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We investigate Landau level structures of semimetals with nodal ring dispersions. When the magnetic field
is applied parallel to the plane in which the ring lies, there exist almost nondispersive Landau levels at the
Fermi level (EF = 0) as a function of the momentum along the field direction inside the ring. We show that the
Landau levels at each momentum along the field direction can be described by the Hamiltonian for the graphene
bilayer with fictitious interlayer couplings under a tilted magnetic field. Near the center of the ring where the in-
terlayer coupling is negligible, we have Dirac Landau levels which explain the appearance of the zero modes.
Although the interlayer hopping amplitudes become finite at higher momenta, the splitting of zero modes is
exponentially small and they remain almost flat due to the finite artificial in-plane component of the magnetic
field. The emergence of the density of states peak at the Fermi level would be a hallmark of the ring dispersion.
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I. INTRODUCTION

Semimetals, usually the reflection of unconventional elec-
tronic structures at the Fermi surface (FS), are related to
various anomalous properties and/or exotic phases such as
the unconventional quantum Hall effect (QHE) in graphene
systems [1–4], a pressure-induced anomalous Hall effect
in the Weyl semimetal (SM) [5], and a non-Fermi-liquid
phase and peculiar quantum oscillations in the quadratic
band-touching SM [6–10]. Also, in many cases, they are
classified as topologically nontrivial metals involving surface
states [11–16] which are generalizations of the concept of the
topological insulator [17] to the metallic systems [18].

Recently, there have been many suggestions for the novel
semimetals with nodal ring FSs with different topological
classification schemes [19–28]. Their topological nontriviality
ensures the existence of surface modes protected by inversion,
time-reversal, or certain lattice symmetries. Since those candi-
date materials for the nodal ring semimetal (NRS) have been
proposed very recently, the investigations of their physical
properties and experimental observations are still outstanding
open problems.

In this paper, we demonstrate that the NRSs exhibit unusual
three-dimensional (3D) Landau level structures when the
magnetic field is applied parallel to the plane of the ring.
Noticing that the low energy Hamiltonians for various NRSs
have the same generic structure, we employ the continuum
model for SrIrO3 as an example of the NRS. It is explained later
that our results are generic and can be applied to other materials
as well. We show that the NRS’s Landau levels simulate
the adiabatic transition from two decoupled graphenes to a
Bernal stacked graphene bilayer under a magnetic field with
an artificial parallel component as a function of the conserved
momentum. During that process, almost flat Dirac zero modes
are found inside the nodal ring. For some parameters, not far
from the realistic ones, a 3D quantum Hall effect (QHE) may
occur with a little doping. Also, we suggest that the nodal ring
can be probed by the measurements of density of states (DOS)
under the magnetic field.

II. THE CONTINUUM MODEL FOR A NODAL
RING SEMIMETAL

We consider the continuum limit of the tight binding (TB)
model for SrIrO3 near the U point [kU = (0, − π,π )] in the
Brillouin zone [Fig. 1(a)],

HU = 2t0qbτx − t0qcνx − t1qbτyσz − t3qa

2
νzτy(σx + σy)

+
(

t2qc

2
νyτz − t4qb

2
νzτy + t5νxτy

)
(σx − σy), (1)

where q = k − kU and a,b,c represent orthorhombic direc-
tions of the lattice. Here, σα , τα , and να are Pauli matrices,
where σα is for the Jeff = 1/2 Kramers doublet and τα(να) is
for the sublattices B and R (Y and G) [20]. The realistic
TB parameters are known as t0 = −0.6, t1 = −0.15, t2 =
0.13, t3 = −0.2, t4 = 0.4, and t5 = 0.06 in eV. We consider,
however, a wide range of TB parameters since we are interested
in the generic properties of NRSs. The details of the TB model
for SrIrO3 are described in Appendix A.

HU has both time-reversal and chiral symmetry (C =
σzνyτz). As a result, we have particle-hole symmetric, doubly
degenerate dispersion relations as follows,

EU
ζ,ζ ′ (q) = ζ

{
(vaqa)2 + (vbqb)2 + (vcqc)2 + 2t2

5

+ ζ ′{8t2
5 [(vaqa)2 + (vcqc)2] + v4

dq
2
bq

2
c

} 1
2
} 1

2 , (2)

where va = |t3|/
√

2, vb =
√

[t2
4 + 2(4t2

0 + t2
1 )]/2, vc =√

(2t2
0 + t2

2 )/2, vd = {4(vbvc)2 − 2t2
0 (t4 − 2t2)2}1/4

, and
ζ,ζ ′ = ±1. Near the U point, they are in good agreement with
those of the original TB model, as compared in Figs. 1(c)
and 1(d). In the continuum model, the nodal ring is just an
ellipse, satisfying

4t2
5 = t2

3 q2
a + (

2t2
0 + t2

2

)
q2

c , (3)

with major and minor radii given by ra = 2|t5/t3| and rc =
2|t5|/(2t2

0 + t2
2 )1/2. The ring exists unless t3 = 0 or t0 = t2 = 0.

Since the dispersion around the ring is linear along the radial

1098-0121/2015/92(4)/045126(8) 045126-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.045126


JUN-WON RHIM AND YONG BAEK KIM PHYSICAL REVIEW B 92, 045126 (2015)

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

UU

E 
[e

V
]

Γ R Z X

)b()a(

)d()c(

U
UX

R

E
kc

ka

kc

ka

kb

R

X

Z

X

qc

FIG. 1. (Color online) (a) Low energy band structures on the
kb = −π plane where the nodal ring (black ellipse) resides. (b) The
nodal chain appears when 2t2 = t4. Two coupled doubly degenerate
Dirac cones reside at the points where the nodal lines intersect the
plane for given qc. In (c) and (d), we compare energy spectra around
the U point calculated from the full tight binding Hamiltonian (solid)
and the continuum model HU (dashed).

and kb direction while constant along the nodal line, the DOS
is proportional to energy and vanishing at the Fermi level.
Interestingly, when 2t2 = t4, we have extra nodal lines for
|qc| > rc in the ka = 0 plane characterized by a hyperbolic
curve,

4t2
5 = (

2t2
0 + t2

2

)
q2

c − 2
(
4t2

0 + t2
1 + 2t2

2

)
q2

b , (4)

as depicted in Fig. 1(b). We call those consecutively occurring
nodal lines the nodal chain. While those results are valid only
around the U point, one can observe the nodal chain structure
in the full TB model when it respects the chiral symmetry
{HTB,C} = 0, which is realized when txy = td = 0.

III. NUMERICAL ANALYSIS OF LANDAU
LEVEL QUANTIZATION

Now, we consider the Landau level quantization of the
NRS. We assume that the magnetic field is applied along the
c direction so that it is parallel to the plane of the ring. We
neglect the Zeeman splitting (∼10−4B [T] eV) [29] since it is
much smaller than the Landau level spacings of this system,
which is order of 10 meV when B = 1 T, as will be shown
later.

Using the quantization scheme qa = (a + a†)/
√

2lB and
qb = i(a − a†)/

√
2lB, the Landau level wave function is

expressed in the form � = ∑∞
n=0(cB↑

n ,c
R↑
n ,c

Y↑
n ,c

G↑
n ,

c
B↓
n ,c

R↓
n ,c

Y↓
n ,c

G↓
n )Tun, where un is the simple harmonic

oscillator (SHO) eigenfunction [10]. If we separate the eigen-

vector into two pieces as An = (cB↑
n ,c

R↑
n ,c

B↓
n ,c

R↓
n )

T
and Bn =

(cY↑
n ,c

G↑
n ,c

Y↓
n ,c

G↓
n )

T
, they satisfy the following coupled secular
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FIG. 2. (Color online) (a), (b) Landau levels of the NRS as
functions of qc for different TB parameters when the magnetic field
(B = 1 T) is along the c direction. Blue solid lines are numerical
results while red dashed curves are analytic ones obtained from the
fictitious graphene bilayer model near qc = 0. (c) Central Landau
levels (N = 1,2) near qc = rc (∗) which are fitted by a formula
ε ∼ ±(1 − aq2

c )αqβ
c exp(bq2

c ) for various magnetic fields (red dashed
lines). e0 = 1 eV. (d) b in the exponent of the fitting function and its
fitting by b0l

2
B. (e), (f) Landau levels as functions of the Landau level

index and magnetic field for some momenta.

equations,

εAn = √
n + 1M+An+1 + L+Bn + √

nM†
+An−1, (5)

εBn = √
n + 1M−Bn+1 + L−An + √

nM†
−Bn−1, (6)

where

Mζ =
2∑

m=1

itm−1

2m− 3
2 lB

�m5 − ζ

4∑
n=3

(−1)mt3 − it4

2
√

2lB
�1n, (7)

Lζ = −t0qc − ζ
it2qc

2
(�45 − �35) − t5(�14 − �13). (8)

Here, we adopt the representations of the Dirac gamma
matrices in Ref. [30]. The coefficient is assumed to be zero
when its subscript n is negative.

By solving the above equations numerically, we plot the
Landau level spectra as functions of the conserved momentum
qc in Figs. 2(a) and 2(b). Strictly speaking, each band is
only doubly degenerate, but one can see almost fourfold
degeneracies inside the ring away from the vicinity of its edge
at qc = rc. We label them by the nonzero integer N in such a
way that levels with positive (negative) energies are marked
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by positive (negative) integers in increasing (decreasing) order
from the central ones near zero energy.

We observe doubly degenerate two bands which are almost
flat near zero energy inside the nodal ring (qc < rc). Those flat
bands are fitted nicely by a formula

ε ∼ ±(
1 − aq2

c

)α
qβ

c exp
(
bq2

c

)
(9)

near the ring’s edge, as shown in Fig. 2(c). The exponent’s
coefficient b is found to be approximated as 1.886l2

B, as plotted
in Fig. 2(d). As a result, the energies of central Landau levels
(N = ±1,2) rapidly reduce to zero as we go inside the ring
from qc = rc by an amount of δqc ∼ 1/(rcl

2
B). While the

splitting between those flat modes becomes finite outside
the ring (qc > rc), the only exception is when 2t2 = t4, for
which we have four zero modes for any value of qc.

In addition, we find that, when qc is well inside the ring,
our Landau level spectra are Dirac-like, as shown in Figs. 2(e)
and 2(f). The energies are proportional to the square root of
the Landau level index and magnetic field. On the other hand,
the dispersions cannot be fitted by the Dirac Landau levels
and show linear behaviors for large Landau level indices and
magnetic fields if qc is close to the ring’s boundary or outside
the ring. However, when the nodal chain appears for 2t2 = t4,
one can have Dirac Landau levels again for larger qc.

IV. INTERPRETATION VIA GRAPHENE BILAYER UNDER
A TILTED MAGNETIC FIELD

To understand the nature of the peculiar Landau level
structures of the NRS, we introduce a unitary transformed
Hamiltonian HD which is in a block-diagonalized form of two
4 × 4 submatrices. Since it gives us exactly the same band
structures and Landau levels, it can be regarded as a unitary
transform of HU . Those two submatrices of HD are given by

HD
K(K ′) =

(
h+

K(K ′) gθ

g†θ h−
K(K ′)

)
, (10)

where

hζ

K(K ′) = va(qa − ζpa)μx ± vbqbμy, (11)

gθ = vcqc(μx − i cos θμy − i sin θμz) (12)

for qc � rc, and

hζ

K(K ′) = vaqaμx ± vb(qb − ζpb)μy + ζm0qcμz, (13)

gθ =
√

2t5μx (14)

for qc > rc. Here, μα is the Pauli matrix and the plus-minus
sign denotes the K(K ′) valley. hζ

K(K ′) is the Dirac Hamiltonian
with the dispersions centered at q = (ζpa,0,qc) for qc � rc and
q = (0,ζpb,qc) for qc > rc where pa =

√
[2t2

5 − (vcqc)2]/v2
a

and pb = v2
dqc/2v2

b . When qc > rc, we have the mass term
with

m0 =
√

v2
c − v4

d

/
4v2

b = vc sin θ, (15)

while it is massless inside the ring. In the mixing term gθ ,
cos2 θ = v4

d/4(vbvc)2. The transformed Hamiltonian gives us
exactly the same energy spectra in Eq. (2).

Since hζ

K and hζ

K ′ are the Dirac Hamiltonians at different
valleys K and K ′, one can interpret HD as a Hamiltonian
of a graphene bilayer with a fictitious interlayer coupling
gθ . Here, ζ = + and − correspond to the upper and lower
layer of the artificial graphene bilayer and we denote its
basis as ψ = (cA+ ,cB+ ,cA− ,cB− )T. Furthermore, the position
of Dirac points in the upper and lower layer are shifted in
opposite directions. For instance, inside the ring (qc < rc),
two Dirac cones are placed at q = (pa,0,qc) and (−pa,0,qc)
in the qc = const plane in the upper and lower layer of the
graphene bilayer, as shown in Fig. 1(b). This kind of shift can
be realized when the magnetic field is applied parallel to
graphene layers with strength B‖ = 2�pa/ed, where d is the
interlayer distance [31,32]. This fictitious parallel magnetic
field has its maximum value at the ring’s center (qc = 0)
and vanishes at the ring’s boundary (qc = rc). The system
transforms from two copies of graphene monolayers to a
graphene bilayer with interlayer coupling gθ as increasing qc

since gθ is proportional to qc.
Applying the magnetic field along the c direction, we obtain

the Landau level dispersions numerically and find that they
are exactly the same as the ones from HU . Now, we discuss
detailed properties of the Landau level spectra of the NRS.

(i) Deep inside the ring (qc 
 rc), the Landau level of
the NRS at each qc can be considered as those of the
four independent anisotropic Dirac particles. When qc = 0,
gθ vanishes and we have four decoupled anisotropic Dirac
Hamiltonians. In this case, the Landau level spectrum is

ε±
m = ±vf l−1

B

√
2m, (16)

with fourfold degeneracy where m is an integer and vf =
(vavb)1/2. To be precise, one has exact zero modes only at
qc = 0. However, the Dirac-like feature is maintained up to
quite large momenta where gθ is finite because the mixing
between wave functions on two Dirac cones is exponentially
small (∼e−p2

a l
2
B ), with the distance between two Dirac cones

2pa being maximized at qc = 0. In this regime, the main
role of the finite coupling gθ is the renormalization of the
Fermi velocity. One can project out the contribution of the
lower layer and construct an effective low energy Hamiltonian
around the Dirac point of the upper layer by using the resolvent
(ε − h−

K(K ′))
−1

[4,33]. This gives us a generalized eigenvalue
problem of the form

εSθψ+ = (h+
K(K ′) − (2vap0)−2gθh−

K(K ′)g
†
θ )ψ+, (17)

where Sθ = I + (2vap0)−2gθg†θ , I is an identity matrix,
and ψ+ is the wave function for the upper layer. For an
intuitive picture, let us focus on the case θ 
 1. Notice
that the realistic TB parameters (t2 = 0.13, t3 = −0.2, and
t4 = 0.4) correspond to this limit (cos θ = 0.9969). After a
transformation to an orthonormal basis set [34], we arrive at a
quite simple form of the effective Hamiltonian for the upper
layer, [1 + (vcqc/vapa)2]−1/2h+

K(K ′), with the renormalized
Fermi velocity

v′
f =

{
1 +

(
vcqc

vapa

)2}− 1
2

vf . (18)
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In Figs. 2(a) and 2(b), we show by the red dashed lines that
the Dirac Landau levels with the renormalized Fermi velocity
have good agreements with the numerics when qc 
 rc.

(ii) We have, as shown in Fig. 2(b), four exact zero modes
for arbitrary qc when θ = 0 (2t2 = t4), where gθ has only the
interlayer coupling 2vcqc between the A− and B+ sites. In this
case, our fictitious model is exactly the same as the graphene
bilayer with Bernal stacking under a parallel magnetic field.
Although we must rely on the numerics to analyze all Landau
levels due to the fictitiously tilted magnetic field, one can
show that we have exact zero modes for arbitrary momentum
qc. Here, to avoid unnecessary complexity, we only provide
analytic solutions for the case qc < rc. See Appendix B for
other cases. We define the ladder operator for the upper (ζ =
+1) and lower (ζ = −1) layer as

aζ = lB√
2vf

[va(qa − ζpa) + ivbqb], (19)

which satisfy a+ = a− − √
2valBpa/vf . They have their own

SHO eigenfunctions u−
n and u+

n which are shifted spatially
from each other in the b direction. In this case, one can find
four zero-energy eigenvectors as

ψ0
K,1 =

⎛
⎜⎜⎜⎝

u+
0

0

0

0

⎞
⎟⎟⎟⎠ and ψ0

K,2 = c0

⎛
⎜⎜⎜⎝

u−
0

0

γ0u
−
0

0

⎞
⎟⎟⎟⎠ (20)

for the K valley, and

ψ0
K ′,1 =

⎛
⎜⎜⎜⎝

0

0

0

u−
0

⎞
⎟⎟⎟⎠ and ψ0

K ′,2 = c0

⎛
⎜⎜⎜⎝

0

−γ0u
+
0

0

u+
0

⎞
⎟⎟⎟⎠ (21)

for the K ′ valley, where γ0 = pava/(vcqc) and c0 = (1 +
γ 2

0 )−1/2 is the normalization factor. One can also find the
analytic form of the eigenfunctions at the zero energy for
qc � rc in a similar way. The reason why we still have zero
modes outside the ring is that we have four massless Dirac
cones along the hyperbolic nodal line in the ka = 0 plane
[Fig. 1(b)] since m0 = 0 for θ = 0 [35].

(iii) On the other hand, the fourfold symmetry of the zero
modes is broken for nonzero θ although the splitting between
them is almost negligible. By using the zero-energy solutions
inside the ring, we estimate their splitting for finite θ near
qc = 0 as

� ≈ 2
∣∣〈ψ0

K(K ′),1

∣∣[HD
H (K ′)(θ ) − HD

K(K ′)(0)
]∣∣ψ0

K(K ′),2
〉∣∣

= d0qc

(
1 − a0q

2
c

) 1
2 exp

( − b0q
2
c

)
, (22)

where a0 = v2
c /(2t2

5 ), b0 = v2
c l

2
B/v2

a , and d0 = vc exp
(−2t2

5 l2
B/v2

a). The splitting of the lowest Landau level is
extremely small near qc = 0 and looks almost flat due to the
factor l2

B in the exponent of d0, which reflects the effect of
the huge fictitious parallel magnetic field near qc = 0. The
derivation of the above is only valid around qc = 0, where
the mixing from higher Landau levels is minimal so that the
projection onto the central Landau levels is safe. However,

inspired by this formula, we could obtain the fitting function
for the bands near the ring’s edge, as shown in Fig. 2(c).

(iv) At qc = rc and θ = 0, where B‖ = 0, the situation
becomes the usual Bernal stacked graphene bilayer under
the perpendicular magnetic field, and the Landau levels are
evaluated as

εζ,ζ ′
n = ζ ′√2vcqc

√
λ1,n + ζ

√
λ2,n + ω4, (23)

where λm,n = 1 + m(2n − 1)ω2 and ω2 = v2
f /(2v2

c q
2
c l

2
B). The

Landau levels near the Fermi level are described by ε
−,ξ
n . In

the low energy regime, it is approximated to

ε−,ξ
n ≈ ξ

v2
f

vcqcl
2
B

√
n(n − 1), (24)

which is the well-known Landau levels of a graphene bi-
layer [4].

V. 3D QUANTUM HALL EFFECT

One of the interesting results for the θ = 0 case [Fig. 2(b)]
is that the zero-energy flat modes are separated from other
bands with a finite gap. In this case, one can have the 3D QHE
by a slight doping, as indicated by Halperin [36]. He showed
that the conductivity tensor should be in the form of

σij = e2

2πh
εijkGk, (25)

where εijk is the Levi-Civita symbol and G is the reciprocal
vector [36,37]. When qc = 0 and qc = rc, the Hall conductance
in the ab plane is given by σ 2D

ab = 2e2/h since our model is
equivalent to the decoupled spinless graphene layers and the
Bernal stacked graphene bilayer, respectively. As we do not
have any gap closing, the Hall conductances at other momenta
are also σ 2D

ab = 2e2/h due to the adiabatic continuation. Then,
the three-dimensional Hall conductance is evaluated as

σab =
∫

dqc

2π
σ 2D

ab = e2

2πh

4π

ac

, (26)

where ac is the lattice constant along the c direction. In the real
material, it is expected that θ �= 0 and also there may be other
electron or hole pockets at the Fermi level. In this case, we
expect that the Hall conductance would be order of ∼e2/hac

even though it is not strictly quantized. Further, we expect the
strain effect may be used to tune the TB parameters close to
the ideal case of the above.

VI. CONCLUSIONS AND DISCUSSIONS

We have studied the Landau level structures of the nodal
ring semimetal based on the continuum Hamiltonian of SrIrO3.
We identified almost flat Landau levels at the Fermi level as
a function of the momentum along the field direction, which
are unusual in 3D systems. We were able to reveal the origin
of their appearance by the analogy of the graphene bilayer
with fictitious interlayer interactions under a tilted magnetic
field. Inside the ring, the overlap between the wave functions
at the different Dirac points diminishes exponentially due to
the parallel component of the artificial magnetic field. As a
result, continuous series of Dirac cones on the ring provide
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us with almost zero modes inside the ring while we have an
exponentially increasing Landau level splitting only in the
vicinity of the ring’s edge. For a certain choice of the tight
binding parameters, it was found that there are extra nodal
lines outside the ring which also have Dirac characters. In this
case, we have exact zero modes throughout the whole Brillouin
zone and the 3D QHE might be realized.

Although we used a continuum model for SrIrO3, the
flat 3D Landau levels at the Fermi energy can be found in
any semimetals with nodal ring dispersion, where the energy
spectra are linear along the perpendicular directions of the
nodal line so that one can find Dirac cones for a given
momentum parallel to the ring’s plane, as shown in Fig. 1(b).
Recently, other candidate materials for the NRSs with the
above properties have been suggested, such as Cu3NZn,
Cu3NPd [22,27], Ca3P2 [23], LaN [24], and so on [25–27].
For example, the low energy Hamiltonian of Cu3NZn, for a
given qy [q⊥ = (qx,qy)], is given by

H ∼ 2b⊥q0(qx − q0)τz + vqrτy, (27)

where q0 = ±(−�ε/b⊥ − q2
y )

1/2
are the positions of two

Dirac cones. It is also noticed that Ca3P2 has similar electronic
structures from the band crossings along M�K and the linear
DOS around the nodal ring. Among these, Ca3P2 may be the
most promising since its ring is free from other electron or
hole pockets and has a sizable radius. Flat Dirac Landau levels
would appear in these systems when the magnetic field is
applied in the direction of the ring’s plane. Because the flat
bands have prominent peaks in the DOS, one might identify the
existence of the nodal ring by scanning tunneling microscopy,
even if it is buried in other dispersive bands.
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APPENDIX A: TIGHT BINDING HAMILTONIAN OF SrIrO3

Recently, the electronic structure of SrIrO3 was studied by
first principles calculations [19,20]. The corresponding tight
binding model was found to be

HTB = (
ε

po

r,kσy + ε
po

i,kσx

)
νzτy + (

εzo
r,kσy + εzo

i,kσx

)
νyτz

+ (
εdo
r,kσy + εdo

i,kσx

)
νxτy + εd

r,kνxτx + εd
i,kνyτy

+ ε
p

r,kτx + ε
p

i,kσzτy + εz
kνx + λk (A1)

in the basis [cB↑,cR↑,cY↑,cG↑,cB↓,cR↓,cY↓,cG↓]T, where B,
R, Y , and G correspond to the sublattices of Ir atoms following
the convention in Ref. [2]. Here, σα , τα , and να are Pauli
matrices where σα is for the Jeff = 1/2 effective total angular
momentum and τα(να) is for the sublattices B and R (Y and

TABLE I. Tight binding parameters in eV [19].

tp t ′
p txy tz to

z td t ′
d to

1p to
2p to

d

−0.6 −0.15 −0.3 −0.6 0.13 −0.3 0.03 0.1 0.3 0.06

G) [20]. The matrix elements are defined as

λk = txy cos kx cos ky, (A2)

ε
p

r,k = 2tp(cos kx + cos ky), (A3)

ε
p

i,k = −t ′p(cos kx + cos ky), (A4)

εz
k = 2tp cos kz, (A5)

εzo
r,k = toz cos kz, (A6)

εzo
i,k = −toz cos kz, (A7)

εd
r,k = td (cos kx + cos ky) cos kz, (A8)

εd
i,k = t ′d (sin kx + sin ky) sin kz, (A9)

ε
po

r,k = to1p cos kx + to2p cos ky, (A10)

ε
po

i,k = −(
to2p cos kx + to1p cos ky

)
, (A11)

εdo
r,k = tod sin ky sin kz, (A12)

εdo
i,k = tod sin kx sin kz. (A13)

Here, we exclude symmetry-allowed terms proportional to td1

which do not change the electronic structures both qualitatively
and quantitatively due to its tiny magnitude [20]. The TB
parameters consistent with the first principles results are
presented in Table I. For convenience, we define another set of
hopping parameters as t0 = tp, t1 = t ′p, t2 = toz , t3 = to1p − to2p,
t4 = to1p + to2p, and t5 = tod , which are used for the analysis
of the continuum model. The momentum space is usually
spanned by ka = ky + kx , kb = ky − kx , and kc = 2kz, where
a, b, and c represent orthorhombic axes of the lattice.

This model possesses a ring-shaped zero-energy contour in
the kb = ±π plane described by

t2
5 cos2 qa

2
cos2 qc

2
= t2

3 sin2 qa

2
+ (

2t2
0 + t2

2

)
sin2 qc

2
, (A14)

where q = k − kU and kU = (0, − π,π ) as shown in Fig. 1(a).
On the ring, the energy spectrum is given by E(q)|ring =
−txy sin2 qa

2 , which is almost nondispersive and can be con-
sidered as a nodal line if the ring’s size is small (t5 
 |t3|).

Around the U point, the continuum Hamiltonian which
consists only of leading contributions of HTB is given by

HU = 1

2
(t4qb − t3qa)σyνzτy − 1

2
(t4qb + t3qa)σxνzτy

− t2

2
qcσyνyτz + t2

2
qcσxνyτz − t5σyνxτy

+ t5σxνxτy + 2t0qbτx − t1qbσzτy − t0qcνx (A15)

= 2t0qbτx − t0qcνx − t1qbτyσz − t3qa

2
νzτy(σx + σy)

+
(

t2qc

2
νyτz − t4qb

2
νzτy + t5νxτy

)
(σx − σy). (A16)

APPENDIX B: EXISTENCE OF ZERO MODES AT θ = 0

When qc � rc, the matrix forms of HD
K and HD

K ′ are given
by

HD
K(K ′) =

(
h+

K(K ′) gθ

g†θ h−
K(K ′)

)
, (B1)
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where

h±
K =

(
0 va(qa ∓ pa) − ivbqb

va(qa ∓ pa) + ivbqb 0

)
, (B2)

h±
K ′ =

(
0 va(qa ∓ pa) + ivbqb

va(qa ∓ pa) − ivbqb 0

)
, (B3)

and

gθ = vcqc

(
−i sin θ 2 sin2 θ

2

2 cos2 θ
2 i sin θ

)
. (B4)

For the Landau level quantization, we define ladder opera-
tors as

a+ = lB√
2vf

[va(qa − pa) + ivbqb], (B5)

a− = lB√
2vf

[va(qa + pa) + ivbqb], (B6)

where vf = √
vavb and pa =

√
[2t2

5 − (vcqc)2]/v2
a . The upper

and lower layer’s ladder operators satisfy a+ = a− − s0, where
s0 = √

2valBpa/vf . Their eigenfunctions are related to each
other by u+

n (y) = u−
n (y − 2pal

2
B) due to the momentum shift

2pa between Dirac cones in the upper and lower layers. Then,
under the magnetic field, the Hamiltonian matrix for θ = 0 is
expressed as

HD
K =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

2vf

lB
a
†
+ 0 0

√
2vf

lB
a+ 0 2vcqc 0

0 2vcqc 0
√

2vf

lB
a
†
−

0 0
√

2vf

lB
a− 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B7)

and

HD
K ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

2vf

lB
a+ 0 0

√
2vf

lB
a
†
+ 0 2vcqc 0

0 2vcqc 0
√

2vf

lB
a−

0 0
√

2vf

lB
a
†
− 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B8)

While these Hamiltonians are not solvable analytically in
general, they allow analytic forms of zero-energy eigenfunc-
tions as follows. First, when qc < rc,

ψ0
K,1 =

⎛
⎜⎜⎜⎝

u+
0

0

0

0

⎞
⎟⎟⎟⎠ and ψ0

K,2 = c0

⎛
⎜⎜⎜⎝

u−
0

0

γ0u
−
0

0

⎞
⎟⎟⎟⎠ (B9)

for the K valley, and

ψ0
K ′,1 =

⎛
⎜⎝

0
0
0
u−

0

⎞
⎟⎠ and ψ0

K ′,2 = c0

⎛
⎜⎝

0
−γ0u

+
0

0
u+

0

⎞
⎟⎠ (B10)

for the K ′ valley, where γ0 = pava/(vcqc) and c0 = (1 +
γ 2

0 )−1/2. If qc = rc, pa vanishes and some of the above

solutions are not linearly independent to each other. In the
case, we have another set of four zero modes as

ψ0
K,1 =

⎛
⎜⎜⎜⎝

u0

0

0

0

⎞
⎟⎟⎟⎠ and ψ0

K,2 = c1

⎛
⎜⎜⎜⎝

γ1u1

0

u0

0

⎞
⎟⎟⎟⎠ (B11)

for the K valley, and

ψ0
K ′,1 =

⎛
⎜⎜⎜⎝

0

0

0

u0

⎞
⎟⎟⎟⎠ and ψ0

K ′,2 = c1

⎛
⎜⎜⎜⎝

0

u0

0

γ1u1

⎞
⎟⎟⎟⎠ (B12)

for the K ′ valley, where γ1 = −√
2vclBqc/vf and c1 = (1 +

γ 2
1 )−1/2. Here, we use the single kind of the SHO wave function

un since a+ and a− are identical in this case.
When qc > rc, because the plane of the nodal line is

changed to the ka = 0 plane, the expressions for the Hamilto-
nians are also different from the qc < rc case. They are given
by

h±
K =

(
m0qc vaqa − ivb(qb ∓ pb)

vaqa + ivb(qb ∓ pb) −m0qc

)
, (B13)

h±
K ′ =

(
m0qc vaqa + ivb(qb ∓ pb)

vaqa − ivb(qb ∓ pb) −m0qc

)
, (B14)

and

gθ =
√

2t5

(
0 1
1 0

)
, (B15)

where m0 = vc sin θ and pb = √
vdqc/2v2

b . The sign of the
on-site interaction is opposite between layers and we have two
fictitious interlayer couplings. In this case, we define just a
single ladder operator as

b = lB√
2vf

(vaqa + ivbqb). (B16)

Then, for θ = 0 case where the mass terms are vanishing, we
have

HD
K =

⎛
⎜⎜⎜⎜⎝

0 B
†
− 0

√
2t5

B− 0
√

2t5 0

0
√

2t5 0 B
†
+√

2t5 0 B+ 0

⎞
⎟⎟⎟⎟⎠ (B17)

at the K valley, and

HD
K =

⎛
⎜⎜⎜⎜⎝

0 B− 0
√

2t5

B
†
− 0

√
2t5 0

0
√

2t5 0 B+√
2t5 0 B

†
+ 0

⎞
⎟⎟⎟⎟⎠ (B18)

at the K ′ valley, where

B± =
√

2vf

lB
b ± ivbpb. (B19)
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In the case where qc > rc, we do not have simple solutions
such as the above (qc < rc case). Instead, we try a infinite sum
of SHO wave functions in the form

ψ =
∞∑

n=0

(
c
A+
n c

B+
n cA1

n c
B−
n

)T
un (B20)

whose coefficients satisfy

ε

(
c
A+
n

c
A−
n

)
= T†

(
c
B+
n

c
B−
n

)
+

√
2nvf

lB

(
c
B+
n−1

c
B−
n−1

)
, (B21)

ε

(
c
B+
n

c
B−
n

)
= T

(
c
A+
n

c
A−
n

)
+

√
2(n + 1)vf

lB

(
c
A+
n+1

c
A−
n+1

)
(B22)

at the K valley, and

ε

(
c
A+
n

c
A−
n

)
= T

(
c
B+
n

c
B−
n

)
+

√
2(n + 1)vf

lB

(
c
B+
n+1

c
B−
n+1

)
, (B23)

ε

(
c
B+
n

c
B−
n

)
= T†

(
c
A+
n

c
A−
n

)
+

√
2nvf

lB

(
c
A+
n−1

c
A−
n−1

)
(B24)

at the K ′ valley. Here,

T =
(

−ivbpb

√
2t5√

2t5 ivbpb

)
. (B25)

If we assume ε = 0, one can decouple the sublattices into
{A+,A−} and {B+,B−} and we have diverging sequences on

the B(A) sublattice at the K(K ′) valley given by(
c
B+
n

c
B−
n

)
= −

√
2nvf

lB

(
ivbpb

√
2t5√

2t5 −ivbpb

)−1(
c
B+
n−1

c
B−
n−1

)
(B26)

at the K valley, and(
c
A+
n

c
A−
n

)
= −

√
2nvf

lB

(
ivbpb

√
2t5√

2t5 −ivbpb

)−1(
c
A+
n−1

c
A−
n−1

)
(B27)

at the K ′ valley. Due to the multiplying factor
√

n between
consecutive coefficients, the sequence cannot avoid the diver-
gence. On the other hand, there are two possible zero modes at
each valley which obey the following converging sequences,(

c
A+
n+1

c
A−
n+1

)
= 1√

n + 1
T

(
c
A+
n

c
A−
n

)
(B28)

at the K valley, and(
c
B+
n+1

c
B−
n+1

)
= 1√

n + 1
T

(
c
B+
n

c
B−
n

)
(B29)

at the K ′ valley. If we choose the two eigenvectors of the

matrix T as the initial vectors (cA+
0 ,c

A−
0 )

T
for the K valley

and (cB+
0 ,c

B−
0 )

T
for the K ′ valley, due to the multiplying factor

1/
√

n + 1, the sequences vanish faster than exponentially in
the n → ∞ limit so that they are normalizable. This gives us
four zero-energy solutions, two from the A sites at the K valley
and the other two from the B sites at the K ′ valley.
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