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In light of the new experimental and theoretical important developments in high-Tc superconductivity, we
revisit the fermionic hot-spot model relevant to the phenomenology of the cuprates. We extend previous results
by means of a complete two-loop order renormalization group (RG) framework. Here, we explicitly study the
effect of the charge-density-wave (CDW) order parameter with a d-wave form factor with the experimentally
observed modulation (±Q0,0) and (0, ± Q0) at the infrared-stable nontrivial fixed point obtained previously for
this model. Additionally, we proceed to investigate also the so-called pair-density-wave (PDW) order that was
recently proposed in the literature as a possible candidate for the “hidden” order to describe the pseudogap phase
observed in underdoped cuprates. We confirm that although the above two ordering tendencies are also found
to be nearly degenerate both at one-loop and two-loop RG orders and linked by an emergent SU(2) pseudospin
symmetry, they turn out to be subleading for weaker couplings in the present model to antiferromagnetism,
d-wave bond-density wave (BDW) order with modulation along Brillouin zone diagonals (±Q0, ± Q0), and
d-wave singlet superconductivity (SSC). However, as we increase the strength of the initial coupling towards
moderate values, we do capture a tendency for the entangled PDW/CDW order to become leading compared
to BDW/SSC in the model, which suggests that the former composite order might be indeed a viable concept
to describe some cuprate superconductors at high temperatures in the underdoped regime, as has been recently
alluded to by many authors in the literature.
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I. INTRODUCTION

The underlying nature of the pseudogap phase observed
in the underdoped cuprates continues to be one of the most
enigmatic and profound problems in condensed matter theory.
Despite this statement, a lot has been learned about this phase
both theoretically and experimentally in the last years. On the
experimental side, groundbreaking measurements performed
on the non-Lanthanum-based materials have increased dramat-
ically our present knowledge about these compounds. Nuclear
magnetic resonance experiments [1,2], resonant [3,4] and
hard [5] x-ray scattering, ultrasound measurements [6], and
scanning tunneling microscopy [7,8] confirmed the emergence
of a charge-density-wave order (CDW) at small hole doping
at wave vectors (±Q0,0) and (0, ± Q0) oriented along the
principal axes of the CuO2 planes with a predominant d-wave
form factor [9,10]. This CDW has the form of a checkerboard
and is incommensurate with the lattice, since it connects
approximately the “tips” of the Fermi arcs [11,12]. This gave
an initial impetus for the interpretation that such a CDW could
be the missing “hidden” order in the pseudogap phase that
might be ultimately responsible for the reconstruction of the
Fermi surface observed, e.g., in quantum oscillation experi-
ments in YBCO at high magnetic fields [13,14]. However, this
latter interpretation, at least at face value, has been recently
challenged by some experiments due to the fact that the
transition line of this CDW phase is essentially dome-shaped
and, in general, is not coincident with the pseudogap line T ∗
observed in the phase diagram of these compounds.
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Since the “tips” of the Fermi arcs in the pseudogap
phase are close to the so-called hot spots (i.e., the points
in momentum space in which the antiferromagnetic zone
boundary intersects a putative underlying Fermi surface of
these compounds), this could mean that a possible low-energy
effective model to describe these materials might be a spin-
fermion model, or more generally, a hot-spot model [15–21].
In this respect, it has been famously demonstrated in Ref. [16]
that, if the energy dispersion is linearized, an emergent SU(2)
pseudospin symmetry that rotates the d-wave superconducting
order parameter onto a “d-wave bond-density wave” (BDW)
order [18] with modulation along Brillouin zone diagonals
(±Q0, ± Q0) exists in the model and this property effectively
produces a composite order parameter with both bond order
and preformed pairs at high temperatures [17]. However, a
generally acknowledged drawback of this approach is related
to the fact that the leading charge order indeed always appears
at the wave vector (±Q0, ± Q0), which, so far, has never
been observed experimentally. Many alternative scenarios
[22–29] that aim to resolve this discrepancy with experiments
have also been proposed in the literature, but no consensus
has yet emerged in the community with regard to what is
the mechanism responsible for the pseudogap phase in the
cuprates.

For this reason, many researchers continue trying to uncover
what might be the “hidden” order that is fundamentally
responsible for the emergence of the pseudogap phase seen
in the cuprates. Several good candidates on the table (which
are not mutually exclusive) include pair-density-wave (PDW)
order [30–33], the aforementioned d-wave CDW order at
wave vectors (±Q0,0) and (0, ± Q0) (which may also break
additional discrete symmetries such as the C4 lattice rotational
symmetry down to the C2, and time-reversal and parity
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symmetries [22,25]), Mottness [30,34], orbital loop current
order [35–37], fractionalized Fermi liquid [27], among others
[29]. For simplicity, we shall concentrate in this work only on
the first two candidate orders (i.e., PDW and CDW) and leave
the analysis of other possible orders that might be present in
the underdoped cuprates for a future study.

The PDW order refers essentially to a superconducting
order with a finite Cooper-pair center of mass momentum,
similar in this respect to a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [38,39]. It has been recently proposed that this
order may account for the anomalous quasiparticle excitations
seen by angle-resolved photoemission (ARPES) experiments
in both LBCO and YBCO [32]. The PDW order could also
potentially emerge from a doped Mott insulator scenario
as a strong-coupling instability due to an effect similar to
“Ampere’s law” [30]. In this respect, in Ref. [30], it was
argued that the pseudogap phase in underdoped cuprates is
more appropriately described by a PDW instead of simply
a CDW. Additionally, it has also been pointed out in the
literature that the PDW order might give rise to a secondary
nonsuperconducting order parameter that breaks both time-
reversal and parity symmetries, but preserves their product
[31]. The breaking of time-reversal and parity symmetries
in the pseudogap regime would be consistent, e.g., with the
experimental signatures obtained both via polarized neutron
scattering [40] and Kerr-rotation experiments [41,42]. There-
fore it becomes clearly important to analyze, in a more detailed
way, the role of the PDW order parameter in the context of
low-energy effective models that might describe the essence
of the physics of the underdoped cuprates.

In light of the many recent experimental and theoretical
developments described above, we build upon a work by
two of us by revisiting here the so-called fermionic hot-spot
model defined in Ref. [43] and analyzed within a two-loop
renormalization group (RG) framework. The fermionic hot-
spot model can be seen as descendant of the Abanov-Chubukov
spin-fermion model [15] that, most importantly, includes here
all relevant interactions between the fermions and, for this
reason, enables one to analyze all possible instabilities of the
model from weak to moderate couplings on equal footing.
We mention that the fermionic hot-spot model has also been
recently studied by Whitsitt and Sachdev [44] within a one-
loop RG approach and their results, up to this order, agree with
ours. In the present paper, we explicitly study the effect of the
charge-density-wave (CDW) order parameter with a d-wave
form factor with the experimentally observed wave vectors
(±Q0,0) and (0, ± Q0) in the vicinity of the infrared-stable
nontrivial fixed point obtained at two loops [43] that, as a result,
naturally implies a new quantum critical universality class
for the present model. Moreover, we proceed to investigate
in this scenario also the role of the PDW order, which was
recently proposed in the literature as a viable candidate for the
“hidden” order to describe the pseudogap phase observed in the
underdoped cuprates. Interestingly, we confirm that the above
two orders turn out to be also nearly degenerate both at one-
loop and two-loop RG orders and clearly linked by an emergent
SU(2) pseudospin symmetry at low energies. Despite this fact,
they continue to be subleading for weaker couplings in the
present model to antiferromagnetism, d-wave bond-density
wave (BDW) order with modulation given by (±Q0, ± Q0)

and d-wave singlet superconductivity (SSC). We then finish
by discussing how the PDW/CDW order is likely to become
leading compared to BDW/SSC order in this model, which
would potentially agree with the experimental situation.

This paper is organized as follows. In Sec. II, we define
the so-called fermionic hot-spot model that, as we will
explain, might be relevant to describe some aspects of the
phenomenology of the underdoped cuprates. In Sec. III,
we briefly introduce the field-theoretical RG approach and
show how to implement this method up to two loops in the
present model. In this part, we will concentrate specifically
on discussing the role played by the PDW and CDW orders
(both with a predominant d-wave factor) at the experimentally
observed wave vectors (±Q0,0) and (0, ± Q0) that emerge
in the low-energy limit of the model. The relevant RG flow
equations are then derived and solved in Sec. IV. Finally, we
present our conclusions in Sec. V.

II. THE FERMIONIC HOT-SPOT MODEL

To begin with, we consider a single-band fermionic model
whose noninteracting part is given by the following energy dis-
persion ξk = −2t(cos(kx) + cos(ky)) − 4t ′ cos(kx) cos(ky) −
μ, which is given in terms of units of the lattice constant,
the parameters t and t ′ are, respectively, the nearest-neighbor
and next-nearest-neighbor hoppings and μ is the chemical
potential. For the specific case of the cuprates, one may assume
for simplicity the choice of parameter t ′ = −0.3t , which, at
low hole doping, results in the Fermi surface (FS) displayed
in Fig. 1. In the interval 0 < |μ| < 4|t ′|, the corresponding FS
intersects the antiferromagnetic zone boundary at eight points
(the aforementioned hot spots). These hot spots are shown
in Fig. 1 and the excitations residing near the locus of these

FIG. 1. (Color online) The present 2D fermionic model consist-
ing of eight hot spots (with bare Fermi velocities vF and angle θ ) on the
Fermi surface that are directly connected by the commensurate spin
density wave (SDW) ordering wave vector Q = (π,π ). The incom-
mensurate wave vectors Qx = (Q0,0), Qy = (0,Q0), Q̃ = (Q0,Q0),
Q

′
x and Q

′
y are also displayed.
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points in fact generate the most singular contributions in the
model at long distances and long time scales. Besides, one can
naturally rotate the momentum axes by an angle of π/4 by
defining new axes (kx,ky), where the rotated momenta kx and
ky are depicted in Fig. 1.

Since we will focus on the universal properties of this
model, we may linearize the energy dispersion around the
hot spots as ξk ≈ vF.k with k being the momentum mea-
sured relative to the hot spots, the Fermi velocity vF =
(vx, vy) with the modulus of the components given by vx =
|∇(kx ,ky )ξk|k=kF

| cos θ and vy = |∇(kx ,ky )ξk|k=kF
| sin θ , with θ

being the angle depicted in Fig. 1. Here, we specialize to
the value μ ≈ −0.77t (i.e., a low hole-doped regime). It is
interesting to point out, however, that our results are fairly
insensitive to this choice of the chemical potential, as long as
0 < |μ| < 4|t ′|. The components of the momentum kx and
ky are restricted to the interval [−kc,kc], where kc stands
for a sharp ultraviolet (UV) momentum cutoff in our theory.
This implies also a high-energy cutoff, which is given by
�0 = 2vR

F kc that we choose to be of the same order of the
full bandwidth of the problem, i.e., �0 ∼ 8t .

The fermionic hot-spot model at zero tempera-
ture is described by the partition function Z =∫
D[ψ,ψ] exp(i

∫ ∞
−∞ dt LR[ψ,ψ]) with the interacting renor-

malized Lagrangian LR given by

LR =
∑
k,σ

Zψ ψ
R

σ (k)
[
i∂t − Zx

v vR
x kx − Zy

v vR
y ky

]
ψR

σ (k)

−
∑

i

∑
k1,k2,k3

σ,σ ′

Z2
ψ gB

i ψ
R

σ (k4)ψ
R

σ ′(k3)ψR
σ ′(k2)ψR

σ (k1),

(1)

where k4 = k1 + k2 − k3 and the volume V has been set
equal to unity. All bare quantities (indicated by the superscript
B) are related to the renormalized quantities (indicated by
the superscript R) by the following standard expressions:

ψB
σ (k) = Z

1/2
ψ ψR

σ (k), ψ
B

σ (k) = Z
1/2
ψ ψ

R

σ (k), vB
x = Zx

v vR
x and

vB
y = Z

y
v vR

y , where Zψ is the field renormalization factor
and Zx

v and Z
y
v are the Fermi velocity renormalization

factors. The renormalized Grassmann fields ψ
R

σ (k) and ψR
σ (k)

are associated, respectively, to the creation and annihilation
operators of the low-energy excitations residing in the vicinity
of the hot spots with momentum k and spin projection σ .
The index i refers to the many possible interaction processes
in the model that generate singularities within perturbation
theory. Here, we follow roughly the notation of Ref. [43], i.e.,
i = 1,2,3,1c,2c,1x,2x,1s,1r,3x,3p,3t,3v,1b,2f (for details
of the couplings taken into account, see Fig. 2). In this way,
our approach will mirror the so-called “g-ology” notation
[45], adapted to our 2D problem at hand. Additionally, we
define dimensionless renormalized couplings (denoted by
ḡR

i ) in the following way: gB
i = N−1

0 Z−2
ψ [ḡR

i + δḡR
i ], where

N0 = kc/π
2vR

F is the density of states at the Fermi level. In
all above expressions, we set conventionally Zψ = 1 + δZψ ,
Zx

v = Z−1
ψ (1 + δZx

v ), Z
y
v = Z−1

ψ (1 + δZ
y
v ), where δZψ , δZx

v ,
δZ

y
v and δḡR

i are the counterterms that will be calculated order
by order within the renormalized perturbation theory [46].

Since the number of couplings in the present model is large,
the possibilities for choosing their initial conditions are also
considerable. Therefore our choice here will be motivated by
relevant physical microscopic models. We shall restrict our
analysis in the present paper to the paradigmatic 2D Hubbard
model, whose initial conditions for the couplings are given by

FIG. 2. The relevant couplings in the present fermionic hot-spot model. For the g1s , g3t , and g3v couplings, we show two possible scattering
processes (one by a solid arrow and the other by a dashed arrow), which are always equal in our two-loop RG results.
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gR
i = kcU/(π2vR

F ) for all i, where U > 0 is the local on-site
repulsive interaction strength.

III. FIELD-THEORETICAL RG

In this section, we describe the two-loop RG approach
that we shall apply in the rest of this work. Our discussion
here will be relatively concise, since the field-theoretical RG
methodology was already explained by two of us in great detail
in the context of the present model elsewhere [43,47]. Within
perturbation theory, if we compute many one-loop quantities,
such as, e.g., particle-particle and particle-hole polarization
bubbles for several choices of incoming external momenta q
and also their corresponding two-loop-order corrections, we
obtain several logarithmic divergences of the type ln(�0/�)
as we probe the system towards the low-energy limit � → 0
(see also Refs. [48–50]). As we have already explained above,
we circumvent this problem by defining counterterms for
all the dimensionless couplings, the fermionic fields and the
Fermi velocity of the model that, by construction, effectively
regulate all divergences order by order within the renormalized
perturbation theory. The resulting coupled-differential RG
equations obtained by this method are thus given in Appendix.

To exemplify the field-theoretical RG method, if we calcu-
late the self-energy of the present model (e.g., for kx > 0 and
ky > 0) at two-loop order within the renormalized perturbation
theory, we obtain the following nonanalytic contribution:



(2 loops)
R (k,ω) = − k2

c

4π2
(
vR

F

)2

(
γψω − γvx

vR
x kx + γvy

vR
y ky

)
× ln

(
�0

max
{
ω,vR

F |k|}
)

− (
δZψ ω − δZx

v vR
x kx − δZy

v vR
y ky

)
, (2)

where γψ = γvx
= (g2

1c + g2
2c + g2

1x + g2
2x + g2

3p + g2
3x −

g1cg2c − g1xg2x − g3pg3x) and γvy
= (g2

1x + g2
2x + g2

3p +
g2

3x − g2
1c − g2

2c + g1cg2c − g1xg2x − g3pg3x). For simplicity,
we shall omit the superscript R in the above renormalized
dimensionless couplings of the model from here on. As
a result, we obtain the following RG flow equation up to
two loops associated with the renormalized Fermi velocity
vR

F = (vR
x ,vR

y ), i.e.,

�
d κR

d�
= κR

4
(
1 + κ2

R

) γ̃vy

({
gR

i

})
, (3)

where κR = (vR
y /vR

x ) = tan θR is the ratio between the com-
ponents of the Fermi velocity at the hot spots and γ̃vy

({gR
i }) =

γvy
+ γψ . From Eq. (3), one obtains that the only infrared

(IR) stable fixed point corresponds to κ∗
R → 0 (or θ∗

R → 0),
which refers to a perfect nesting condition of the hot spots
connected by the antiferromagnetic (AF) ordering wave vector
Q = (π,π ). Although this only happens, strictly speaking,
in the limit of � → 0, one can check numerically that for
moderate couplings and not too low RG scales, κ is already
reasonably suppressed and the resulting renormalized FS
exhibits an approximately nesting condition connected by
(π,π ) (see, e.g., Fig. 3). This fact will be clearly favorable

FIG. 3. (Color online) A possible renormalized Fermi surface
suggested by the present two-loop RG calculation of the fermionic
hot-spot model. Note the resulting nesting condition of the hot spots
connected by Q = (π,π ).

to antiferromagnetic fluctuations that will play a major role in
the present system as will become clear shortly.

It is important to discuss at this point on the contribution
of both particle-particle and particle-hole bubbles for some
choices of wave vector q (to check our present definitions,
see Fig. 1). If we calculate those quantities, we obtain the
following expressions:

�PH (q = Q̃) = N0

2
ln

(
�0

�

)
, (4)

�PP (q = Q̃) = −N0

2
ln

(
�0

�

)
, (5)

�PH (q = Q) ≈ N0

2 cos θR

ln

(
�0

max
{
�,2vR

F kc sin θR

})
, (6)

�PH (q = Qx) ≈ N0λ ln

(
�0

max
{
�,

vR
F kc(1−tan θR)

λ

}
)

, (7)

�PP (q = Qx) ≈ −N0λ ln

(
�0

max
{
�,

vR
F kc(1−tan θR )

λ

}
)

, (8)

�PH (q = Q′
x) ≈ N0λ

′ ln

(
�0

max
{
�,

vR
F kc(1+tan θR)

λ′
}
)

, (9)

�PP (q = Q′
x) ≈ −N0λ

′ ln

(
�0

max
{
�,

vR
F kc(1+tan θR)

λ′
}
)

, (10)

with � being the RG scale, which could be interpreted
(to logarithmic accuracy) in terms of an effective temper-
ature scale. Besides, the prefactors λ and λ′ are given by
λ = 1/(cos θR + sin θR) and λ′ = 1/(cos θR − sin θR) for the
present hot-spot model. We mention here that even though
the bubbles �PH (q = Qx) and �PP (q = Qx) have initially
different prefactors and different low-energy cutoffs compared
to �PH (q = Q′

x) and �PP (q = Q′
x), those prefactors and

cutoffs become identical for the renormalized Fermi surface
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(i.e., θ∗
R → 0). In this way, we will refer only to one type

of particle-particle and particle-hole bubbles [i.e., �PH (q =
Qx) and �PP (q = Qx)] in what follows. All the above
polarization functions agree precisely with those derived in
Ref. [44]. Those particle-hole and particle-particle bubbles
at moderate energy scales satisfying � > 2vR

F kc sin θR and
� > vR

F kc(1 − tan θR)/λ (which would correspond physically
to a “high-temperature” regime) will approximately generate
logarithmic divergences as a function of � that will allow us to
use the field-theoretical RG approach to this model. A similar
result also holds for the particle-particle and particle-hole
bubbles at Qy = (0,Q0) and Q′

y . For moderate interactions, it
can be shown numerically that a nontrivial fixed point can be
reached within such a high-energy regime. We emphasize here
that such an approximation resonates with the idea that there
is possibly a “high-temperature” pseudogap (T < T ∗) in the
cuprate superconductors, which plays the role of the “normal”
state in these compounds out of which many broken symmetry
states (such as, e.g., a phase with either incommensurate charge
or possibly also pair-density-wave order) emerge at lower
temperatures (T < T ∗∗ < T ∗).

We first begin by reviewing previous results [43] and
then we present here new results concerning the present
model. We integrate numerically the RG flow equations for
the model [Eqs. (A1)–(A15)] using conventional fourth-order
Runge-Kutta method. In one-loop RG order, the numerical
solution of those equations shows that, despite the fact that
there is no evidence of a nontrivial fixed point in the model
at this order, nearly all dimensionless coupling constants
diverge at the same critical RG step value lc = ln(�0/�c),
which depends only on the initial conditions for the couplings.
This divergence is appropriately described by the following
scaling ansatz gi(l) = Ci/(lc − l), with lc ∝ (1/U ) and the Ci

are universal constants that do not depend sensitively on the
values of the initial conditions. For instance, for Hubbard-
like initial conditions, their numerical values are found
to be

(C1,C2,C3,C1c,C2c,C1x,C2x,C3x,C3p,C3t ,C3v)

≈ (0.07,0.23,0.39,−0.04,

− 0.02,0.13,0.19,0.19,0.11,0.12,0.25), (11)

and C1s = C1r = C1b = C2f = 0. It is interesting to note that
in the resulting effective theory there are indeed only four
coupling constants that do not diverge (g1s , g1r , g1b, and g2f )
as the RG scale � is lowered towards �c. In this way, they
become comparatively much smaller than the other couplings
at low energies. For this reason, one can go back to the original
model [Eq. (1)] and neglect for simplicity all these irrelevant
couplings to begin with. We shall perform this in the remainder
of this work.

Next, we move on to the two-loop RG case. An important
point we wish to stress here is that it is crucial to implement
the RG method for the present model at least at two loops
or beyond, since as we have shown previously the first
nonanalytic contribution to the self-energy (and, consequently,
the renormalized single-particle Green’s function and related
quantities [43,48]) only emerges at this order. In this respect,
by solving numerically the complete two-loop RG equations
[Eqs. (A5)–(A15)], we can show that one finds instead a

“landscape” of many nontrivial fixed points in the model,
in addition of course to the trivial (i.e., Fermi-liquid) one.
Interestingly, only one nontrivial fixed point [43] turns out
to be stable in all directions in the IR regime, so that any
trajectory in the coupling parameter space close to this fixed
point will necessarily converge to it as the RG scale � → 0.
For this reason, we shall focus our attention from here on
only on this single IR-stable nontrivial fixed point, since it
naturally implies a new quantum critical universality class for
the present problem. The numerical results for this nontrivial
fixed point obtained at two-loop order are approximately given
by

(g∗
1 ,g

∗
2 ,g

∗
3 ,g

∗
1c,g

∗
2c,g

∗
1x,g

∗
2x,g

∗
3x,g

∗
3p,g∗

3t ,g
∗
3v)

≈ (0,1.68,1.84, − 2.0, − 1.0,1.92,1.92,1.92,0,0,0). (12)

We will refer to the above nontrivial fixed point henceforth
as simply the hot-spot fixed point (HSFP). It is important to
emphasize that umklapp interactions in the present fermionic
hot-spot model are fundamental for stabilizing the HSFP in
the IR limit. It may also be noteworthy the fact that some
couplings, due to two-loop-order quantum fluctuations, now
flow asymptotically to zero at low energies, whereas others
flow instead to finite values. This interesting fact should
potentially simplify the solution of the present model by means
of other complementary methods.

IV. LINEAR RESPONSE THEORY

To study the enhanced correlations and possible ordering
tendencies in the present model, we must add to Eq. (1) the
following term:

Lext =
∑
k,α,β

�
αβ

B,SC(k,q) ψBα(k + q/2)ψBβ(−k + q/2)

+
∑
k,α,β

�
αβ

B,DW(k,q) ψBα(k + q/2)ψBβ (k−q/2) + H.c.,

(13)

where �
αβ

B,SC(k,q) and �
αβ

B,DW (k,q) correspond to the bare
response vertices for the superconducting (SC) and density-
wave (DW) orders, respectively. This additional term will
generate some new Feynman diagrams with three-legged
vertices (see Fig. 4), which may also exhibit logarithmic
divergences as a function of the RG scale � in the model.
We can then conventionally define the renormalized response
vertices with their corresponding counterterms as follows:
�

αβ

B,i(k,q) = Z−1
ψ [�αβ

R,i(k,q) + δ�
αβ

R,i(k,q)] for i = SC and
DW. As a result, we shall obtain straightforwardly the
corresponding RG equations up to two loops. Since two of us
have already derived elsewhere [43] the RG equations for the
order parameters associated with antiferromagnetism, d-wave
superconductivity and d-wave bond-density-wave order at
the incommensurate wave vector Q̃ = (Q0,Q0), we shall
not repeat them here. For this reason, we concentrate only
on the PDW and d-wave charge order response vertices
with modulation Qx = (Q0,0) [or Qy = (0,Q0)] in what
follows. If we take into account the effect of the renor-
malization of the FS, the corresponding RG equations are
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+

(a)

(b)

FIG. 4. (Color online) Feynman diagrams for (a) SC and (b)
DW response functions of the present fermionic hot-spot model.
Solid lines represent noninteracting fermionic single-particle Green’s
function, while the wavy lines stand for the renormalized coupling
constants. Depending on the channel analyzed, the vector q can be
Q = (π,π ), Q̃ = (Q0,Q0), Qx = (Q0,0), Qy = (0,Q0), Q′

x and Q′
y .

given by

�
d�

(1)αβ

R,DW(Qx(y))

d�
= λ

[
g3v

∑
σ=α,β

�
(2)σσ

R,DW(Qx(y))
− g3t�

(2)βα

R,DW(Qx(y))

]
+ η �

(1)αβ

R,DW(Qx(y))
, (14)

�
d�

(1)αβ

R,SC(Qx(y))

d�
= λ

[
g3t�

(2)αβ

R,SC(Qx(y))
− g3v�

(2)βα

R,SC(Qx(y))

]
+ η �

(1)αβ

R,SC(Qx(y))
, (15)

where the two-loop self-energy feedback contribution is
given by the anomalous dimension η = �(d ln Zψ/d�) =
(g2

1 + g2
2 + g2

1c + g2
2c + g2

1x + g2
2x − g1g2 − g1cg2c − g1xg2x −

g3pg3x + g2
3p + g2

3x + g2
3/2)/4. It is interesting to point out

here that the above RG equations are the same for both Qx

and Qy , such that the C4 lattice rotational symmetry is always
preserved in our theory. This explains our present notation
Qx(y) in the response vertices.

By antisymmetrizing these response vertices with respect
to the spin indices, we obtain the PDW and CDW order
parameters

�
(j )
PDW(Qx(y))

= �
(j )↑↓
R,SC(Qx(y))

− �
(j )↓↑
R,SC(Qx(y))

,

�
(j )
CDW(Qx(y)))

= �
(j )↑↑
R,DW(Qx(y))

+ �
(j )↓↓
R,DW(Qx(y))

,

where the points at the FS are denoted by j = 1,2 (see Fig. 5).
To determine the symmetry of the order parameter, we must
further symmetrize (or antisymmetrize) the response vertices
with respect to the index j . Thus we obtain

�PDW(Qx(y)) = �
(1)
PDW(Qx(y))

− �
(2)
PDW(Qx(y))

,

�
(d-wave)
CDW(Qx(y))

= �
(1)
CDW(Qx(y))

− �
(2)
CDW(Qx(y))

,

�
(s-wave)
CDW(Qx(y))

= �
(1)
CDW(Qx(y))

+ �
(2)
CDW(Qx(y))

.

As a result, the two-loop RG flow equations for the response
functions associated with a potential instability of the normal

FIG. 5. (Color online) The signs of the order parameters at all
eight hot spots for a d-wave form factor. Instead, for an s-wave form
factor, all signs become positive.

state towards a given ordered (i.e., symmetry-broken) phase
then finally read

�
d

d�
�PDW(Qx(y)) = − λ(g3t + g3v)�PDW(Qx(y))

+ η �PDW(Qx(y)), (16)

�
d

d�
�d-wave

CDW(Qx(y)) = λ(−2g3v + g3t )�
d-wave
CDW(Qx(y))

+ η �d-wave
CDW(Qx(y)), (17)

�
d

d�
�s-wave

CDW(Qx(y)) = λ(2g3v − g3t )�
s-wave
CDW(Qx(y))

+ η �s-wave
CDW(Qx(y)). (18)

A. One loop RG

To get a qualitative idea of the results in the RG analysis,
it can be very useful here to discuss first the results of the
present model in a one-loop approximation, before moving
on to the full two-loop RG case. For this reason, we shall
perform this now. At one-loop RG order, we can calculate
the PDW and CDW response functions close to the critical
scale �c by simply substituting the ansatz gi(l) = Ci/(lc − l)
for the couplings into Eqs. (16)–(18) and setting the two-
loop anomalous dimension contribution to zero (i.e., η = 0).
By doing this, we immediately find two different regimes,
which crucially depend on the initial value of the couplings
for Hubbard-like interactions. To understand this, we must
compare two different energy scales which emerge in the
present problem: the first one is the critical energy scale �c

set by the couplings that diverge in the low-energy limit and
the other scale is the low-energy cutoff of the particle-hole
and particle-particle bubbles (say, at the wave vector q = Qx)
defined by Eqs. (7) and (8), i.e., vR

F kc(1 − tan θR)/λ. For
simplicity, we will consider here the renormalized Fermi
surface that emerges at two-loop RG order to make a qualitative
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estimate as to which of the above scales win over the other in
the two physical regimes mentioned above.

In the first regime, which occurs for weaker couplings in
the present model (i.e., gi < gc, where gc is a critical coupling
parameter), it is easy to verify that vR

F kc > �c. This means that
the low-energy cutoff in the particle-hole and particle-particle
bubbles at the incommensurate wave vector q = Qx will
prevent those polarization functions in the corresponding
susceptibilities to diverge in the scaling limit. In this way, both
PDW and CDW orders will remain subleading with respect
to BDW and SSC, since these latter two orders clearly do
not possess an infrared cutoff in their respective bubbles [see
Eqs. (4) and (5)] for the linearized dispersion assumed in
the present model. This result is clearly in agreement with
several results obtained using different approaches concerning
the spin-fermion model [20,52] and it has also been obtained by
two of us within the context of the present fermionic hot-spot
model in a previous work [43] and, subsequently, confirmed
by other researchers in Ref. [44].

By contrast, in the second regime, and for our present
purposes the most interesting one, the behavior of the system
changes dramatically. This occurs for moderate couplings in
the present model (i.e., gi > gc), since in this case it turns
out that �c > vR

F kc. Most response functions calculated in
this work will exhibit a divergence within such a “high-
temperature” regime, which is due to the divergence of the
couplings at one-loop RG order explained in the previous
section. Consequently, the PDW and CDW response vertices
will now behave near the energy scale �c as a power-law
given by �m(�) ∼ (� − �c)αm , with the exponents given
approximately by

αPDW(Qx(y)) = −λ(C3t + C3v) ≈ −0.37, (19)

αd-wave
CDW(Qx(y)) = λ(−2C3v + C3t ) ≈ −0.38, (20)

αs-wave
CDW(Qx(y)) = λ(2C3v − C3t ) ≈ 0.38. (21)

To establish a precise comparison among the different
possibilities of ordering tendencies in the present model, we
quote the previous one-loop results obtained by two of us in
a previous work [43] regarding the critical exponents of AF,
BDW, and SSC, which are given by

αAF = − 1
2 (C2 + C2x + C3 + C3x + 2C3v) ≈ −0.75, (22)

αd-wave
BDW = 1

2 (2C1c − C2c + C3p − 2C3x) ≈ −0.16, (23)

αd-wave
SSC = 1

2 (C2c + C1c − C1x − C2x) ≈ −0.19. (24)

We note from the above one-loop RG results that the
exponents associated with CDW and PDW response functions
(both with a d-wave form factor) at the experimentally
observed incommensurate wave vectors Qx(y) turn out to be
negative, which implies that the two quantities diverge close
to the critical scale �c at this order. The only exception is the
CDW order at wave vectors Qx(y) with an s-wave form factor
whose exponent is positive and therefore the corresponding
response vertex instead renormalizes to zero near �c. This
latter order parameter turns out to be irrelevant in this case
and, for this reason, we shall neglect this order from here

on. In addition to this, we find, quite surprisingly, that the
exponents associated with d-wave CDW and PDW at Qx(y)

turn out to be larger than the exponents related to both BDW
and SSC orders within this regime. We mention here that this
qualitative trend will also hold at two-loop RG level. Therefore
we establish here that the PDW and the experimentally
relevant CDW indeed emerge as leading ordering tendencies
compared to BDW/SSC in the present fermionic hot-spot
model. With further hole doping, the absolute value of the wave
vectors Qx(y) that determine the modulation of the PDW and
CDW orders will naturally decrease. This dependence of the
observed CDW wave vector on doping has some support from
the experimental situation [51] and is suggestive that the Fermi
surface is indeed playing some role in non-Lanthanum-based
compounds. Another very interesting feature coming out of
the above one-loop RG result is the reasonable proximity of
the critical exponents associated with PDW and CDW. As will
become clear shortly, this is not a coincidence and in fact is
a precursor of the appearance of a new emergent symmetry
at low energies, which relates these two orders in the present
model. Finally, we point out that the above divergences of the
response functions turn out to be an artifact of the one-loop
approximation and, as we will see next, two-loop order terms
will eliminate such singularities altogether. For this reason, we
now move on to the two-loop RG case that we are, of course,
mostly interested in.

B. Two loop RG

As we have shown earlier in this paper, the renormalized
couplings at two loops approach asymptotically only one
IR-stable nontrivial fixed point (the HSFP), which controls
the universal physics of the model at low energies. By
integrating Eqs. (16) and (17) in the vicinity of this fixed
point, we obtain that the calculated response vertices must obey
power-laws described by �m(�) ∼ �ν∗

m , where the two-loop
critical exponents are given by

νPDW(Qx(y)) = −λ(g∗
3t + g∗

3v) + η∗ ≈ 3.22, (25)

νd-wave
CDW(Qx(y)) = λ(−2g∗

3v + g∗
3t ) + η∗ ≈ 3.22, (26)

νAF = − 1
2 (g∗

2 + g∗
2x + g∗

3 + g∗
3x + 2g∗

3v) + η∗ ≈ 0.04, (27)

νd-wave
BDW = 1

2 (2g∗
1c − g∗

2c + g∗
3p − 2g∗

3x) + η∗ ≈ 0.30, (28)

νd-wave
SSC = 1

2 (g∗
2c + g∗

1c − g∗
1x − g∗

2x) + η∗ ≈ 0.30. (29)

From the above result, we conclude that at two-loop RG
level the critical exponents of all response functions calculated
in this work become positive and, as a consequence, instead
of a divergence displayed at one-loop order, they now clearly
scale down to zero at two loops. Physically speaking, this
happens because of the two-loop self-energy feedback (i.e.,
the pseudogap instability) onto the RG equations that acts
as a “preemptive order” that self-consistently gaps all the
correlations out, thus finally generating only short-range orders
in the present model. The two-loop-order corrections also
implies that the quasiparticle weight Zψ tends to be nullified
at the hot spots in the present model and that both uniform spin
and charge susceptibilities tend to become suppressed in the
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low-energy limit, which was previously obtained in Ref. [47].
This may either point to a partial truncation of the Fermi
surface at the hot spots (e.g., Fermi arcs) or it might also lead
to a full reconstruction of the Fermi surface into pockets. Thus
the properties of the critical theory obtained here at two loops
capture some aspects of the phenomenology exhibited by the
underdoped cuprates at high temperatures. Despite this, we
note from Eqs. (25)–(29) that the dominant antiferromagnetic
spin fluctuations exhibit a large but finite correlation length
ξAF. This latter fact, however, disagrees with the experimental
situation, where the correlation length of AF spin fluctuations
is observed to be only of the order of a few lattice constants in
underdoped cuprates.

Another very interesting property that we obtain straight-
forwardly at two-loop RG level concerns one additional
emergent SU(2) pseudospin symmetry that shows up naturally
in the present model. Here, we use the word emergent in
the sense that the original fermionic hot-spot model that
we analyze in the present work is not invariant under this
given symmetry, but only at the novel two-loop fixed point,
we obtain that this symmetry appears. The first emergent
SU(2) symmetry that relates the d-wave SSC order and the
d-wave BDW order parameter at the incommensurate wave
vectors Q̃ = (±Q0, ± Q0) was previously emphasized in the
context of the fermionic hot-spot model in Ref. [43] and
this is clearly evidenced by the equality of those respective
critical exponents. This symmetry is descendant of the SU(2)
pseudospin symmetry demonstrated by Metlitski and Sachdev
[16] and explored further by Efetov et al. [17] for the case of the
spin-fermion model with a linearized dispersion. In addition to
this fact, we find that the critical exponents associated to PDW
and CDW order at the experimentally observed wave vectors
Qx(y) (both with a d-wave form factor) also turn out to be
numerically equal to each other. The underlying reason for this
degeneracy is that these latter order parameters also turn out to
be linked by a similar SU(2) pseudospin symmetry associated
with particle-hole transformations in the present model [one
for each pair of hot spots connected by (π,π )] that map the
d-wave charge order at Qx(y) onto the PDW order parameter at
the same wave vector. In the context of the spin-fermion model,
this has been noted by Pépin et al. [52] (see also Ref. [53])
by including a small breaking of the tetragonal symmetry
(orthorhombicity) at a mean-field calculation and also, quite
recently, by Wang et al. [33,55] using a Ginzburg-Landau
theory, in which case the CDW and PDW order parameters
become components of an SO(4) PDW/CDW “supervector.”
Therefore we reaffirm here this result also in the present
context of the fermionic hot-spot model (but with no breaking
of C4 lattice rotational symmetry) by taking into account
important higher-order fluctuation effects. This agrees with
the observation that the two emergent SU(2) pseudospin
symmetries established here manifest themselves in the present
fermionic hot-spot model coexisting with—but not simply
mediated by (see, e.g., Ref. [54])—strong short-range AF spin
fluctuations. Moreover, in an analogous way to the previous
section, such an entangled PDW/CDW order also turns out
to be subleading to BDW/SSC for weak couplings in the
present model at two-loop RG level. However, as we increase
the couplings to somewhat moderate interactions, we do find
a tendency for PDW/CDW to become leading compared to

BDW/SSC near the HSFP obtained in the present work. This
last result would in principle agree with the experimental
situation, in which the leading charge order that emerge
in non-Lanthanum-based cuprates has indeed a modulation
determined by Qx(y).Therefore it seems reasonable to speculate
here that this new emergent SU(2) symmetry relating PDW and
CDW may indeed have profound consequences for the physics
of the underdoped cuprates, as has been recently alluded to by
many authors in the literature [30–32,55].

V. CONCLUSIONS

In the present work, we have investigated within a complete
two-loop RG framework the fermionic hot-spot model relevant
to the phenomenology of the cuprates, which describes exci-
tations with a linearized dispersion in the vicinity of eight hot
spots (i.e.,, the points in momentum space in which the AF zone
boundary intersects a putative underlying Fermi surface of
the cuprate superconductors at low hole doping). The present
model can be seen as descendant of the Abanov-Chubukov
spin-fermion model that, most importantly, includes here all
relevant interactions between the fermions and, for this reason,
allows one to investigate on equal footing all of its possible
instabilities from a weak to moderate coupling regime.

Here, we have explicitly studied the role played by two
types of order in the model (CDW and PDW) in the vicinity
of the IR-stable nontrivial fixed point obtained at two loops.
By analyzing the CDW response at the experimentally relevant
wave vectors (±Q0,0) and (0, ± Q0), we were able to establish
that this charge order is short-ranged and has a predominant
d-wave form factor, consistent with recent STM experiments
[10] and resonant x-ray scattering [9]. We have also focused
our attention on the so-called PDW order, which was recently
proposed in the literature as a potential candidate for the
“hidden” order to describe the pseudogap phase observed in
underdoped cuprates [30–33], since it may lead to a secondary
order parameter that breaks both time-reversal and parity
symmetries. In this respect, we have confirmed that the PDW
order with the same modulation given by Qx(y) emerges as
an SU(2)-degenerate counterpart of the CDW, which bears
some resemblances with the results in the spin-fermion model
obtained by Pépin et al. [52] at a mean-field calculation and
also by Wang et al. [33]. In such a case, the PDW and CDW
order parameters should become components of an SO(4)
“supervector” (hence the denomination PDW/CDW proposed
in Refs. [33,52]).

For weaker couplings in the model, the PDW/CDW com-
posite order (with a predominant d-wave form factor) is always
subleading compared to BDW/SSC. This is in agreement
with several works in the literature that either consider a
spin-fermion model with weak interactions [20,52] or start
from the full lattice problem and analyze it within a mean-
field approximation [18,54]. By contrast, as we increase the
coupling of the model towards moderate values, the entangled
PDW/CDW order becomes leading compared to BDW/SSC,
which clearly agrees with the experimental situation. We point
out that our present result resonates with a recent proposal by P.
A. Lee [30] that the CDW order experimentally observed in the
underdoped cuprates could be interpreted in terms of a PDW,
which could arise as a potential strong coupling instability in
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a theory of high-Tc superconductivity from the perspective of
doping a Mott insulator. Therefore our present conclusion may
also be seen in qualitative agreement with this point of view.

Finally, we point out that it is crucial to implement the RG
method for the fermionic hot model at least at two-loop order
or beyond, since we have shown here that the first nonanalytic
contribution to the self-energy (which is responsible for many
effects such as, e.g., the renormalization of the single-particle
renormalized Green’s function and related quantities[43,48],
the renormalization of the FS, and others) only emerges at
two loops. Physically speaking, this also happens because the
two-loop self-energy feedback (i.e., the pseudogap instability)
onto the RG equations acts to self-consistently gap all the
correlations out, thus eventually generating only short-range
orders in the present model. The two-loop-order corrections in
addition imply that, for moderate interactions, the quasiparticle
weight tends to be nullified at the hot spots in the present
model and that both uniform spin and charge susceptibilities
tend to become suppressed in the low-energy limit, which
was previously obtained in Ref. [47]. This may either point
to a partial truncation of the Fermi surface at the hot spots
(e.g., Fermi arcs) or it might also lead to a full reconstruction
of the Fermi surface into pockets. Thus the properties of the
critical theory obtained here might be relevant to describe some
aspects of the phenomenology exhibited by the underdoped
cuprates at high temperatures. Further work along the lines
of the one presented here would include to consider more
realistic models in which we couple, for instance, all the hot

spots to both the so-called “lukewarm” spots (i.e., the points
that are reasonably close to the hot spots) and also to the
cold spots in the nodal direction to analyze how robust are
the present results with respect to adding more degrees of
freedom in the system. Also, another direction that clearly
deserves a future investigation will be to calculate transport
properties in the present model, such as electrical resistivity
and thermal conductivity. Since the quasiparticles are not well-
defined in the present model, one must use instead the so-called
memory matrix formalism [56] that, most importantly, does not
assume the existence of quasiparticles at low energies. This
calculation of nonequilibrium properties has been initiated in
recent years to discuss many strongly correlated systems such
as, e.g., the theory of an Ising-nematic transition out of a
metallic state which breaks the lattice rotation symmetry but
preserves translational symmetry [57], a spin-liquid model
with a spinon Fermi surface coupled to a U(1) gauge field [58],
and lastly the theory of spin-density-wave quantum critical
metals [59,60]. For this reason, we also plan to perform such
an important investigation for the present fermionic hot-spot
model in a future publication.
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APPENDIX

In this Appendix, we separate, for simplicity, the RG flow equations for the couplings g1s , g1r , g1b, and g2f that we display
here up to one-loop order taking into account the effect of the renormalization of the FS. They are given by

�
dg1s

d�
= (g1c + g2c)g1s + (g1x + g2x)g1r , (A1)

�
dg1r

d�
= (g1c + g2c)g1r + (g1x + g2x)g1s , (A2)

�
dg1b

d�
= λg2

1b, (A3)

�
d

d�
(2g2f − g1b) = 0. (A4)

As for the complete RG flow equations up to two loops (also taking into account the effect of the renormalization of the FS)
of the other couplings in the present fermionic hot-spot model described by the function βi = �dgR

i /d�, they are given by the
following expressions:

β1 = g2
1 + g2

1x + 4g2
3t + g2

3p − g1xg2x − g3pg3x − 4g3vg3t + 1

2

(
g1xg2x − g2

2x − g3pg3x

)
g1c

+ 1

2

(
g2

1c + g2
1 + g2

1x + g2
2x − g1xg2x − g3pg3x + g2

3p + g2
3x

)
g1, (A5)

β2 = 1

2

(
g2

1 − g2
2x − g2

3 − g2
3x

) − 2g2
3v + 1

4

(
g3

1 + g1cg
2
1x + g1g

2
1c

) + 1

4
(2g2 − g1)g2

3

+ 1

4

[
(2g2c − g1c)

(
g2

3p + g2
3x

) − 2g2cg3pg3x + 2g2
(
g2

3p + g2
3x − g3pg3x

)]
+ 1

2
(g2 − g2c)

(
g2

1x − g1xg2x

) + 1

2
g2g

2
2x + 1

2
g2cg

2
2x, (A6)
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FIG. 6. Relevant Feynman diagrams for the vertex corrections up to two-loop order in the present model. Solid lines denote noninteracting
fermionic single-particle Green’s function, while the wavy lines correspond to the renormalized coupling constants.

β3 = (g1 − 2g2)g3 − g1x(g3x − 2g3p) − g2x(g3p + g3x) + 4(g3t − g3v)g3t − 2g2
3v

+ 1

4

[
(g1 − 2g2)2 + (g1c − 2g2c)2 + 2g2

1x + 2g2
2x − 2g1xg2x − 2g3pg3x + 2g2

3p + 2g2
3x + g2

3

]
g3, (A7)

β3t = (2g1 − g2 + g3 + 2g1x − g2x + 2g3p − g3x)g3t − (g1 + g3 + g1x + g3p)g3v + 2ηg3t , (A8)

β3v = −(g2 + g3 + g2x + g3x)g3v + 2ηg3v, (A9)

β1c = g2
1c + g1xg2x + g2

1s + g2
1r + g2

3x − g3pg3x + 1

2

(
g1xg2x − g2

2x − g3pg3x

)
g1

+ 1

2

(
g2

1c + g2
1 + g2

1x + g2
2x − g1xg2x + g2

3p + g2
3x − g3pg3x

)
g1c, (A10)

β2c = 1

2

(
g2

1c + g2
1x + g2

2x + 2g2
1s + 2g2

1r − g2
3p

) + 1

4

(
g1g

2
1x + g1cg

2
1 + g3

1c

) + 1

2
(g2c − g2)

(
g2

1x + g2
2x − g1xg2x

)
+ 1

4
(2g2c − g1c)g2

3 + 1

4

[
(2g2 − g1)

(
g2

3p + g2
3x

) − 2g2g3pg3x + 2g2c

(
g2

3p + g2
3x − g3pg3x

)]
, (A11)

β1x = g1cg2x + g2cg1x + 2g1sg1r + 2g1xg1 − g2xg1 − g1xg2 + (g3p − g3x)g3 + 4g2
3t − 4g3vg3t

+ 1

2

(
g1g2c + g1cg2 − 2g2cg2 − g2

3p

2
− g2

3x

2

)
g1x + 2ηg1x, (A12)

β2x = g1cg1x + g2cg2x + 2g1sg1r − g2g2x − g3g3x − g2
3v

+ 1

2

(
g1cg1g1x − 2g1cg1g2x + g1cg2g2x + g1g2cg2x − 2g2cg2g2x − g1xg3pg3x + g2xg3pg3x − 1

2
g2x

(
g2

3x + g2
3p

)) + 2ηg2x,

(A13)

β3p = (2g1 − g2c)g3p + g1xg3 + 4g2
3t − g2g3p − g2xg3 − g1g3x − 4g3vg3t

+ 1

2

(
2g2cg2g3p + g2

2xg3x − g1g2cg3p − g1cg2g3p − g1xg2xg3x − g1cg1g3x − g2
1xg3p

2

)
+ 2ηg3p, (A14)
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β3x = (2g1c − g2c)g3x − g1cg3p − g2xg3 − g2g3x − g2
3v

+ 1

2

(
2g2cg2g3x + g2

2xg3p − g1g2cg3x − g1cg2g3x − g1xg2xg3p − g1cg1g3p − g2
1xg3x

2

)
+ 2ηg3x, (A15)

where we have omitted the superscript R in the renormalized dimensionless couplings of the model to not clutter up our notation
and η is the two-loop anomalous dimension contribution. In Fig. 6, we show the corresponding Feynman diagrams for this
calculation up to two loops.
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