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Based on an analysis of the short-range chemical environment of each atom in a system, standard machine-
learning-based approaches to the construction of interatomic potentials aim at determining directly the central
quantity, which is the total energy. This prevents, for instance, an accurate description of the energetics of systems
in which long-range charge transfer or ionization is important. We propose therefore not to target directly with
machine-learning methods the total energy but an intermediate physical quantity, namely, the charge density,
which then in turn allows us to determine the total energy. By allowing the electronic charge to distribute itself in
an optimal way over the system, we can describe not only neutral but also ionized systems with unprecedented
accuracy. We demonstrate the power of our approach for both neutral and ionized NaCl clusters where charge
redistribution plays a decisive role for the energetics. We are able to obtain chemical accuracy, i.e., errors
of less than a millihartree per atom compared to the reference density functional results for a huge data set
of configurations with large structural variety. The introduction of physically motivated quantities which are
determined by the short-range atomic environment via a neural network also leads to an increased stability of the
machine-learning process and transferability of the potential.
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I. INTRODUCTION

Atomistic simulations for materials are nowadays widely
applied to understand and design materials. A wide spec-
trum of simulation methods exist, ranging from quasi-exact
many-electron wave-function methods [1], density functional
theory (DFT) calculations [2], and semiempirical quantum-
mechanical methods [3,4] to interatomic potentials [5]. For
the different methods there are well-known trade-offs between
the computational costs and the accuracy of the calculations. In
contrast to classical force fields, density functional calculations
give sufficient accuracy for a wide range of properties and
are therefore the method of choice in a huge number of
studies. Due to their computational cost, DFT simulations
are, however, limited in practice to systems containing less
than a few thousand atoms. Since there is a great need
to do highly accurate simulations for larger systems, there
have been numerous efforts to improve the accuracy of force
fields without increasing their cost too much. It has been
widely recognized that fixed charges limit the accuracy of
the established standard force fields. In the chemistry and
biology communities polarizable force fields have therefore
been developed [6]. However, such polarizable force fields
allow only for the displacement of charges and do not allow for
a true charge transfer over large distances. Charge equilibration
methods [7–9] offer this possibility. In force fields such as
ReaxFF [10] and the charge-optimized many-body (COMB)
potential [11] it has been demonstrated that the addition
of charge-equilibration terms to the conventional terms can
improve the accuracy of the scheme. COMB potentials
have been successfully applied to several materials such as
silica [12] and titania [9].
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The basic obstacle for accurate standard force fields is
the parametrization problem. Certain forms of parameterized
analytical functions have to be chosen to model the physical
interactions, but it is not known which analytical functions
are optimal. In machine-learning-based methods, on the other
hand, it is not necessary to choose analytical functions.
The machine-learning process will automatically find the
optimal form, which is not represented in terms of classical
analytic functions but, for instance, via a neural network.
As a consequence, the accuracies obtained with force fields
based on machine-learning processes are much higher than for
standard force fields. This has been demonstrated for covalent
bulk materials such as carbon and silicon, for which machine-
learning-based total-energy schemes [13,14] turned out to give
density functional accuracy at greatly reduced numerical cost.
For finite systems such as clusters, the construction of highly
accurate machine-learning-based force fields is more difficult
since atoms at a surface behave quite differently from atoms
in the bulk. It is not surprising that an analysis of the charge
distribution of NaCl clusters obtained from density functional
calculations clearly reveals a charge transfer between atoms
at the surface and in the core of the cluster. The fixed charges
of ±1 electron used in established force fields such as the
Tosi-Fumi force field [5] are therefore clearly inadequate to
describe such systems with high accuracy. Since in the standard
machine-learning-based interatomic potentials the energy of
the whole system is written as a sum of the energies of
individual atoms [15] and since the energy of an individual
atom is determined by the short-range chemical environment,
long-range charge transfers as well as ionization cannot be
well described.

Constant charges are also present in the majority of force
fields for biomolecules, and finding good charges for use in
such force fields is highly nontrivial. Even though the electro-
static part of the interaction energy is not the dominating one
in these force fields, it is to be expected that variable charges
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could also lead in this context to considerable improvements of
the accuracy. Environment-dependent charges obtained from
neural networks (NN) were recently introduced [16], but this
approach does not give the correct total charge of the system
and can, for instance, lead to fluctuations of the total charge in
molecular dynamics simulations. The fact that the total charge
cannot be fixed also prevents the treatment of ionized systems.
In addition, atomic reference charges must be provided in
this approach. The extraction of such charges from ab initio
calculations is always ambiguous.

A machine-learning-based approach which, in the spirit
of our paper, does not directly aim at the total energy but
at an intermediate physical quantity is the work of Snyder
and coworkers [17,18], in which they propose to construct
machine-learning-based kinetic energy functionals. Whereas
in this work the charge density can, in principle, adopt
any form, we restrict our charge density to an approximate
superposition of atomic charge densities. In this way we exploit
the well-known fact that the charge density in molecules,
clusters, and solids is given within a first approximation
by a superposition of atomiclike charge densities. The
distribution of the electronic charge density is determined
by atomic environment-dependent electronegativities. These
electronegativities are in turn determined by the short-range
environment of the associated atom and can easily be predicted
by a neural-network process. To demonstrate the power of
our approach we choose ionic clusters in which a correct
description of the charge density is essential since bonding
is mediated through charge transfer. The fact that the charge
distribution can redistribute itself over the whole cluster will
allow us to treat both surface and bulk atoms with very high
accuracy, and we will demonstrate that density functional
accuracy can be obtained with such an approach for clusters.
In contrast to conventional force fields, our approach also
allows us to describe ionized systems without the need of
any reparametrization.

II. METHOD

We consider a system consisting of N
2 sodium and N

2
chloride atoms. We postulate the following simple form for
the total-energy expression:

Utot({qi}) =
N∑

i=1

(
E0

i + χiqi + 1

2
Jiiq

2
i

)

+ 1

2

∫∫
ρ(r)ρ(r′)
|r − r′| dr dr′, (1)

where E0
i are some fixed reference energies which in our

implementation are set to energies of isolated atoms, qi are
atomic charges, and χi is the environment-dependent atomic
electronegativity of atom i whose functional dependence is
determined by a neural-network approach. To describe the
hardness [19] of atom i we introduce element-dependent
atomic hardness terms Jii . The charge density of the system
ρ(r) is, in our approach, assumed to be a superposition of
spherically symmetric Gaussian functions centered at atomic
positions, each normalized to the corresponding atomic charge

qi given by
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3
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)
.

With this choice for the atomic charge densities, the total
energy of Eq. (1) can be calculated analytically.

Utot({qi},{ri}) =
N∑

i=1

[
E0

i + χiqi + 1

2

(
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π

)
q2

i

]

+
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i>j

qiqj

erf(γij rij )

rij

, (2)

where γij = 1√
α2

i +α2
j

and rij is the distance between atoms

i and j . The atomic charges qi are implicitly environment
dependent through χi , as will be explained below, and are
therefore implicit functions of the atomic positions. The
implicit dependence of qi is obtained by minimizing the total
energy of Eq. (2) with respect to qi . This leads to a linear
system of equations where all matrix elements depend on the
atomic positions,

∂Utot

∂qi

= 0, ∀ i = 1, . . . ,N =⇒
N∑

j=1

Aijqj + χi = 0, (3)

where

Aij =
{

Jii + 2γii√
π

for i = j,

erf(γij rij )
rij

otherwise.

The fact that the electrostatic interaction energy of any
continuous charge density is always positive and that Jii are
positive constants implies that the matrix A is positive definite
and that the linear system of equations therefore always has a
unique solution which gives the minimal electrostatic energy.
The linear system equation (3) has to be solved under the
constraint that the atomic charges sum up to the correct overall
charge qtot = ∑N

i=1 qi . Adding this constraint via the Lagrange
multipliers leads to the modified linear system of equations

ÃQ = X, (4)

where Q and X are vectors of the dimension (N + 1) and Ã

is a (N + 1) × (N + 1) matrix. In expanded form Eq. (4) is
given as ⎛

⎜⎜⎝
1

Ai,j

...
1

1 ... 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q1
...

qN

λ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−χ1
...

−χN

qtot

⎞
⎟⎟⎠. (5)

In this way, we can allow for charge transfer over long
distances without the need to find the presumably extremely
complicated explicit long-range environment dependence of
qi . All that is needed to get the implicit long-range dependence
of qi on the atomic positions is an explicit short-range
dependence of χi , which is fixed once and for all by our
neural network together with the solution of a simple linear
system of equations. In addition, the total charge of the system
is conserved, unlike in the method given by Ref. [16]. This
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approach is physically motivated since in a Kohn-Sham density
functional calculation the total energy is also minimized with
respect to the charge-density distribution. So the approach can
be considered some kind of constrained minimization of the
total energy, where the form of the charge density is restricted
to a sum over Gaussian functions with amplitudes qi . In Kohn-
Sham density functional theory, the total energy consists, of
course, not only of the electrostatic term but also the kinetic and
exchange-correlation terms which oppose a charge distribution
that would merely minimize the electrostatic part of the total
energy. In our scheme this opposing force is represented by
the constraints on the form of the charge density and the
environment dependence of χi .

Even though our energy expression is missing the kinetic
and exchange-correlation terms, the physically important
energy differences can be calculated in a way similar to that in
density functional theory based on the Hellmann-Feynman
theorem. Energy differences are, by definition, given by
the integral over the atomic forces times the displacements.
The long-range force acting on the atoms is the classical
electrostatic force arising from the charge distribution. In this
way it is actually also guaranteed that the charges obtained
by solving the linear system of equations are an accurate
representation of the physical charge density within the
limitations imposed by our adopted form of the charge density.
Unreasonable charge densities would lead to the wrong forces
and hence to the wrong energy differences between different
structures.

As in Ref. [15], the input layers of the neural networks are
fed with the so-called symmetry functions. A symmetry func-
tion is a transformation of the Cartesian atomic coordinates
onto a set of numbers describing the chemical environments
of an atom. The symmetry functions depend explicitly on
the positions of all atoms in the local chemical environment
embedded in a sphere with a given cutoff radius. We adopted
the functional form of the symmetry functions from Ref. [20]
with a modification of the cutoff function as described below.
Our notation is consistent with Ref. [20].

G2
i =

∑
j

e−η(Rij −Rs )2
, (6)

where η is the width of the Gaussian and Rs is its center. The
symmetry function of type G5 for atom i is

G5
i = 21−ζ

∑
j

(1 + λ cos θijk)ζ e−η(R2
ij +R2

ik ) fc(Rij ) fc(Rik),

(7)

where η defines the Gaussian widths and the parameter ζ

controls the angular resolution. The parameters λ can have
values +1 and −1, which shift the maxima of the function
in the parentheses. We used 8 radial functions of type G2

and 43 angular functions of type G5. Both types of symmetry
functions, G2 and G5, have parameters by which information
of different spatial regions of atomic environment is extracted;
for example, all eight radial functions have the same functional
form of type G2 but with different values for η. We employed
a cutoff function fc, which is different from what was done
in Ref. [20]. We used the following polynomial as the cutoff

function:

fc(R) =
(

1 − R2

R2
c

)3

, (8)

where Rc is the cutoff radius. This type of cutoff function
has the advantage that its first and second derivatives are
continuous at the cutoff radius.

In summary, the algorithm consists of the following steps.
For each atom in the system, the characteristic array of
symmetry functions values is calculated and given as an input
to the NN. The output of the NN is then the environment-
dependent electronegativity of the atom. Next, the subsequent
solution of the linear equations gives the atomic charges. In
the last step, the total energy and atomic forces are calculated
using Eq. (2) and the equations given in Appendix B.

III. APPLICATION AND RESULTS

In order to construct and examine the method, we generated
a large number of reference data points using the BIGDFT [21]
code. An accurate evaluation of the electrostatic term in density
functional calculations is of great importance, particularly for
ionized clusters. In the BIGDFT code, the Hartree potential is
calculated using the method given in Ref. [22], which enables
us to have accurate energetics for the ionized reference data
points. The DFT calculations are performed with the local-
density approximation (LDA). A large number of data points
consisting of NaCl neutral and ionized (+1 and +2) clusters
ranging from 8 to 80 atoms with step sizes of 4 are generated.
Data points are split into three sets: training, validation, and
test. Only clusters with fewer than 44 atoms are contained in
the training set. The 64-atom clusters are reserved for testing,
and the bigger ones are used as the validation data set. Training
data points are used for updating the neural-network weights
during a training process. Validation data points are used to
select among different training runs. Since a large diversity of
geometries in the reference data structures is crucial to good
training for potentials based on machine-learning schemes, we
have used great care in generating the reference data structures.
The large diversity of structures in our data sets is discussed
in Appendix A.

In order to avoid overfitting, all training runs are performed
with only 15 epochs. As in Refs. [14,20], a hyperbolic tangent
function is used as the activation function of hidden layers.
Also the activation function of the output layer (values of elec-
tronegativities) is taken to be the hyperbolic tangent function
rather than the commonly used linear function. This allows us
to avoid a strong variation of atomic electronegativities from
one atom to another within a structure, which in turn may
result in too large variations in atomic charges. In contrast
to the standard NN potentials (e.g., Refs. [14,16]), we can
achieve in our approach small errors with a small number of
nodes in NN hidden layers. Among several fits using various
NN architectures and several training runs with different
initial random numbers for NN weights, we obtained the best
compromise between small root-mean-square error (RMSE)
and transferability of the potential for training and validation
data sets with the architecture 51-3-3-1, i.e., 51 symmetry
functions, two hidden layers each containing 3 nodes, and the
single-node output layer. In this way, the number of degrees
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FIG. 1. (Color online) Distribution of error in total energy per
atom with respect to reference DFT calculations for all data points
in the training and validation sets. The number of data points is
normalized to the total number of data points in each data set times
100, indicating the percentage. In total the training and validation sets
contain 15 191 and 7658 structures, respectively.

of freedom has been reduced by one order of magnitude
compared to that in the method of Ref. [16], which requires
several thousand degrees of freedom. The reason why our
method requires many fewer degrees of freedom comes from
the fact that it is easier to fit with a short-range scheme
(i.e., neural network with short-range symmetry functions) a
quantity which itself, namely, electronegativity, is intrinsically
short range. Appropriate values for Gaussian widths and
atomic hardnesses Jii can be obtained by a hand-tuning
process. Gaussian widths of 1.0 and 2.0 bohrs are found
to be optimal for sodium and chlorine atoms, respectively.
Furthermore, values of 0.2 and 0.1 a.u. are found to be suitable
for Jii for sodium and chlorine atoms, respectively. The
hand-tuning procedure is done such that errors in total energy
decrease during the training process within a few epochs while
avoiding large variation of atomic electronegativities from one
atom to another within a structure which in turn prevents
unreasonable charge transfer among atoms.

The obtained RMSE of the training and validation sets
is 0.26 mHa per atom, the RMSE of the neutral test set
is 0.13 mHa per atom, and the RMSE of the ionized test
set (including qtot = +1 and qtot = +2) is 0.44 mHa per
atom. The error distribution of the training and validation
sets is illustrated in Fig. 1. For a few structures, the error
rises to about 1 mHa per atom, while for the majority of
structures it is well below this value and thus far below
the so-called chemical accuracy of 1.6 mHa per particle.
Since large structures are less challenging for our potential
due to a smaller surface-to-volume ratio and our choice of
selecting larger structures in the validation data set, the error
of the validation data points is in some energy intervals
less than that of the training data points. Figure 2 shows
LDA, the Perdew-Burke-Ernzerhof (PBE) functional [23], and
NN energies for different compression and expansion ratios
relative to the equilibrium geometry of the respective method
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FIG. 2. (Color online) Energy vs compression/expansion ratios
(scaling factor) relative to the equilibrium geometry of the respective
method for a 64-atom NaCl cubic structure.

for a 64-atom NaCl cubic structure. The result shown in Fig. 2
demonstrates clearly the transferability of our method since
such compressed and expanded configurations were included
in neither the training nor validation set.

Figure 3 shows the drastic improvement in accuracy of our
force field compared to a standard Tosi-Fumi force field with
constant charges. All energies in Fig. 3 are relative to the
average energy per atom of all structures for each method.

In order to check whether the entire low-energy configu-
rational space is well described by our interatomic potential
we sampled the entire low-energy configurational space for
different cluster sizes with the minima hopping method [24]
(MH), checking for local minima on the NN potential-energy
surface that correspond to unphysical configurations. No
physically unreasonable configurations were found in all these
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FIG. 3. (Color online) Comparison of the correlation in energy
between the LDA reference values and the NN values as well as
between the LDA values and the values obtained by the Tosi-Fumi
force field. Only neutral systems are considered since the Tosi-Fumi
force field is not applicable to ionized systems.
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runs, indicating that the interatomic potential describes well
the entire low-energy configurational space.

IV. CONCLUSION

Based on a machine-learning algorithm, a scheme was
presented to reproduce with high accuracy potential-energy
surfaces of quantum-mechanical origin. Instead of predicting
atomic energies directly, we use NN methods to predict
environment-dependent atomic electronegativities from which
atomic charges are obtained by a charge equilibration pro-
cess [7,8]. Once the charges are available, the total energy
can be calculated easily. Applying the method to neutral and
ionized sodium chloride clusters shows that unprecedented
accuracy can be obtained for a particularly difficult system,
namely, clusters in which the atomic environment differs
drastically between surface and core atoms. The potential is
highly transferable and does not give rise to any unphysical
structures.

The error in the energies of our interatomic potential
compared to the reference density functional data is far
less than the error in total energies arising from the use of
different exchange-correlation functionals. This shows that, in
principle, even accuracies higher than those obtainable from
density functional theory could be achieved if in the training
and validation sets energies are calculated with a more accurate
method.
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APPENDIX A: NATURE OF THE REFERENCE
DATA STRUCTURE

The reference data contain cluster structures with a large
variety of sizes and shapes. As an example, we describe the
nature of the structures of the clusters containing 16 atoms.
The structures can be classified as regular and irregular. The
regular structures include planar shapes, rods, ladders, and
cubes, as well as a mixture of all these geometries. In the
irregular structures, atoms are randomly distributed with the
only constraint that bond lengths are neither too short nor
too long. Ten selected 16-atom NaCl cluster structures, found
in the reference data, are illustrated in Fig. 4. Other cluster
sizes contain similar types of structures; however, the diversity
of geometries grows as the number of atoms in the cluster
increases.

APPENDIX B: ATOMIC FORCES

The calculation of atomic forces is straightforward. The
force exerted on atom j is given by

Fj = −∂Utot

∂rj

−
N∑

k=1

∂Utot

∂qk

∂qk

rj

, (B1)

where the second term vanishes as required by Eq. (3). So we
do not have to calculate the derivative of the charges qi with

(a)
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(h)

(i)

(j)

FIG. 4. (Color online) Illustration of structural diversity in the
reference data sets for the case of 16-atom clusters: (a) ladder-type
structure, (b) ladder-type structure which is bent, (c) cuboid structure,
(d) cuboid structure in which three bonds are broken, (e) a nearly
elongated random structure, (f) a ladder structure attached to a cuboid,
(g) two cuboid structures which share a cube, (h) a rodlike structure
attached to a plane, (i) a compact random structure, and (j) another
compact random structure.

respect to the atomic positions. This is analogous to the use of
the Hellmann-Feynman theorem in standard DFT, which tells
us that the derivative of the wave function (and consequently
also of the charge density) with respect to the atomic positions
is not required. So the formula simplifies to

Fj = −
N∑

i=1

(
qi

∂χi

∂rj

)
+

N∑
i>j

qiqj

∂Vij

∂rj

,

where Vij = erf(γij rij )
rij

. The derivatives of χi with respect to
atomic positions are calculated in the neural-network process.
The first term describes the force acting on atom j arising from
the local charge distribution around this atom. The second
term in the force expression is the contribution arising from the
electrostatic energy of the global charge distribution excluding
the self-energy of a Gaussian.
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