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Fixed-node diffusion Monte Carlo method for lithium systems
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We study lithium systems over a range of a number of atoms, specifically atomic anion, dimer, metallic cluster,
and body-centered-cubic crystal, using the fixed-node diffusion Monte Carlo method. The focus is on analysis
of the fixed-node errors of each system, and for that purpose we test several orbital sets in order to provide the
most accurate nodal hypersurfaces. The calculations include both core and valence electrons in order to avoid any
possible impact by pseudopotentials. To quantify the fixed-node errors, we compare our results to other highly
accurate calculations, and wherever available, to experimental observations. The results for these Li systems
show that the fixed-node diffusion Monte Carlo method achieves accurate total energies, recovers 96–99 % of
the correlation energy, and estimates binding energies with errors bounded by 0.1 eV/at.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods have been applied
to a great variety of electronic structure problems over the
past three decades. These calculations provide a number of
highly accurate results for properties such as cohesion and
binding energies, excitations, reaction barrier heights, defect
formation energies, and other quantities; they are typically
in excellent agreement with available experiments [1,2]. In
addition, the calculations have shed new light on corre-
lation effects in various systems, and therefore they have
become valuable as benchmarks for other methods and
comparisons. The most important strength of this approach
is that the many-body Hamiltonian is employed directly, and
thus the electron-electron interaction and particle correlations
are treated explicitly in a many-body manner. Another ad-
vantage of QMC methods is its ready applicability to large
systems of interacting particles so that properties of solids can
be calculated by using supercells and extrapolations to the
thermodynamic limit.

The diffusion Monte Carlo (DMC) method projects out
the ground state of a system by applying the projection
operator exp(−τH ), where H is the Hamiltonian, to the trial
wave function �T . While any Hamiltonian can be evalu-
ated, we discuss electron systems with the fully interacting
Coulomb potential. In the large imaginary-time limit τ → ∞,
the ground state of a given symmetry is obtained. One
of the fundamental limitations in achieving exact results is
the so-called fixed-node (FN) approximation, which enables
one to avoid the well-known fermion sign problem [1,3]. The
fixed-node approximation is difficult to improve upon since
the corresponding energies are typically very small, e.g., a
few percent of the correlation energy, where the correlation
energy is itself a small fraction of the total energy. Therefore,
systematic improvements of the nodes through minimization
of the total energy or variance of the energy for a given
trial wave function is laborious and often very costly [4,5].
Insights into the role of basis sets in the error [5] were not
always easy to utilize in different systems [6]. Improvements
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in algorithmic efficiency, in the speed and quality of wave-
function optimization routines, and in functional forms for
orbitals and wave functions continue, and yet a significant
amount of work remains to be done in simply understand-
ing the root origin of the nodal errors by systematically
quantifying the dependence of energy biases on the nodal
defects.

Recently, we have analyzed the impact of the electron
density on the nodal bias in a set of free-atom/ion systems,
and we found the fixed-node errors to be proportional to
the density in this particular class of systems for both the
spin-unpolarized [7] and spin-polarized [8] cases. A similar
pattern of increasing fixed-node errors with larger charge
density in the region of nodal errors was observed in the
presence of pseudopotentials [9]. As a testbed to expand this
study to more complicated cases, a series of lithium systems
is attractive for several reasons. First, inclusion of the core
electrons in Li calculations is computationally feasible. That
enables us to avoid any additional, more complicated analysis
that is necessary whenever pseudopotentials or effective core
potentials are being employed. This ensures that any missing
amount of the binding energy, cohesive energy, or correlation
energy is caused solely by the fixed-node approximation.
Second, the exact wave function for a free Li atom has a
relatively simple nodal surface that is already well approxi-
mated at the Hartree-Fock level. In addition, small Li systems
have been studied with the FN-DMC method before. In this
work, we significantly expand upon previous studies with
calculations of Li4 clusters and Li solid in its equilibrium
body-centered-cubic structure. By comparing our fixed-node
diffusion Monte Carlo (FN-DMC) results with other accurate
calculations and experimental results corrected for zero-
point motion (DMC is carried out in the Born-Oppenheimer
approximation), we can assess the magnitude of the fixed-node
errors with high accuracy. These systems represent a variety
of environments for the bonding and include directional
bonds, multicenter bonds, and delocalized metallic bonds.
It is therefore an interesting question to understand how the
fixed-node bias changes once Li enters bonding in the setting
of molecular bonds or periodic boundary conditions. Based on
these results, we establish a systematic picture of the nodal
errors in Li systems and corresponding accuracies for energy
differences.
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II. METHODS

In DMC, we solve for the ground-state solution of
Schrödinger’s equation,

�0 = lim
τ→∞ exp{−τH }�T, (1)

where H is the Born-Oppenheimer Hamiltonian. The an-
tisymmetric nature of fermion systems poses a challenge
to the naive application of the DMC algorithm and leads
to the fermion sign problem [3,10,11]. This is because for
a given boundary value problem, the eigenstate with the
lowest eigenvalue will be a symmetric state. In light of
this well-known difficulty, perhaps the simplest and most
straightforward way to circumvent the sign problem is the
fixed-node approximation.

Under the fixed-node approximation, we impose a boundary
condition at the nodes of the trial wave function and maintain
them for the duration of the simulation. The nodes form a
hypersurface defined implicitly by

� = {R; �T(R) = 0}. (2)

The assumed nodal hypersurface creates boundaries that
constrain the solution in each nodal cell and preserve the
overall fermionic antisymmetry of the total wave function,
thus preventing any appearance of “signs.” This allows one to
ignore the sign of the wave function inside the nodal cell and
to carry out the DMC algorithm within each nodal cell,

�T�0 � 0. (3)

Unfortunately, doing this exactly is a tall order. It requires
that for an N -electron system, one must have a description of
the exact (3N − 1)-dimensional hypersurface �. Solving for
such a hypersurface directly is beyond our means, and instead
we proceed by using nodal surfaces from approximate wave
functions. Because we use a nodal hypersurface that is not
exact, the solution will have a higher energy than the exact
ground state, i.e., the total energy computed via FN-DMC is
a variational upper bound to the exact energy [12]. Further
details on the FN-DMC method can be found elsewhere; see,
for example, Ref. [1].

The trial functions used in this study are of the Slater-
Jastrow type,

�T(R) =
∑

k

ckdet↑k [ϕi]det↓k [ϕj ] exp(U ), (4)

where the one-particle orbitals are obtained from Hartree-Fock
(HF) or density-functional theory (DFT). More details on
the trial functions and their optimizations, Jastrow correla-
tion factors, and DMC calculations for periodic boundary
conditions can be found in the recent review in Ref. [2].
We used the QWALK software package to carry out all QMC
calculations [13].

III. RESULTS

A. Lithium atom and electron affinity

To calculate the total energy of the lithium atom, we use
a restricted Hartree-Fock wave function. Since the spin-up
and spin-down subspaces are independent at the HF level,
the minority spin channel contains only one electron, and the

TABLE I. Comparison of theoretical results for the total energy
of a lithium atom where FN-DMC energy has been obtained with the
HF nodes.

Source Total energy (Ha)

HF −7.23641
FN-DMC present work −7.47801(1)
FN-DMC Bressanini et al. [15] −7.478060(3)
exact [16] −7.47806032

wave function’s node exists in only the spin majority subspace.
We can visualize this subspace of the nodal hypersurface by
considering the wave function when 1 and 2 label the electrons
in the same spin channel. Then it follows from the form of the
HF determinant that the node is given by the condition r1 = r2.
The electron labeled as 1 therefore “sees” the node as a sphere
that passes through the position of electron 2 and has the
nucleus as its origin. The wave function will be equal to zero
if electron 1 occupies any point on the spherical nodal surface.

The exact HF nodal hypersurface in the full 6D space is a
5D hyperboloid given by the implicit equation x2

1 + y2
1 + z2

1 =
x2

2 + y2
2 + z2

2. As pointed out by Stillinger et al. [14], this
is not strictly exact, as the correlation with the electron in
the spin-down channel will cause deformations away from
a perfect sphere. For example, the excitation 2s12p2 will
have a contribution to the exact ground state and would in
principle lead to a departure from the single-particle node
(i.e., the sphere will deform slightly to an ellipsoid or perhaps
a more complicated surface that would depend on the position
of the minority spin electron). It is therefore quite remarkable
that the HF nodal surface seems to be so accurate: the total
energy with the HF nodes, shown in Table I, is accurate to
≈0.05(1) mHa, and the fixed-node bias is less than 0.1% of the
correlation energy [15]. This demonstrates that the correlation
is basically completely captured by the Jastrow-like effect, and
it affects the 5D hyperboloid only marginally. (This contrasts
with the Be atoms where the nodal surface is strongly affected
by correlations [7].)

Our own calculated fixed-node error in the single atom
energy is ≈0.05(1) mHa, much smaller than the chemical
accuracy (≈1.6 mHa). This also suggests that any fixed-node
errors in the aggregate species from Li atoms will be essentially
identical to the error in the binding or cohesive energy.

We can compute the electron affinity of a Li atom using
the value for the ground-state total energy of the Li− ion from
Ref. [7], which has a fixed-node error comparable to the neutral
atom. The electron affinity is given by

EA(Li) = E0(Li) − E0(Li−). (5)

Lithium has a positive electron affinity, meaning the anion
is more stable than the neutral atom. The HF limit of the
total energy of Li− has been computed to be −7.428 232 0
Ha; the HF limit of the total energy of the neutral Li atom is
−7.432 726 93 so that in the HF approximation the additional
electron would not be energetically favorable [17–19]. As is
well known, correlation effects are crucial for describing the
electron affinity with accuracy comparable to experiment [19].
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TABLE II. Comparison of the latest calculation and measurement
with FN-DMC results for the electron affinity for Li (in Ha).

Author Method EA (Ha)

Fischer [21] extrap. MCHF 0.022698
Present work FN-DMC HF single det. 0.0201(1)
Present work FN-DMC 2 configs. 0.02279(5)
Haeffler [20] Expt. 0.0227129(8)

Using a wave function composed of two configuration
state functions, i.e., the HF reference state plus 2s2 → 2p2

excitation (a symmetry-adapted linear combination of deter-
minants), for the four-electron ion yields an FN-DMC electron
affinity with an excellent accuracy compared to experimental
measurement [20]. The best theoretical and experimental data
are compared with this work in Table II. While the two species
in the calculation share geometric details (the central potential
in free space), when the fourth electron is added the nodal
hypersurface changes and the anion shows a nodal shape
similar to the isoelectronic Be atom. The poor quality of the
result for the electron affinity using only a single determinant
trial function for Li− stands to illustrate that the extreme
accuracy of the RHF nodal hypersurface for three electrons
is not typical and is rather a result of a fortuitous coincidence.

B. Li2

The Li2 dimer is a more complicated system. The additional
Li atom increases the number of electrons and changes in the
overall real-space geometry from one central potential with
spherical symmetry to a two-potential cylindrical symmetry.
The nodes of the lithium dimer have been studied a number
of times [22,23]. The best single configuration result in the
literature (in Ref. [23]), EFN-DMC = −14.9923(1), has about
3.1 mHa fixed-node error. The fixed-node error of the best
wave function in the same reference is ≈0.2–0.3 mHa, with a
total energy of −14.9952(1). Using the value for the HF energy
reported by Filippi and Umrigar [22], this recovers ≈99.8% of
the correlation energy. Bressanini et al. [23] have pointed out
that a five-configuration wave function has the nodal surface
close to the exact one, and therefore it is not too difficult to
obtain accurate energies at the fixed-node approximation level
with errors of the order of 0.1% as well. Interestingly, only
the three lowest excitations were really involved: 2σ 2 → 1π2,
2σ 2

g → 2σ 2
u , and 2σ 2

g → 3σ 2
g . Since this system was studied

exhaustively, we did not repeat the multireference calculation,
and instead we quote the results of Bressanini et al. [23]
hereafter.

C. Li4

Li4 and its properties have been studied by several methods,
including the basis-set correlated approaches [24–29]. The
most stable configuration of four Li atoms is a molecule
with D2h symmetry, a planar rhombus geometry, and a singlet
electronic ground state [24–28]. The geometry of the D2h Li4
is depicted schematically in Fig. 1. This can be understood as
the result of a Jahn-Teller distortion of the more symmetric
geometry of a square [26]. Li4 exhibits a “three-center”

FIG. 1. (Color online) Schematic depiction of the D2h Li4

parameters.

bonding pattern where two electrons are shared inside each
of the two triangles formed by bisecting Fig. 1 along the “rA”
line [30].

In Table III, we compare the nodes of the SCF wave
functions (unoptimized) for different levels of CI in order to
illustrate the behavior of such expansions and to select the best
starting place for our QMC trial wave function. For each level
of CI, we used complete expansions but limited the number of
virtual orbitals in the active space. It is clear that the nodes do
not improve systematically for larger active space and a higher
level of theory as the CI total energies do.

Since FN-DMC errors associated with the basis set are
not very systematic, we also tested the nodal surfaces of
several basis sets to minimize these errors. Although not
fully complete, the results seem to support the conclusion
of Bressanini et al. [23] that for Li systems, saturating the s

channel is more important than adding additional high angular
momentum basis functions. These results are listed in Table IV.
After some initial testing of basis and multideterminant
expansions, we employed wave functions constructed from
the aug-cc-pCVTZ basis and included the 15 lowest-lying
virtual orbitals into the CI-SD calculation. We reoptimized
the weights of the resulting 93 configuration-state functions in
the CI expansion with VMC total energy minimization using
a Levenberg-Marquardt algorithm. The geometry parameters

TABLE III. Fixed-node DMC total energies (a.u.) for trial wave
functions from different levels of CI. These calculations were used to
test unoptimized nodal surfaces for use as DMC trial wave functions.
The corresponding CI energies are included as well.

Theory Virtual orbitals ECI EFN-DMC

RHF 0 −29.76238 −30.0177(5)
CI-SD 9 −29.81584 −30.0184(5)
CI-SDTQ 9 −29.82021 −30.0174(4)
CI-SD 15 −29.82475 −30.0228(4)
CI-SDTQ 15 −29.83131 −30.0179(4)
CI-SD 19 −29.82534 −30.0162(4)
CI-SDTQ 19 −29.83226 −30.0179(6)
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TABLE IV. FN-DMC results for different basis sets with trial
wave functions from CI-SD calculations using 15 virtual orbitals and
then optimized in with respect to VMC total energy.

Basis set Total energy (Ha)

Roos Aug. DZ ANO (4s3p2d) −30.02127(5)
Roos Aug. TZ ANO (4s4p3d2f ) −30.02119(6)
aug-cc-pCVTZ (7s6p4d2f ) −30.02263(6)

have been computed a number of times in the literature, as
reported in Table V, organized by the value for the Li-Li
distance labeled rC in Fig. 1. The FN-DMC results indicate
that there is a short Li-Li bond ≈2.64 Å (2rA in Fig. 1) and a
longer Li-Li bond ≈2.99–3.0 Å (rC in Fig. 1).

The experimental and theoretical binding energies of Li4
are given in Table VI. Because the presence of the Jastrow
factor will influence the optimization of the multideterminant
expansion, it is not clear a priori what form of the Jastrow
factor is optimal. In particular, since the bonds are not
very strong and the bond lengths are somewhat larger than
in typical single-bonded situations, we tested the range of
the Jastrow cutoff distance parameter. We optimized the
Jastrow coefficients and determinant weights for two different
electron-ion Jastrow distances. The wave function with the
so-called “short-range” Jastrow effects had its electron-ion
and electron-electron-ion terms extend to 2.45 bohr from each
atom, i.e., to just less than half the smallest Li-Li distance. For
the “long-range” Jastrow, the electron-ion terms were allowed
to extend to 7.5 bohr. The qualitative difference between
these two Jastrows is that terms from different atoms in the
short-range Jastrow do not overlap in the region occupied by
the three-center bonds. This difference in description of the
wave function translates into a difference in computational
effort. In the “short-range” case, each electron will have
nonzero three-body Jastrow terms associated with only one
atomic center at any given time, whereas in the “long-range”
case, electrons have nonzero contributions to the Jastrow
coming from each of the Li atoms surrounding the three-center
bonding region. The resulting effect in the total energy of the
wave function was only ≈0.000 13 per atom.

We carried out a time-step extrapolation for both wave
functions, shown in Fig. 2, to ensure that the time-step error
is < ≈0.05 mHa in the total energy, or an order of magnitude
smaller than the statistical error bars in the binding energy.
After correcting for the zero-point motion, which is about 3.12
mhartree per atom [28], we find a binding energy of 0.723(3)
eV. Note the reasonably good agreement between the results,
although the basis-set correlation methods did not include any

TABLE VI. Binding energies of Li4, uncorrected for zero-point
motion, are given in units of eV per atom.

Author Method Binding

Alikhani and Shaik [32] DFT 0.61
Bonacic-Koutecky et al. [33] MRD-CI 0.63
Owen [34] DMC 0.67(2)
Nissenbaum et al. [29] DMC 0.733(4)
Rao et al. [35] CI-SD 0.7375
Wheeler et al. [28] CCSD(T) 0.7445
Present work DMC 0.744(3)
Wu [36] Expt. 0.84(5)
Brechignac et al. [37] Expt. 0.63(4)

correlation of the core (1s) states. This points out that the
core states are already quite deep and do not affect the nodal
surfaces significantly. One of the reasons is that any excitation
that would correlate the 1s level would involve states that
would lie very high in energy since such excitations would
require a strongly localized type of orbitals. The accuracy of
these results and those presented for the Li dimer suggest that
the nodal surfaces are minimally affected by the 1s subshell.

The table includes also experimental data from the two
available sources, namely Wu [36] and Brechignac et al. [37]
[0.84(5) and 0.63(4) eV, respectively]. These data show
significant differences and seem inconsistent with each other.
Considering the reasonable agreement between the four
independent calculations in Table VI that are within ≈0.01 eV
and the sizable error bars on the experimental values, we
essentially claim that our present calculation, being produced
by an upper bound method and having the lowest total energy
of the theoretical calculations, is the most accurate estimation
of this total energy to date.

D. Bulk lithium in a bcc crystal

Because of its position as a bulk crystal with only one
valence electron per atom, lithium in the body-centered-cubic
(bcc) crystal (Pearson symbol cI2) has been studied a few
times by QMC methods in the literature [38–41]. Surprisingly,
however, none of these calculations has used FN-DMC with
the core electrons included.

Further interest in studying lithium crystals with QMC
methods was stimulated by recent experimental and theoretical
developments. For example, interesting phenomena for high
pressures, including superconductivity, have been reported
in experimental studies [42,43]. An intriguing hypothetical
suggestion has been raised by Neaton and Ashcroft that
lithium solid may undergo a Peierls transition into a so-called

TABLE V. Summary of the optimized geometry parameters of D2h Li4 tested in this work, and the FN-DMC total energy for each. The
trial wave function is an VMC energy-optimized CI-SD expansion with 93 CSFs.

Author Method rA (Å) rB (Å) rC (Å) EFN-DMC
tot (Ha)

Ray [24] DFT 1.298 2.759 3.050 −30.02132(2)
Rousseau and Marx [27] QCISD/CCSD(T) 1.323 2.700 3.007 −30.02155(2)
Verdicchio et al. [31] CCSD(T) 1.323 2.680 2.989 −30.02158(2)
Wheeler et al. [28] CCSD(T) 1.316 2.681 2.987 −30.02154(2)
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FIG. 2. (Color online) The DMC energy extrapolated to τ =
0 for a Li4 molecule. Both wave functions originate from the
same configuration-interaction CI-SD calculation, but they have had
the determinant weights and Jastrow coefficients reoptimized with
different assumed cutoff distances in the Jastrow, as described in the
text.

“alkali electride” at high pressures, an exotic phase in which
paired Li atoms are stabilized by pockets of highly localized
electrons [44,45].

Experimental measurements of the lattice constant of bcc
lithium agree that a0 = 3.51 Å (Refs. [46–51]). Previous
QMC simulations treat 3.482 Å (given as 6.58 bohr) or
similar values as the experimental value, perhaps due to
the fact that the experimental measures were done at 25 ◦C
(Refs. [38–41]). Gaudoin and Foulkes suggest that for zero-
temperature methods, the computed equilibrium is expected
to be a0 = 3.44 Å (Ref. [52]). While we did not construct a
full energy-volume curve, we checked these lattice constants
with both DFT and FN-DMC, shown in Table VII. At the DFT
level, the difference at the extremes of these lattice values is
≈1.5 mHa. The difference at the FN-DMC is smaller, ≈0.25
mHa, and since the finite-size errors are still present in these
values, this likely overshadows the actual differences between
the lattices.

We consider the differences between different lattice
constants to be rather small, and for the sake of consistency
with previous QMC calculations we further study the cI2
lithium solid by FN-DMC at the lattice constant a0 = 3.482
Å. Our FN-DMC calculations use a single determinant
Slater-Jastrow wave function with orbitals taken from DFT
calculations. Since the nodal surface would be rather difficult
to improve upon within the QMC calculation of a crystalline
system, we begin by comparing several DFT functionals
to find the best nodal surface, and we found the results
to lie within 2–2.5 mHa per atom of the highest quality

TABLE VII. Total energy per atom in atomic units from
DFT/PBE-PZ and FN-DMC calculations for a 16-atom cell (2 ×
2 × 2 conventional cell) for different lattice values.

a0 (Å) DFT FN-DMC

3.51 −7.60873 −7.53840(3)
3.482 −7.60914 −7.53852(2)
3.44 −7.61027 −7.53867(2)

TABLE VIII. Results of FN-DMC calculations for the �-point
wave function of an eight-atom supercell comparing the nodal quality
of orbital sets generated by DFT functionals.

Exchange Correlation Etot (hartrees)

H-F −60.135(1)
PW91-GGA PW91-GGA −60.136(1)
PBE-GGA PBE-GGA −60.144(1)
PBE-GGA PZ-LDA −60.151(1)

nodal surface (PBE-PZ functional). This strategy has been
motivated by our work on DFT generated orbital sets to find
the most optimal nodal surface [53,54]. A select subset of
the functionals tested are reported in Table VIII. The total
energy is integrated over the irreducible Brillouin zone by the
so-called “twist-averaging” procedure: a DMC calculation is
carried out for each symmetry-unique k-point in a uniform
8 × 8 × 8 Monkhorst-Pack mesh, and the resulting energies
are weight-averaged using the geometric multiplicity of the
k point as the weight [55]. To treat the finite-size errors that
occur, both due to the Ewald sums and also to the finite number
of twists, we collect statistics on the static structure factor S(k)
during the QMC simulations. These data are plotted in Fig. 3.
The correction to the finite-size errors in the simulation cell’s
energy is calculated using the functional form for S(k) as
detailed by Chiesa et al. [56]. The 8-atom (triangle symbols)
and 16-atom (circle symbols) data for variational Monte Carlo
(VMC) and DMC mixed estimators are less well converged
when compared to the 54-atom cell. The corrected DMC mixed
estimator (blue) is, however, consistent for all sizes of cell.
This suggests that, at least for some systems, it is possible to
estimate the static structure factor correction accurately with
data from smaller simulation cells. Since the system is a simple
metal, within the random-phase approximation the behavior

 0
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FIG. 3. (Color online) QMC results for S(k) for several sizes
of the simulation cell. Squares denote results from the 54-atom
simulation; circles, 16-atom simulation; and triangles, eight-atom
simulation. The curves shown are fit to the 54-atom data with the
function S(k) = exp {−akb}. For small k, RPA predicts b = 2. For
the fits shown, the b parameter for VMC is 1.45; DMC with the mixed
estimator, 1.67; and the DMC extrapolated estimator, 1.99.
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FIG. 4. (Color online) The total energy per atom for twist av-
eraged FN-DMC with and without the finite-size error (FSE)
corrections [56] plotted against the inverse of the number of atoms in
the cell. The data are fit with an extrapolation to infinite bulk size. The
infinite bulk total energy per atom of −7.5371 Ha for the FN-DMC
and −7.5369 for the FN-DMC with FSE corrections. These values
are within error bars of each other. The statistical error bars on the
data are smaller than the size of the plot symbol, thus they are not
visible.

of S(k) for small values of k is expected to be proportional
to k2, as detailed by Bohm and Pines [57]. The curve fit to
our calculated values indicates that S(k) in our simulation is
∝k1.99 so that we have reasonable confidence in the quality of
the corrected mixed DMC estimator result [1]. We use a linear
fit to the equation

En = E∞ − a

N
(6)

to extrapolate the total energy per atom to the infinite bulk of
the cI2 lithium crystal, as shown in Fig. 4. The data in Fig. 4
show that after applying twist averaging and corrections, the
16-atom cell energy per atom is ≈2.5 mHa from the infinite
bulk value, and the 24-atom cell is ≈1 mHa, while the 54-
atom cell is less than a mHa from the extrapolated value. We
believe that the Li bulk energy could be further improved by
more sophisticated orbitals and optimization by employing
more accurate wave functions, such as the ones based on pair
orbitals [29,58,59]; however, in this study the focus was to
understand the trial functions that are, at present, commonly
used for solid-state and quantum chemistry calculations.

E. Discussion

To compare the quality of the results for these systems,
Table IX shows the per atom energy evolving toward the
bulk value as the size of the lithium system increases. These
values are based either on the best total energy calculations
available or on using experimental binding and estimated
zero-point motion energies subtracted from the exact atomic
energy. Therefore, they represent the depths of the binding
curves assuming T = 0 and infinite nuclear masses, similar to
previous studies; see, for example, Ref. [22]. For the lithium
dimer, we quote the values of Ref. [23]. For the Li4 cluster,
we list our own FN-DMC calculated binding energy on the

TABLE IX. Summary of the estimated total energies per atom for
a sequence of different sized Li systems. E0 for the n = 4 cluster we
substitute use the obtained FN-DMC value for the binding energy.

Size EFN-DMC Est. E0 Estimated from

1 −7.4780(1) −7.47806 Hylleraas expan.
2 −7.4976(1)a −7.4977 Expt.+ZPMb

4 −7.50538(1) −7.50541 FN-DMC binding
cI2 crystal −7.5369(6) −7.54066 Expt.+ZPMc

aFrom Ref. [23].
bAtom + ZPM+ experimental binding from Ref. [22].
cAtom + ZPM + experimental binding from Refs. [60,61].

grounds that it is the best currently available estimation. For
the body-centered-cubic crystal, we take an estimate of the
zero-point vibrational energy of 0.001 72 Ha from Ref. [60],
and the cohesive energy of 0.060 87 Ha from Ref. [61], and
we subtract these from the exact single-atom total energy. The
quoted value of the experimental cohesive energy is obtained
from the enthalpy extrapolated to T = 0 using experimental
data; see Refs. [61,62]. Table IX shows the per atom energy
evolving toward the bulk value as the size of the lithium system
increases.

The imperfect result for the FN-DMC correlation energy
of the Li solid is still very accurate, higher only by the
fixed-node bias of about 3.7 mHa (≈4% of the correlation
energy) from the estimated exact value. The underestimation of
the cohesive energy is essentially the same, approximately 0.1
eV. We consider this to be remarkably accurate in light of the
simplicity of the single-reference Hartree-Fock wave-function
nodes. Given the fact that the spin-up and spin-down channels
are completely decoupled in HF, the complexity of the nodal
surface is not fully captured by this trial function; nevertheless,
the accuracy of the total energy appears to be quite robust so
that the impact of these errors is comparably small. We conjec-
ture that the electronic structure is dominated by the nearly-
free-electron picture that is far from the strongly correlated
regime. Therefore, the single-reference wave functions lead to
qualitatively and also quantitatively accurate descriptions of
the ground-state properties of the Li solid.

Taking the analysis of the Li crystal further, we can divide
the bias into essentially two components, namely one that has
the atomic (core-valence) origin and the remaining “homoge-
neous” (valence-valence) part. These two components result
from imperfections in capturing core-valence correlations
and valence-valence correlations of the metallic 2s band.
Qualitatively, the order of magnitude of the atomic part can be
extracted from the Li2 molecule as well as from the Li− anion.
Note that in Li2 (Li−), one-particle states can be partitioned
into the core singlets 1s2 and the valence singlet 2σ 2

g (2s2).
The separated cores are essentially nodeless, and the separated
valence singlet is nominally nodeless as well (note that the
one-particle nodes are generated by the orbital orthogonality
and they do not correspond to the many-body fermion nodes).
The fermion nodes are formed by antisymmetrization between
the core and valence electrons, i.e., they belong to the core-
valence subspace of correlations. Considering Li2 as a good
model for these types of correlations, the fixed-node error
in the molecule for the single-reference Slater-Jastrow trial
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function is about 0.0032 Ha in total, and therefore ≈0.0016
Ha per Li atom. Similarly, for the Li− anion the corresponding
value is about 0.0026 Ha. Therefore, we consider ≈0.002
Ha per atom as a reasonable estimation for the core-valence
fixed-node bias. Besides this core-valence component, the
remaining correlations of the Li crystal are in the valence-
valence subspace of the 2s metallic band. Away from the
core regions, these metallic states are smooth, delocalized,
and form a system that is close to the homogeneous electron
gas (HEG), a well-known paradigmatic model for a metal. The
valence electronic density of our simulation cell corresponds
to the Wigner-Seitz radius rs ≈ 3.24, and therefore we can
estimate the order of magnitude of the fixed-node error of the
Slater-Jastrow wave function in HEG using previous studies.
Accurate values of the HEG energies and the corresponding
Slater-Jastrow fixed-node errors are known for some values
of rs based on nearly exact calculations with backflow wave
functions; for further details, see Refs. [59,63–66]. Using these
results, the estimated fixed-node error is about 0.0013 a.u.
(small differences between the studies are not crucial for
our purposes here). Interestingly, we see that the nodal error
contributions from the atomic inhomogeneities (core-valence)
and from the homogeneous metallic band are of comparable
sizes. It is reassuring that the sum of these two components is
≈0.0035 a.u., which is very close to the fixed-node error we
found. This finding also suggests the barrier to eliminating the
remaining fixed-node bias. Clearly, one would need to address
both the localized (core-valence) correlations as well as the
HEG-like (valence-valence) correlations on the same footing.
In the future, perhaps an expansion in local atomic excitations
can be combined with backflow terms so that the resulting trial
wave function would capture both components of the overall
missing correlations.

IV. CONCLUSION

As the size of Li systems increases from a single atom
to the bulk crystal, it is clear that the complexity of the
nodal hypersurface grows. In the simplest case of the atom,
a nearly exact approximation to the node is known. For
related small systems, the nodal errors are small, and it is
possible to recover almost exact nodes with acceptable sizes
of expansions in excited determinants. What is valuable and
somewhat unexpected is the fact that the accuracy of the
FN-DMC calculation with single reference trial functions is
high even for the Li solid. Note that the solid phase is metallic,
so that its electronic structure is different from atomic and
molecular systems with localized ground states. The presented
calculations show that for Li systems, readily available trial
wave functions are sufficiently accurate to provide cohesive
and binding energies to within an accuracy of 0.05–0.1 eV.
We also find that the remaining fixed-node error in the Li
solid for the Slater-Jastrow wave function is almost equally
divided between the core-valence and the valence-valence
contributions. Our understanding of the fixed-node errors is
gradually advancing, and the results presented here add another
piece into the mosaic of previously obtained insights that
indicate that both the electronic density and the complexity of
bonds, particularly the bond multiplicities, strongly influence
the nodal accuracy.
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