorrected
c = R × Ld

t
× 1

1 − f
, (8)

where R is the measured resistance, and L, d, and t are
dimensions defined in Fig. 9 (for t tending to infinity, f

vanishes, and the resistivity is given by the raw value RLd/t).
Once ρc is measured, the resistivity anisotropy ratio ρab/ρc is
obtained by using the in-plane transport resistivity measured
from a Van der Pauw sample or a Hall bar processed from a
crystal issued from the same process run.

B. Anisotropy ratio ρc/ρab

Figure 10 summarizes results obtained in the case of
Cr2AlC. The left graph of Fig. 10 shows the temperature
variation of the raw data of ρc. As expected, those values vary
a lot for different aspect ratios. This illustrates the incapacity
of the raw data to provide reliable values. The middle graph
of Fig. 10 shows the variation of the corrected ρc values
versus T . Although the correction does not merge all curves,
the maximum difference between the three samples does not

Ω

ρ
ρ

ρ
10

−4
Ω

FIG. 10. Raw resistivity value, corrected resistivity value, and
anisotropy ratio of three Cr2AlC single crystals of different sizes and
aspect ratios.

exceed a factor of 1.5. We attribute the residual variation to
the fact that our crystals are all but perfect: Typically, the full
width at half maximum of the pole figure diffraction peaks
varies from 0.06 to 0.2◦, so that some variability between
samples and thus different relaxation times are to be expected.
The anisotropy ratio is plotted in the right graph of Fig. 10.
It is very substantial, in the range of a few hundreds. As
in the case of YBa2Cu3O7−x , ρc and ρab do not exhibit the
same temperature coefficient [28], so that the anisotropy ratio
increases as T decreases as long as phonon scattering prevails.
Plotting the same data for a V2AlC sample shows that the
anisotropy ratio is still higher, starting from 9000 at low T and
decreasing down to 3000 at room temperature (Fig. 11). The
anisotropies obtained for Cr2AlC and V2AlC are a spectacular
illustration of the impact of the nanolamellar structure of the
MAX phases on electrical transport and strongly support our
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FIG. 11. Raw resistivity value, corrected resistivity value, and
anisotropy ratio of a V2AlC single crystal.
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Δρ
ρ

ρ
Ω

FIG. 12. Resistivity versus temperature and magnetoresistance
versus magnetic field of a Hall bar (the parabolic fits cannot be
distinguished from the experimental data); Cr2AlC single crystals.

assumption of a strong spatial confinement in the transition
metal planes.

C. Basal plane transport

Figure 12 (left) shows the variation of ρab as a function of
T for both Cr2AlC and V2AlC. The evolution is qualitatively
similar to that already reported for polycrystalline phases,
but the resistivity values are much lower in the case of the
single crystals. The factor of improvement with respect to
polycrystalline phase data [6] is around 18 for V2AlC, and 9
for Cr2AlC. The ratio between the room temperature value and
the defect-limited value indicated by the low T plateau is equal
to 14 for V2AlC and 4 for Cr2AlC. Since the structural quality
of our crystals is not excellent [11,12], it is highly probable
that these values do not represent a lower intrinsic limit, and
further improvement of the materials quality should result
in an additional resistivity drop. As for the polycrystalline
phases, we observe a magnetoresistance of a few percent in
both cases, higher for V2AlC than for Cr2AlC, in line with
the resistivity values. This magnetoresistance decreases with
T (Fig. 12), a fact that can easily be accounted for by the
expected decrease of τn and τp with T . Here, RH is small,
as previously noticed for polycrystalline samples, with some
variability from sample to sample (see Fig. 13 for V2AlC and
Fig. 14 for Cr2AlC). The sign of RH is always positive. For
Cr2AlC, this is in qualitative agreement with the result found
for the polycrystalline phases [6], but for V2AlC, negative
RH values were reported for polycrystals [6]. It is also worth
noticing that different V2AlC samples can lead to different
RH values, but there seems to be no substantial variation of
RH with T (see Fig. 13). Here, remember that, depending
on the ratio chosen for τn/τp, our model can give either
positive or negative values (Fig. 7). We ascribe the variability
of the samples to a change in their quality, which according

FIG. 13. Hall coefficient of three different V2AlC single-
crystalline Hall bars.

to our simplified 2D model can lead to substantial variations
of RH . Due to the strong T dependence of the resistivity at
intermediate and high temperature, the smallness of RH and
�ρab/ρab makes them difficult to be measured, and we notice
that a very slight temperature variation during a magnetic field
sweep may seriously affect the final values of �ρab/ρab or RH

(typically the fluctuations of T should be less than 1%). We
suspect that some of our fluctuations, as well as those reported
in the literature, might be due to this artefact.

Using Cr2AlC temperature data devoid of noise, and
for which the magnetoresistance was found to be perfectly
parabolic, we have extracted the carrier densities and mobil-
ities using the conventional two-band model. The results are

FIG. 14. Hall coefficient, two-band model density, and mobilities
as a function of temperature for a Cr2AlC Hall bar (solid lines are a
guide for the eyes).
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plotted in Fig. 14. The apparent carrier density napp = papp sig-
nificantly decreases with T . Such values can obviously not be
equal to the real ones, which for such metallic levels and in the
absence of phase transition should stay almost constant with T .
This illustrates the inadequacy of the isotropic two-band model
to describe MAX phases correctly, in agreement with previous
observations conducted on polycrystalline Cr2AlC [33]. Here,
we note that, in spite of the frequent claim that the extracted
densities are constant with T , screening the literature shows
that, if this is true for a number of phases, variations may be
quite substantial for many others (see, e.g., table 5.2, p. 162 in
[6] and references therein). Our 2D model simply explains this
apparent variation in terms of a variation in the ratio τn/τp. We
find apparent densities in the range of 1027 m−3, as predicted
by the 2D model (and as reported for polycrystalline phases).
Apparent mobilities decrease from 120 to 70 cm2/V.S when
T varies from 4 to 200 K.

IV. CONCLUSION

We have proposed a model which assumes that the carriers
at the Fermi level are spatially confined in the transition metal
planes, so that the MAX phases behave as quasi-2D electron
systems. For some MAX phases, a NFE approach gives Fermi
surfaces very close to those derived from much more elaborate
techniques. The 2D model assumes a high anisotropy between
ρab and ρc and gives the expected orders of magnitude for
the in-plane resistivity, Hall coefficient, or magnetoresistance.
It is based upon the assumed shape of the Fermi line, which
includes both hole bands and electron pockets. The departure
of this line from a circle is responsible for an anisotropy of the
in-plane velocities and for a partially compensated electron and
hole behavior even when only one energy band is considered
alone. It also determines the magnetoresistance. The transport
properties are therefore not ultimately determined by the action
of hole and electron bands, the densities of which would
simply compensate one another, as in the case of an isotropic
band structure, yet the small RH values can still be partly
explained by a compensation between holes and electrons.
This compensation is not related to their relative densities, but
to their relative velocities and mean free paths along the Fermi
line. Independently of the carrier concentrations, a hole band
and an electron pocket roughly give opposite contributions, as
long as the velocities and scattering times on their respective
Fermi lines remain similar, implying in turn similar values of
the mean free path. In such a case, each electron pocket roughly
compensates a hole band, and one has simply to count the
number of uncompensated bands or pockets to predict the sign
of RH . However, different electron and hole scattering times
can dramatically affect this prediction, as depicted in Sec. 2.4.
We found that, in the case of a 2D hexagonal system of NFEs,
the true electron and hole densities can vary by a considerable
extent without appreciably modifying either the two-band
model apparent carrier densities or the corresponding mobility
values. On a numerical basis, the model might thus explain
the apparent almost perfect compensation observed in the
literature napp

∼= papp, as well as the weak variation of napp

and papp when passing from one phase to another.
Experimentally, we found that: (i) the anisotropy ratio

of single crystals is considerable. (ii) As for polycrystalline

samples, the apparent carrier densities given by a two-band
model are in the range of 1027 m−3. (iii) RH is quite small
and possibly varies with T . (iv) The apparent carrier densities
given by a two-band model can decrease with T (Cr2AlC) or
remain roughly constant (V2AlC). (v) The magnetoresistance
is in the range of a few percent at B = 10 T. (vi) There is
also a noticeable variability of the extracted parameters, which
we attribute to the combination of the variability in sample
quality and the sensitivity of the transport parameters on
sample quality. As discussed in Sec. II, all six points above are
explainable within the frame of our 2D model. Additionally,
we note that points (i) and (iv) cannot be explained by a
conventional one- or two-band model [unless one makes use
of a pseudo-2D, isotropic model for point (i)], and that point
(vi) would be difficult to explain in the case of metallic
carrier densities, which are not expected to be too sensitive
on defect concentration. The striking similarity between some
polycrystalline and single-crystalline extracted data is yet to
be explained, and no such attempt has been made in this paper.

The considerations provided in this paper and the data
obtained from single crystals strongly suggest that neither a
one- nor a two-band isotropic model can lead to extracted
values approaching the real carrier densities and mobilities.
For this reason, maybe these models should simply be
dropped, or if used for the sake of comparison, it should
remembered that they only deal with what the parameters of
an isotropic model should be in order to exhibit equivalent
transport properties. It is worth noticing that some MAX
phases exhibit Fermi surfaces more complex than that given
by the theory of NFEs. Some of our conclusions are therefore
not necessarily applicable to these phases on a quantitative
basis. Additionally, we neglected the possibility of magnetic
breakdown, a phenomenon likely to happen at high field with
close electron and hole Fermi surfaces. However, from the
general arguments developed in this paper, it would be quite
surprising that parameters extracted from isotropic models be
more relevant for such complex Fermi surfaces, for which
the local curvature and the velocities at the Fermi surface are
the key parameters controlling transport. The Fermi surface
of MAX phases has never been experimentally probed to our
knowledge, yet only the experimental verification of its shape
for various MAX phases can ultimately prove or invalidate our
analysis.
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APPENDIX A

The Ti2AlC electronic structure calculations used to pro-
duce the Fermi surface and electron density plots of Figs. 2
and 3 were performed with the WIEN2k code [29], a DFT
all electron and full potential code where Kohn-Sham orbitals
are described using an augmented plane wave + local orbitals
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approach. Experimental unit cell parameters from Ref. [30]
were used (a = b = 3.063 Å, c = 13.680 Å, space group:
P 63/mmc) and the z coordinate of the titanium atom (the
only internal free parameter) was optimized. The plane wave
cutoff was set to RminKmax = 7.5 where Rmin is the smallest
muffin tin radius in the system (1.77 arb. units for the C
atom in our case) and Kmax the plane-wave momentum cutoff.
The self-consistent field calculation of the potentials was
performed considering 66 k-points in the irreducible part of
the first Brillouin zone, and the Fermi surface calculation
was performed on a denser grid of 1920 k-points. The
Fermi surface and electron density plots were done using the
XCrySDen software [31]. Exchange and correlation effects
were treated in the generalized gradient approximation (GGA)
of Perdew, Burke, and Ernzerhof [32]. Although the optimized
zT i position is sensitive to the treatment of exchange and
correlation effects (zT i

GGA = 0.0839 and zT i
LDA = 0.0825), we

checked that the FS computed in the GGA or local density
approximation (LDA) were identical.

APPENDIX B

A two-band model where electrons and holes can be
described by an isotropic effective mass gives a resistivity
ρ and Hall coefficient RH of the form [3]

ρ = ρnρp(ρn + ρp) + (
ρnR

2
p + ρpR2

n

)
B2

(ρn + ρp)2 + (Rn + Rp)2B2
,

(B1)

RH = Rnρ
2
p + Rpρ2

n + RnRp(Rn + Rp)B2

(ρn + ρp)2 + (Rn + Rp)2B2
,

where the indices n and p refer to the electron and hole band,
respectively, and other symbols keep their previously defined
physical meaning. Assuming n = p reduces those expressions
and gives a resistivity ρ = ρ0 + �ρ with

ρ0 = 1

ne(μn + μp)
,

(B2)
�ρ

ρ0
= μnμpB2 = αB2,

and a Hall coefficient

RH = Rn

(
ρ2

p + ρ2
n

)
(ρn + ρp)2 . (B3)

The experimental knowledge of the parabolic coefficient α

of the magnetoresistance �ρ/ρ0, of the Hall coefficient RH ,
and of the resistivity ρ0 allows one to extract napp = papp and
the mobilities from

μn,p =
∣∣∣∣RH

2ρ0

(
±1 +

√
1 + 4

αρ0

R2
H

)∣∣∣∣,
(B4)

n = p = 1

eρ0(μn + μp)
.

This is the method used to compute or extract the apparent
densities and mobilities in Secs. II and III.
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