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Spatial-dispersion-induced birefringence in metamaterials with cubic symmetry

Alexander V. Chebykin,1 Maxim A. Gorlach,1,2,* and Pavel A. Belov1

1ITMO University, St. Petersburg 197101, Russia
2Belarusian State University, Minsk 220030, Belarus

(Received 21 April 2015; revised manuscript received 12 July 2015; published 28 July 2015)

We consider an array of isotropic particles possessing electric polarizability located in the sites of a cubic
lattice. The dispersion properties of the structure and the polarization of eigenmodes are studied employing the
discrete dipole model. We reveal the features beyond the effective medium model, namely, the anisotropy of
the structure induced by spatial dispersion, and suggest a simple experiment allowing one to observe the effect.
Additionally, we demonstrate that the eigenmodes of the structure are neither transverse nor longitudinal but
have a “mixed” polarization state in the general case.
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I. INTRODUCTION

The modern condensed matter physics deals with various
many-particle systems with complicated interactions between
the constituent elements. For that reason, the approximate
models that are capable of capturing the main features of
the system neglecting some minor effects are of particular
relevance. The technologies existing currently allow one to
create and investigate such artificial structures as optical
lattices, formed by cold atoms [1], regular arrays of quantum
dots in semiconductor physics [2], and arrays of scatterers
[3–5] in metamaterial physics. Tailoring the properties of
metaatoms as well as the geometry of their arrangement in
the lattice, it is possible to fabricate metamaterial with unusual
and to some extent exotic electromagnetic response.

It is well established that there exists a class of metama-
terials exhibiting strong spatial dispersion effects that do not
occur in natural structures [6,7]. Moreover, it is known that
the nonlocal effects can be either suppressed or enhanced
depending on the geometry of metamaterial [8] and operation
regime [5]. Thus, the possibility to tailor spatially dispersive
response of metamaterial provides a novel degree of freedom
in material science and challenges metamaterial engineers.

In the present paper, we consider electromagnetic properties
of metamaterial composed of isotropic particles (namely,
plasmonic spheres) located in the sites of a cubic lattice
(Fig. 1). Such a structure is described by the isotropic
permittivity tensor from the standpoint of the local effective
medium model [9]. Additionally, this kind of metamaterial was
investigated previously in many works [4,10–15]. We revisit
the problem paying special attention to the nonlocal effects in
the structure. It should be mentioned that many authors studied
the propagation of the wave along the crystal axes without
paying attention to any other directions of propagation [13–15]
or investigated particular eigenmode polarization along the
crystal axis [16]. It seems to be quite natural because this
assumption leads to the simplification of equations describing
wave propagation whereas any medium formed by isotropic
particles in the sites of a cubic lattice is fully isotropic in
the effective medium model validity domain [9]. However,
this isotropy is destroyed by spatial dispersion effects as the
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direction of wave vector �k with respect to the crystallographic
axes provides a selected direction in space. This simple
observation was pointed out in a number of works [17,18]
and is termed as spatial-dispersion-induced birefringence. This
effect was observed experimentally for such natural materials
as Cu2O, [19,20] CaF2, and BaF2 [21,22] but expectedly
was sufficiently weak. All the previous theoretical studies
of this effect [17,18] relied on the expansions of the tensor
ε̂(ω,�k) with respect to �k up to the second order employing
further some symmetry considerations. In our work, we
use the nonlocal homogenization approach [23] employing
the discrete dipole model [10,24–26]. This theoretical ap-
proach, as it was demonstrated in the previous publications
[3–5,7,27] allows one to provide the self-consistent description
of spatial dispersion effects in the structure without perturba-
tive expansions with respect to wave vector. We demonstrate
that the eigenmodes of the structure are neither purely
transverse nor purely longitudinal in the general case. We also
propose a scheme of experiment involving the measurements
of the reflection coefficients for different polarizations allow-
ing one to observe spatial-dispersion-induced birefringence
in metamaterials. The theoretical conclusions are verified by
numerical simulations.1

1Software package CST MICROWAVE STUDIO.

x

y

z

a

2R

FIG. 1. (Color online) Metamaterial composed of isotropic par-
ticles arranged in the sites of a cubic lattice.
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The rest of the paper is organized as follows. In Sec. II,
the homogenization of the discrete structure is outlined
and the dispersion equation is provided. Section III contains
the calculated dispersion diagram and its discussion. The
typical isofrequency contours and the information about the
polarization of eigenmodes are provided in Sec. IV. In Sec. V,
the scheme of experiment revealing spatial-dispersion-induced
birefringence in metamaterials is discussed and the theoretical
results are compared with the results of numerical simulations.
Finally, Sec. VI contains the drawn conclusions. Some compu-
tational details regarding the discrete dipole model are moved
to Appendixes A and B.

II. HOMOGENIZATION OF THE STRUCTURE
AND DISPERSION PROPERTIES

The electromagnetic homogenization of metamaterial
means the derivation of effective material parameters from
the known properties of constituent elements and known
interactions between them. For the structure consisting of
electric scatterers, this procedure was discussed in Ref. [4].
In the case when the discrete dipole model can be applied,
the derivation of the structure effective material parameters is
briefly outlined below.

We use the CGS system of units and assume e−iωt time de-
pendence of monochromatic fields; q = ω/c and �k is arbitrary
wave vector. According to the general homogenization scheme
[23] we consider excitation of the structure by the external
distributed sources �j (�r) = �j0 ei�k·�r . If placed in a vacuum, such
sources create a monochromatic field �Ee(�r) = �Ee0 ei�k·�r . Then
the equation for the dipole moment of the scatterer in the
coordinate origin is as follows [3,24,25]:

�d = α̂

[ ∑
(m,n,l)�=(0,0,0)

Ĝ(−�rmnl) �dmnl + �Ee0

]
, (1)

where α̂ = α Î is the polarizability tensor of the scatterer, m,
n, l are the integers enumerating lattice sites, �rmnl = ma �ex +
na �ey + la �ez, and a is the lattice period. The distribution of the
scatterer dipole moments in space is determined by the external
excitation and has the form �dmnl = �d ei�k·�rmnl . The external field
can be related to the amplitude of the scatterers dipole moment
using Eq. (1):

�Ee0 = [α̂−1 − Ĝ�k] �d, (2)

where the lattice sum,

Ĝ�k(q; �k) ≡
∑

(m,n,l)�=(0,0,0)

Ĝ(�rmnl) e−i�k·�rmnl , (3)

is introduced.
Homogenization of the structure implies the derivation

of the relation between the averaged electric field and the
averaged polarization; the averaged fields are defined as
follows [23,28]:

〈 �E〉 = 1

a3

∫
V0

�E(�r) e−i�k·�r d3�r,
(4)

〈 �P 〉 = 1

a3

∫
V0

�P (�r) e−i�k·�r d3�r =
�d

a3
.

The total electric field in the structure can be represented as the
sum of the external field �Ee(�r) and the field �Es(�r) created by
the dipoles of the polarized structure. The latter can be related
to the averaged polarization of the structure via [28]

〈 �Es〉 = �̂�k �d , �̂�k = −4π

a3

q2Î − �k ⊗ �k
q2 − k2

. (5)

Combining Eqs. (2) and (5), we derive

〈 �E〉 ≡ 〈 �Ee〉 + 〈 �Es〉 = [α̂−1 − Ĉ�k] �d, (6)

where the designation Ĉ�k = Ĝ�k − �̂�k is employed. The quan-
tity Ĉ�k represents the interaction constant of the lattice and it
is equal 4π/(3 a3) Î in the quasistatic limit ka � 1, qa � 1
[9,29]. Equation (6) establishes a link between the averaged
structure polarization and the averaged field. Thus, the effec-

tive susceptibility of the structure is χ̂ = [α̂−1 − Ĉ�k]
−1

/a3,
and the effective nonlocal permittivity tensor is as follows
[4,7]:

ε̂(ω,�k) = Î + 4π

a3
[α̂−1(ω) − Ĉ�k(q; �k)]−1, (7)

where α̂ and Ĉ�k depend on frequency in the general case.
Moreover, Ĉ�k depends on the wave vector. We also note that in
the lossless case the imaginary parts of α̂−1 (corresponding to
the radiation loss contribution) and Ĉ�k cancel each other for the
propagating modes [3], and the structure effective permittivity
is a real valued function. If spatial dispersion effects are
neglected and a quasistatic expression for the interaction
constant is used, one obtains an isotropic permittivity tensor of
the structure corresponding to the Clausius-Mossotti formula
[9]:

ε(ω,�k) = 1 + 4π

a3
[α−1(ω) − 4π/(3 a3)]−1. (8)

Substituting the derived effective permittivity Eq. (7) to the
standard dispersion equation [30],

|�k ⊗ �k − �k2 Î + q2ε̂(ω,�k)| = 0, (9)

it is easy to deduce the dispersion equation for the eigenmodes
in the structure [10,15]:

|α̂−1 − Ĝ�k(q; �k)| = 0. (10)

This dispersion equation can be easily envisioned from Eq. (2)
if one sets �Ee0 to zero (no external excitation) and requires
the system to have nontrivial solutions �d corresponding to the
eigenmodes.

III. DISPERSION DIAGRAM ANALYSIS

We solve the dispersion equation Eq. (10) numerically
using rapidly convergent expressions for matrix elements of
the tensor Ĝ�k given in Appendix A. Numerical calculations
are performed for a model structure consisting of spherical
isotropic particles with the radius R = a/2.1, permittivity
of particle material εp(ω) = 1 − ω2

p/ω2, where the plasma

frequency ωp = ω0

√
3 = 0.229 c/a, and the resonance fre-

quency of a single particle is ω0 = 0.132 c/a, the same as
in Refs. [4,16]. The inverse polarizability of the individual
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FIG. 2. (Color online) The dispersion diagram for the structure
composed of isotropic particles with electric polarizability.

particle is set to

α−1 = α−1
0 − 2iq3

3
, α0 = εp − 1

εp + 2
R3. (11)

The term −2iq3/3 in the latter expression describes the
radiation loss contribution [31].

The dispersion diagram is plotted in Fig. 2 for the
directions of propagation �X, XK , K�, �R. It can be
seen that the degeneracy of the transverse eigenmodes takes
place for some directions of propagation, whereas for the
other directions the degeneracy is removed. This degeneracy
removal reflects the anisotropic properties acquired by the
structure. To understand the most important features of the
dispersion diagram in more detail, we analyze some particular
cases when the dispersion equation simplifies considerably;
we assume that the coordinate axes are aligned along the
crystallographic axes of the structure.

For the waves propagating in the �X direction
(kx �= 0, ky = kz = 0), G

xy

�k (q; kx,0,0) = Gxz
�k (q; kx,0,0) =

G
yz

�k (q; kx,0,0) = 0 (see Appendix A). The dispersion Eq. (10)
splits into three independent equations:

α−1 − Gzz
�k (q; kx,0,0) = 0,

α−1 − G
yy

�k (q; kx,0,0) = 0, (12)

α−1 − Gxx
�k (q; kx,0,0) = 0.

The first two relations in Eq. (12) describe the conventional
transverse wave (dx = 0); two equations account for two
possible polarizations of the transverse wave. These equations
are exactly the same as the dispersion equation for TM waves
in the structure consisting of the uniaxial electric scatterers
[3,5]. As G

yy

�k (q; kx,0,0) = Gzz
�k (q; kx,0,0), the degeneracy of

the transverse eigenmodes propagating in the �X direction
is observed as for isotropic medium. The third equation in
Eq. (12) describes the longitudinal wave polarized along its
wave vector (dy = dz = 0). The longitudinal modes are known
to arise in spatially dispersive structures [4,18].

For the waves propagating in the �R direction (kx = ky =
kz), Gxx

�k (q; kx,kx,kx) = G
yy

�k (q; kx,kx,kx) = Gzz
�k (q; kx,kx,kx),

and G
xy

�k (q; kx,kx,kx) = Gxz
�k (q; kx,kx,kx) = G

yz

�k (q; kx,kx,kx).
Therefore, the dispersion equation Eq. (10) simplifies to the
following relations:

α−1 − Gxx
�k − G

xy

�k = 0,

α−1 − Gxx
�k − G

xy

�k = 0, (13)

α−1 − Gxx
�k + 2 G

xy

�k = 0.

The eigenmode described by the first two relations of Eq. (13)
is doubly degenerate and its polarization state is such that
dx + dy + dz = 0, or �d · �k = 0, i.e., the wave is transverse.
The eigenmode described by the third relation of Eq. (13)
satisfies the formula dx = dy = dz, i.e., it is polarized along the
wave vector; this mode clearly corresponds to the longitudinal
wave. If kx = π , G

xy

�k vanishes and all the equations, Eq. (13),
coincide, i.e., all the dispersion curves touch each other at
the edge of the Brillouin zone. Therefore, seven directions
corresponding to edges and main diagonals of the cube in
the Brillouin zone are the optical axes of the crystal. The same
conclusion was drawn in Refs. [17,18] after the investigation of
the second-order spatial dispersion corrections to the effective
permittivity tensor employing symmetry considerations; in
the present reasoning we do not employ any perturbative
expansions with respect to �k.

Considering the directions of propagation different from
the specified optical axes, we notice that the degeneracy
of the transverse eigenmodes is removed in the general
case of propagation. Thus, the structure acquires anisotropic
properties induced by the spatial dispersion effects. Namely,
the anisotropy arises for the waves propagating in the �K

direction (ky = 0, kx = kz). In this case, G
xy

�k (q; kx,0,kx) =
G

yz

�k (q; kx,0,kx) = 0, and Gxx
�k (q; kx,0,kx) = Gzz

�k (q; kx,0,kx).
The dispersion equation Eq. (10) yields

α−1 − G
yy

�k = 0,

α−1 − Gxx
�k + Gxz

�k = 0, (14)

α−1 − Gxx
�k − Gxz

�k = 0.

The first relation of Eq. (14) corresponds to the transverse
wave polarized along the y axis, i.e., dx = dz = 0, dy �= 0.
The second relation of Eq. (14) satisfies the conditions dy =
0, and dx + dz = 0, i.e., �d · �k = 0. Therefore, it describes
the transverse mode. However, the dispersion equations for
transverse modes do not coincide that means the anisotropy of
the structure. As it is proved in Sec. II, this anisotropy cannot
be captured by the local effective medium model and arises
purely due to spatial dispersion effects.

Finally, the third relation of Eq. (14) satisfies the constraints
dy = 0, dx = dz, i.e., the mode described by this equation
is longitudinal. If kx = π , Gxz

�k vanishes and the latter two
equations coincide, i.e., two dispersion curves touch each other
at the edge of Brillouin zone.

Note that in the present analysis we assume that the
scatterers are lossless. This assumption simplifies the study in
general and the demonstration of spatial-dispersion-induced
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birefringence in the system in particular. However, as it is
proved in Sec. V below, the effect is still present in the
dissipative case. The methods of investigation of the complex
band structure of lossy photonic crystals and metamaterials
are presented, e.g., in Refs. [32,33].

IV. ISOFREQUENCY CONTOURS

In order to study the structure dispersion properties better,
we plot the system of isofrequency contours for the different
frequencies. The analysis of the dispersion diagram Fig. 2
reveals the main dispersion regimes possible in the structure.
The boundaries of different dispersion regimes ωi are ω(Ai)
with the points Ai depicted in Fig. 2:

(1) When 0 < ω < ω1, ω1/ω0 ≈ 0.650 (ω0 corresponds to
the plasmonic resonance of the individual particle), the circular
isofrequency contours corresponding to the two transverse
eigenmodes are observed; the dispersion properties of these
eigenmodes are almost the same [Fig. 3(a)].

(2) When ω1 < ω < ω2, ω2/ω0 ≈ 0.690, the differences
between the two transverse polarizations become distinct. The
isofrequency contours of the waves polarized along the y axis
acquire the quasihyperbolic fragments whereas the dispersion
regime for the other transverse polarization remains elliptic
[Fig. 3(b)].

(3) When ω2 < ω < ω3, ω3/ω0 ≈ 0.722, the isofrequency
contours for the waves polarized along the y axis have the
shape similar to two concentric circles, and the isofrequency
contours for transverse waves polarized in plane Oxz combine
closed and opened (hyperbolic) fragments, the hyperbolic
fragments being oriented along the coordinate axes [Fig. 3(c)].

(4) When ω3 < ω < ω5, ω5/ω0 ≈ 1.382, a stopband for
the waves polarized along the y axis is observed, whereas
the structure supports propagation of “longitudinal” modes as
well as “transverse” eigenmodes polarized in the Oxz plane.
These eigenmodes have a quasihyperbolic law of dispersion.
The division of the eigenmodes into “longitudinal” and
“transverse” in this frequency region is artificial to some extent.
Here, the wave is classified as “longitudinal” if the angle
between the local electric field and the wave vector is smaller
than 45◦; otherwise the wave is classified as “transverse”
[Fig. 3(d)]. But the division of eigenmodes into transverse and
longitudinal is still valid for the �K direction of propagation
(see Sec. III). If ω < ω4 (ω4/ω0 ≈ 1.137), the eigenmode
propagating in the �K direction is transverse and polarized
in plane Oxz; if ω > ω4, the eigenmode is longitudinal.

(5) When ω5 < ω < ω6, ω6/ω0 ≈ 1.433, both transverse
modes are allowed to propagate in the structure. The dispersion
regime for them is elliptic and the dispersion properties are
almost the same. The longitudinal mode with the hyperbolic
law of dispersion also exists [Fig. 3(e)].

(6) When ω > ω6, the circular isofrequency contours
for both transverse polarizations are observed; the laws of
dispersion for the transverse eigenmodes are almost the same
[Fig. 3(f)].

The performed analysis suggests that the polarization of
eigenmodes is neither purely tranverse, nor purely longitudinal
in the general case. To illustrate this, we consider the
propagation of the wave in the direction (cos ϕ,0, sin ϕ), where
ϕ = 30◦. The dispersion diagram and the angle between the
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FIG. 3. (Color online) The typical isofrequency contours for the
cubic lattice of isotropic particles with electric polarizability. ky =
0. Txz, Ty , and L mark isofrequency contours corresponding to the
transverse waves with polarization in the plane Oxz, transverse waves
polarized along the y axis, and longitudinal waves, respectively.

wave vector and the local electric field as the function of kx

are plotted in Fig. 4.
Our analysis demonstrates also that in the spectral region

ω < ω1 or ω > ω6 the structure behaves as isotropic, and
the effective medium model is valid. However, the unusual
physical effects arise in the intermediate region ω1 < ω < ω6

due to spatial dispersion. Possible experimental detection of
these unusual features is specified below.

V. POSSIBLE OBSERVATION OF
SPATIAL-DISPERSION-INDUCED BIREFRINGENCE

IN METAMATERIALS

The results of Secs. III and IV suggest that the structure
composed of isotropic particles located in the sites of a
cubic lattice acquires noticeable anisotropic properties at the
frequencies near the individual particle resonance. Below, we
demonstrate that this spatial-dispersion-induced birefringence
in metamaterials can be detected experimentally by measuring
the reflection coefficients for different polarizations of the
incident wave. In this section, we propose a specific scheme
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FIG. 4. (Color online) (a) The dispersion diagram for the direc-
tion of propagation (cos ϕ,0, sin ϕ), ϕ = 30◦. Solid curve corresponds
to the “transverse” wave polarized in the plane Oxz (the angle
between the electric field and the wave vector is greater than 45◦);
dashed curve corresponds to the transverse wave polarized along the
y axis, and the dot-dashed curve corresponds to the “longitudinal”
mode (the angle between the electric field and the wave vector is
smaller than 45◦). (b) The angle ϕ1 between the local electric field
and the wave vector for the “longitudinal” wave, that coincides with
the angle ϕ2 − 90◦ for the “transverse” wave.

allowing one to observe the effect (Fig. 5) and perform the
calculations illustrating the effect.

We assume that the boundary of material is parallel to the
crystallographic plane (0,1,1) and study the normal incidence
of the wave at the metamaterial slab [Fig. 5(a)] calculating
the reflection coefficients for two linear polarizations of the
impinging wave.

First we consider the effective medium approach to the
formulated problem. In this approach, the structure is described
by local isotropic permittivity tensor defined according to the
Clausius-Mossotti formula Eq. (8):

ε = 1 + 8πα0/(3 a3)

1 − 4πα0/(3 a3)
, (15)

where the polarizability of the particle is determined by
Eq. (11). The reflection coefficient from the slab of isotropic
dielectric is determined by the standard formula [29]. It is
important that the effective medium model predicts the same
reflection coefficients for both polarizations x and y of the
impinging wave [Fig. 5(a)].

On the other hand, the equality Rx = Ry is not required
by the structure symmetry [Fig. 5(b)]. Thus, the difference
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FIG. 5. (Color online) (a) A scheme of experiment allowing one
to detect the anisotropy of metamaterial due to spatial dispersion by
measuring the reflection coefficients for x and y polarizations of the
incident wave. (b) Top view of the two upper layers of particles. Top
particles are shown by solid line; bottom ones are shown by dashed
contour. The choice of coordinate axes is different from that used in
the previous sections.

between the reflection coefficients will provide the direct
evidence of the structure anisotropy.

To describe the effect of spatial-dispersion-induced bire-
fringence theoretically, we employ the discrete dipole model.
This model is capable of capturing the difference between
reflection coefficients for x- and y-polarized incident waves.
We perform numerical calculations for the metamaterial slab
consisting of N = 21 layer of spherical particles with the
radius R = a/3.6. Permittivity of the particle material is
described by the Drude model,

εp(ω) = 1 − ω2
p

ω2 + i ωc ω
, (16)

with the plasma frequency ωp = ω0

√
3 = 0.229 c/a, the res-

onance frequency ω0 = 0.132 c/a, and the collision frequency
ωc = 2.29 · 10−3 c/a. In order to avoid problems with the
applicability of the Drude fit Eq. (16) to real materials [34,35]
the described model system is investigated. This model system
is scalable to arbitrary sizes and wavelengths (if the resonance
frequency of the particles is also scaled). The realistic proto-
types corresponding to these model parameters would be silver
particles in the visible or silicon carbide particles with shells
of silver in the visible [16]. The lattice period in the former
case would be a = 12 nm, and the particle radius R = 3.33 nm.
The calculated reflection coefficients are presented in Fig. 6(a).
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FIG. 6. (Color online) Calculated reflection coefficients for dif-
ferent polarizations of the incident wave: solid curve for x polariza-
tion; dashed curve for y polarization in the geometry of Fig. 5(a);
dot-dashed curve shows the result derived from the local effective
medium model, the same for both polarizations. (a) Discrete dipole
model. (b) CST MICROWAVE STUDIO.

The details of the discrete dipole model for this problem are
specified in Appendix B.

We also compare the theoretical results with ones simulated
in CST MICROWAVE STUDIO for the same system [Fig. 6(b)].
In numerical simulation, the lattice period was chosen to be
a = 12 nm and the material of the particles was defined exactly
by Eq. (16). The results obtained by these two independent
approaches are in very good agreement; the typical divergence
between them is less than 1%. Comparing the calculated curves
one can easily detect resonances due to higher-order multipoles
that are not taken into account in the discrete dipole model.
Namely, such a resonance exists at frequency ωr = 0.148 c/a

in the investigated system. At this frequency, the discrepancy
between the two approaches is maximal and reaches 14%. Note
also that the prediction of the effective medium model is in
good agreement with the value of the reflection coefficient for x

polarization of the incident wave, i.e., for the wave polarization
along the optical axis of the crystal.

Thus, numerical simulation confirms the drawn conclusion
about the difference between the reflection coefficients for
the two polarizations of the incident wave. This verifies the
phenomenon of spatial-dispersion-induced birefringence that
can be observed in the vicinity of the individual particle

resonance even in the presence of losses. For the considered
system, the difference between the reflection coefficients for
two polarizations can be as large as 16% (ω ≈ ω0), and the
spectral range where the difference between the two reflection
coefficients is greater than 5% is 0.125 < ω a/c < 0.135.

Importantly, the analogous birefringence effects can be
observed in transmission. The difference between transmission
coefficients for x- and y-polarized waves is maximal in the
vicinity of the individual particle resonance. For example, for
a metamaterial slab consisting of five layers of particles with
the parameters defined above, transmission coefficients are
Tx = 0.46, Ty = 0.28 at the frequency ω = 0.131 c/a, and
thus the difference between transmission coefficients reaches
39%. Such measurements should be performed for sufficiently
thin metamaterial slabs. In the case of thick slabs (more
than 15 layers), transmission for both polarizations would be
negligible near the resonance frequency.

It should be mentioned that some qualitative conclusions
about the reflection coefficients can be drawn basing on the
isofrequency contours of the structure without any additional
calculations. Namely, in the vicinity of the individual particle
resonance isofrequency contours have the shape of Fig. 3(d).
In the geometry of Fig. 5, this means that the structure
supports propagation of the y-polarized eigenmode whereas
the x-polarized eigenmode is evanescent [Fig. 7(a)]. On this
ground, one may expect that the reflection coefficient Rx would
be higher than Ry in the vicinity of the particle resonance
(see Fig. 6). Additionally, the proposed explanation suggests
that the difference between the reflection coefficients can
be detected even if the structure is semi-infinite. Therefore,
the discussed anisotropy should be associated with the bulk
properties of the system (i.e., its nonlocal permittivity tensor)
rather than with the metamaterial surface.

Furthermore, the anisotropy of the structure can be detected
regardless of the way the boundary of the metamaterial is cut.
Figure 7(b) illustrates the case when the boundary is cut along
the (0,0,1) plane. The structure still supports the propagation
of the T M mode, and the T E mode is evanescent. On the other
hand, an isotropic medium equally supports propagation of the
modes with both polarizations. Therefore, the relation between
the reflection coefficients for T M and T E polarizations in the

(a)

kt St

kin

air

discrete
structure

(b)

kt

kin

isotropic

discrete
structurez

x
y

y-polarized
eigenmode

TM-polarized
eigenmode

(0,1,1) (0,0,1)

medium
n>1

FIG. 7. (Color online) (a) Illustration of the experiment in Fig. 5
in terms of isofrequency contours. Structure supports propagation of
y-polarized eigenmode whereas x-polarized mode is evanescent. (b)
The boundary of the structure is cut along the (0,0,1) plane. Reflection
at oblique incidence reveals the birefringence effect. �k and �S denote
wave vector and Poynting vector, respectively.
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case of oblique incidence will not correspond to that predicted
by the Fresnel’s formulas.

Finally, it should be stressed that spatial dispersion effects
occur in the studied system even though it is deeply subwave-
length (see, e.g., axes of abscisses in Fig. 6). The intrinsic
reason giving rise to the nonlocal effects is inhomogeneous
field distribution over the unit metamaterial cell. As a result,
local and averaged fields differ significantly. For that reason,
the relation between the averaged polarization and the aver-
aged field in the structure turns out to be essentially nonlocal
although the material of inclusions is local.

VI. CONCLUSIONS

In the present work, we consider the three-dimensional
metamaterial realized as an array of isotropic particles pos-
sessing electric polarizability located in the sites of a cubic
lattice. We study the dispersion properties of the structure
and describe spatial dispersion effects employing the discrete
dipole model. The phenomenon of spatial-dispersion-induced
birefringence in this metamaterial is investigated and a simple
experiment allowing one to observe the effect is suggested.
Namely, we propose to measure the reflection coefficients
for two different polarizations of the incident wave. The
difference between these reflection coefficients would be the
evidence of the structure anisotropy and can be as large as
16% (for the investigated numerical example). The similar
effects can be observed in transmission. We also demonstrate
that the eigenmodes of the structure are neither transverse
nor longitudinal but have a “mixed” polarization state in the
general case.
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APPENDIX A: CALCULATION OF THE TENSOR Ĝ �k
COMPONENTS

The calculation of the diagonal term Gxx
�k was discussed in

Ref. [3]; see the final formula (A37). Note that Ref. [3] uses
different designations. To obtain the result in our notations,
one has to take the complex conjugate of Eq. (A37), multiply
it by 4π , replace �q by �k, and k by q.

Now we proceed to the calculation of the sum G
xy

�k using
the Poisson summation formula and the fact that Gxy(�r) =

∂2

∂x∂y
( eiqr

r
). We also make use of the fact that Gxy(�r) = 0 when

x = 0 or y = 0. Thus,

G
xy

�k ≡
∑

(m,n,l)�=(0,0,0)

Gxy(�rmnl) e−i�k·�rmnl

=
∑
m�=0

∞∑
n,l=−∞

∂2

∂x∂y

(
eiqr

r

)∣∣∣∣
r=rmnl

e−ikxma−ikyna−ikzla

=
∑
m�=0

∂

∂x

{ ∞∑
n,l=−∞

∂

∂y

(
eiqr

r

)
e−ikyy−ikzz

}∣∣∣∣∣
r=r0nl

e−ikxma

=
∑
m�=0

∂

∂x

{
2πi

a2

∞∑
n,l=−∞

(2πn + kya)
e−|x|f (n,l)/a

f (n,l)

}∣∣∣∣∣
x=ma

× e−ikxma, (A1)

where f (n,l) = √
(2πn + kya)2 + (2πl + kza)2 − q2a2, and

the sign of the square root is chosen so that Re√... > 0 (we
assume infinitesimal positive imaginary part in q). Finally, we
derive that

G
xy

�k = −2π sin(kxa)

a3

∞∑
n,l=−∞

2πn + kya

coshf (n,l) − cos(kxa)
.

(A2)

The series on the right-hand side of Eq. (A2) has a very
good convergence and therefore the formula (A2) is very
convenient for rapid numerical calculations. Equation (A2)
suggests also that G

xy

�k (q; 0,ky,kz) = G
xy

�k (q; π/a,ky,kz) = 0.

The tensor G
xy

�k is symmetric with respect to the per-
mutation of kx and ky due to the symmetry properties
of the vacuum Green’s function. Therefore, we also con-
clude that G

xy

�k (q; kx,0,kz) = G
xy

�k (q; kx,π/a,kz) = 0. These
facts were used in Sec. IV while studying the partic-
ular cases of propagation. The off-diagonal components
Gxz

�k and G
yz

�k are expressed by the formulas analogous to
Eq. (A2).

APPENDIX B: REFLECTION FROM A SLAB
OF DISCRETE METAMATERIAL: DISCRETE

DIPOLE MODEL

We denote by dl complex amplitude of the dipole moment
of the particle located in the lth layer where l = 1,2, . . . ,N ,
and the layers are normal to the z axis [Fig. 5(a)]. The structure
period along the x axis is a; we also use designations b = a

√
2,

and c = a/
√

2. The self-consistent equations determining the
amplitudes of the dipole moments of the scatterers dl are as
follows [36]:

α−1 dl =
∑
l′ �=l

βl′−l dl′ + β0 dl + Ein eiqlc (x polarization),

α−1 d̃l =
∑
l′ �=l

β̃l′−l d̃l′ + β̃0 d̃l + Ein eiqlc (y polarization),

(B1)
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with

βs =
∞∑

m,n=−∞
Gxx(�rmns + sc �ez) , s �= 0,

β̃s =
∞∑

m,n=−∞
Gyy(�rmns + sc �ez) , s �= 0,

(B2)

β0 =
∑

(m,n)�=(0,0)

Gxx(�rmn0),

β̃0 =
∑

(m,n)�=(0,0)

Gyy(�rmn0),
(B3)

where �rmns = ma �ex + (nb + δs) �ey , and m and n are integers.
If s is a multiple of 2, δs = 0, otherwise δs = b/2. The expres-
sions for βs and β̃s suitable for rapid numerical calculations
can be derived using the Poisson summation formula in the
way similar to that in Ref. [36]:

βs = −2πi

ab

∞∑
m,n=−∞

[(
2πm

a

)2

− q2

]
eik

(z)
mn|s|c (−1)ns

k
(z)
mn

,

(B4)

β̃s = −2πi

ab

∞∑
m,n=−∞

[(
2πn

b

)2

− q2

]
eik

(z)
mn|s|c (−1)ns

k
(z)
mn

,

(B5)

where

k(z)
mn =

√
q2 − (2πm/a)2 − (2πn/b)2.

The sign of the square root is chosen according to the require-
ment Im k(z)

mn � 0 and the infinitesimal positive imaginary part

of q is assumed. The expressions for β0 and β̃0 are more
complicated and can be expressed via all βs , β̃s with nonzero
s in terms of infinite three-dimensional sums that have already
been calculated in Appendix A:

β0 = Gxx
�k (q; 0,0,0) + 4πi

ab

∞∑
m,n=−∞

[(
2πm

a

)2

− q2

]

× 1

k
(z)
mn

(−1)n e−ik
(z)
mnc + 1

e−2ik
(z)
mnc − 1

,

β̃0 = G
yy

�k (q; 0,0,0) + 4πi

ab

∞∑
m,n=−∞

[(
2πn

b

)2

− q2

]

× 1

k
(z)
mn

(−1)n e−ik
(z)
mnc + 1

e−2ik
(z)
mnc − 1

. (B6)

Note that x and y axes that appear in matrix elements Gxx
�k and

G
yy

�k correspond to the geometry of Fig. 5. The terms of the
series (B4)–(B6) that correspond to m = n = 0 describe the
field of the plane with a continuous polarization distribution.
It is this term that is responsible for the far field radiated by
the metamaterial slab. Once the coefficients βs and β̃s are
calculated, the linear system Eq. (B1) can be solved with
respect to dl or d̃l . Considering the reflected field at sufficiently
large distances from the metamaterial slab we calculate the
reflection coefficient as follows:

R =
∣∣∣∣ 2πq

ab Ein

∣∣∣∣
2
∣∣∣∣∣

N∑
l=1

dl e
iqlc

∣∣∣∣∣
2

(x polarization),

R̃ =
∣∣∣∣ 2πq

ab Ein

∣∣∣∣
2
∣∣∣∣∣

N∑
l=1

d̃l e
iqlc

∣∣∣∣∣
2

(y polarization).

(B7)
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