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Nematic quantum criticality in three-dimensional Fermi system with quadratic band touching
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We construct and discuss the field theory for tensorial nematic order parameter coupled to gapless
four-component fermions at the quadratic band touching point in three (spatial) dimensions. Within a properly
formulated epsilon-expansion this theory is found to have a quantum critical point, which describes the
(presumably continuous) transition from the semimetal into a (nematic) Mott insulator. The latter phase breaks
the rotational, but not the time-reversal, symmetry and may be relevant to materials such as gray tin or
mercury telluride at low temperatures. The critical point represents a simple quantum analog of the familiar
classical isotropic-to-nematic transition in liquid crystals. The properties and the consequences of this quantum
critical point are discussed. Its existence supports the scenario of the “fixed-point collision,” according to which
three-dimensional Fermi systems with quadratic band touching and long-range Coulomb interactions are unstable
towards the gapped nematic ground state at low temperatures.
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I. INTRODUCTION

Electronic systems that have their Fermi surface reduced
to Fermi points recently have received much attention. In
particular, recent progress on the problem of interacting Dirac
electrons, when the dispersion near the Fermi points is linear
in momentum, has indicated that these systems suffer a
quantum phase transition with increasing interactions into a
gapped phase, described well by the relativistic field theory
of the Gross-Neveu-Yukawa type [1]. A weak long-range
component of the Coulomb interaction appears to be an
irrelevant perturbation at the quantum critical (QC) point, and
the transition is essentially due to some of its short-range
components becoming sufficiently large. When the dispersion
near the Fermi point(s) is quadratic, on the other hand, the
result rather differs. In the bilayer graphene, for example, it is
one of many possible mass gaps that opens up already at an
infinitesimal interaction [2]. The finite density of states that
accompanies such a quadratic band touching (QBT) in two
dimensions (2D) causes the long-range Coulomb interaction,
loosely speaking, to be screened and, at the same time, the
noninteracting ground state to be unstable at weak short-range
interaction [3,4].

The situation in three-dimensional (3D) systems with QBT
is maybe more interesting. QBT arises naturally in many
gapless semiconductors, such as gray tin, mercury telluride,
or certain pyrochlore iridates [5], that feature band inversion
due to spin-orbit coupling. The density of states at the
QBT point now vanishes, and the long-range nature of the
electron-electron interaction must be taken into account. It
has been argued by Abrikosov long ago [6] that the plain
vanilla density-density Coulomb interaction in a 3D system
with the QBT should turn the ground state into an example
of a scale-invariant non-Fermi liquid (NFL). Such an exotic
zero temperature phase would manifest itself in characteristic
nontrivial power laws in temperature or frequency in various
response functions of the system [7].

We have recently pointed out [8], on the other hand, that
a 3D system with the chemical potential at the QBT and the
Coulomb repulsion between the electrons may be unstable
towards an insulating ground state with an anisotropic gap in

the spectrum at low temperatures. The mechanism responsible
for this instability was proposed to be the collision between the
Abrikosov’s infrared stable NFL fixed point with another, QC,
point, which approaches it from the strong-coupling region
as the spatial dimensionality of the system is taken to be
decreasing from d = 4. The collision of fixed points has been
studied as a mechanism behind several interesting instabilities
in a variety of many-body systems in the past [9–13]. Within
the standard one-loop calculation it occurs here somewhat
above and close to d = 3, when both the NFL and QC fixed
points become complex and disappear from the physical space
of real couplings. As a result, the coupling constants in the
theory run away towards the values at which spontaneous
breaking of the rotational symmetry appears to be the most
favorable instability. The system in its interacting ground state
would effectively appear as if it were under, in this case,
dynamically generated strain. Furthermore, in the materials
with the rest of the band structure equivalent to that of gray tin
or mercury telluride as well, the resulting insulating ground
state, at least at the mean-field level, would be topologically
nontrivial [14]. It therefore would be a precious example of a
topological Mott insulator [15–18].

In order to remove the Abrikosov’s NFL fixed point,
however, the existence of which is guaranteed close to four
spatial dimensions, from the physical real-valued space of
couplings, it is necessary to have a QC point that would
collide with it with the change of some parameter. Indeed,
in a certain large-N extension of the theory one can show that
such a QC point does exist [8]. At the physical value of N = 1,
however, in the purely fermionic formulation of the problem
the putative QC point lies at strong values of the short-range
couplings in the relevant dimensions 3 � d < 4. One may
therefore question whether such a QC point is a genuine feature
of the theory, and if it would, for example, survive if one
went beyond the one-loop approximation. As we will see such
reservations would not be entirely without grounds. Similar
issue arises in the interacting system of linearly dispersing
Dirac fermions [19,20]. In this case, however, an alternative
partially bosonized Gross-Neveu-Yukawa formulation can be
devised [21]. In this reformulation of the theory one finds
a clearly identifiable upper critical dimension, which can be
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used to control the quantum critical point and compute its
characteristics in perturbative fashion. The crucial ingredient,
however, behind this fortunate outcome is the linearity of the
Dirac quasiparticle spectrum, which allows the Lorentz sym-
metry, although absent at the level of the lattice Hamiltonian,
to emerge dynamically at the QC point. In the systems with
the QBT, on the other hand, such an enlarged symmetry is
certainly not expected at low energies, and it is a priori not
even clear what dynamic scaling to assume, as the coupled
fermion-boson system on the Gaussian level appears to be
characterized by two different dynamical critical exponents,
z = 1 and 2, respectively.

Furthermore, as already implicit in Ref. [6] and as will be
discussed here at length, one readily finds that the minimal
Hamiltonian with the QBT point in 3D requires the use of the
maximal set of five 4-dimensional mutually anticommuting
Dirac matrices. This is not an accident, and the situation is the
same in 4D, except that one there needs the maximal set of nine
16-dimensional Dirac matrices. Having no further anticom-
muting matrix left prohibits then the opening of an isotropic
mass gap in the insulating state, which is usually preferred
in the systems with Dirac fermions [22,23]. This leaves as
the energetically next-best option the dynamical generation of
the second-rank tensorial order parameter, which breaks the
rotational and preserves the time-reversal symmetry. Such a
nematic order parameter, as well known from the studies of
liquid crystals [24], allows a cubic rotationally invariant term,
which is typically responsible for a discontinuous transition.
This makes the existence of the QC point in this system seem
additionally questionable.

Given these difficulties which appear to be inherent to the
problem at hand, it is quite remarkable that together they
conspire to allow the construction of the Gross-Neveu-Yukawa
type of field theory for the nematic transition in the system
with QBT that has a perturbatively accessible QC point. We
find that it is precisely the presence of the cubic invariant for
the nematic order parameter that implies the existence of the
upper critical dimension in the theory. The dichotomy in the
dynamical scaling of fermions and bosons at the Gaussian
fixed point of the theory is naturally resolved at the QC
point, with the critical behavior becoming independent of
the specific choice of the scaling scheme, and ultimately
characterized by a single dynamical critical exponent z. The
nematic quantum phase transition from the semimetallic phase
into the insulating phase with the anisotropic gap described by
the above QC point is therefore presumably continuous, at least
at the level of the mean-field theory—in contrast to the classical
thermal isotropic-to-nematic transition in liquid crystals [24].
To the leading order, the QC point is characterized by
the dynamical critical exponent z = 2, a nontrivial positive
anomalous dimension of the order-parameter field, and a
vanishing anomalous dimension for the fermions. The relative
signs of the cubic term and the Yukawa couplings at the critical
point are also such that the state with fully gapped fermions
is favored in the ordered phase, as one would expect from
energetics [8].

For the sake of simplicity, in the present work we neglect
the effects of the unscreened long-range tail of the Coulomb
interaction. While our predictions for the critical exponents
near the upper critical dimension may be subject to quantitative

improvement upon its inclusion, possibly already at the leading
order in the ε expansion, we see no reason why the mechanisms
responsible for the existence of the nematic QC point should be
qualitatively altered when the long-range Coulomb interaction
is included—as long as ε is small. For larger values of ε,
in contrast, according to the scenario of the “fixed-point
collision” [8], the QBT system with the long-range interaction
should become unstable towards an insulating ground state
with an anisotropic gap. With the inclusion of the long-
range interactions the expansion around the upper critical
dimension is thus expected to, even qualitatively, eventually
break down at some lower critical dimension, which may as
well lie above the physical three [8]. Rather than deriving
quantitative predictions for experimental systems, our limited
objective here is thus to further substantiate the mechanism
of “fixed-point collision” by establishing the very existence
of the nematic critical point beyond the previous large-N
approximation.

The organization of the paper is as follows. In the next
section we discuss the construction of the minimal isotropic
QBT Hamiltonian in the form that most closely resembles the
Dirac Hamiltonian, in general spatial dimension. In Sec. III the
Gross-Neveu-Yukawa continuum field theory for the nematic
order parameter coupled to fermions is presented. We present
the mean-field theory for the nematic quantum phase transition
and discuss its order and the nature of the associated interacting
ground state in Sec. IV. The structure of the renormalization
group and the concomitant quantum critical point are discussed
in Sec. V. In Sec. VI we offer an interpretation of our results.
Concluding remarks are given in Sec. VII. Some nontrivial
technical points necessary for the calculation are presented in
five appendices.

II. QBT HAMILTONIANS IN DIFFERENT DIMENSIONS

We first discuss the construction of the minimal, rotationally
invariant, and particle-hole symmetric QBT Hamiltonian, in
general spatial dimension d. We assume that in the momentum
representation it has the form of

H =
d∑

i,j=1

Gijpipj , (1)

with Gij as the matrix coefficients, which need to be deter-
mined. Obviously, Gij must transform as the components of a
second-rank symmetric tensor under rotations. For simplicity,
we set the effective band mass to 2m = 1 and demand that
H 2 = p41, with the minimal dimension of the Hamiltonian
to be determined. H 2 thus contains only even powers of the
momentum’s components pi , and the matrix coefficients must
then satisfy the anticommutation rules

{Gof,G
′
of} = {Gd,Gof} = 0, (2)

where Gd is any of the diagonal elements Gii , Gof is any of the
off-diagonal element Gij with i �= j , and Gof �= G′

of . Then

H 2 =
d∑

i=1

G2
iip

4
i +

∑
i<j

p2
i p

2
j

(
4G2

ij + {Gii,Gjj }
)
. (3)
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If we normalize the diagonal elements so all G2
d = 1, H 2 = p4

provided that the following condition is satisfied:

4G2
of + {Gd,G

′
d} = 2. (4)

Demanding further that the tensor Gij is traceless, the
Hamiltonian H would contain only the irreducible tensor
pipj − δijp

2/d and would be without the scalar term ∝p2.
The existence of such a scalar part would only introduce
different curvatures of the upper and the lower branches of
the energy spectrum, and we omit it for the time being. We
therefore set

d∑
i=1

Gii = 0, (5)

with the spectrum being quadratic, isotropic, and particle-hole
symmetric, ε±( �p) = ±p2. Tracelessness, however, implies
that, for arbitrary index k,

0 =
{

Gkk,

d∑
i=1

Gii

}
= 2 +

∑
i(�=k)

{Gkk,Gii} (6)

or, in other words, that for any pair of diagonal elements

{Gd,G
′
d} = 2

1 − d
. (7)

When combined with Eq. (4) this in particular implies that off-
diagonal elements are to be normalized as G2

of = d/[2(d − 1)].
To construct the desired Hamiltonian H we therefore need(

d2 − d

2

)
+ (d − 1) (8)

mutually anticommuting Dirac matrices, for the off-diagonal
(first) and the diagonal (second term) elements. From d − 1
Dirac matrices for the diagonal matrices, d matrices Gii that
satisfy Eq. (7) and square to unity can always be constructed.

For example:
(1) In d = 2 only two anticommuting matrices are needed,

and therefore they may be chosen as G12 = G21 = σ1 and
G11 = −G22 = σ3. The Hamiltonian describes the band
touching point in bilayer graphene, for example. Note that
H is time-reversal symmetric, and the time-reversal operator
is T = K , the complex conjugation alone. Since T 2 = 1 this
Hamiltonian can arise as a low-energy limit of a lattice Hamil-
tonian with spinless fermions hopping between sites [25].
Examples of such lattice Hamiltonians already exist in the
literature [3,4].

(2) In d = 3 one needs five Dirac matrices for the
construction, so their minimal dimension is four. We can
choose G12 = (

√
3/2)γ2, G13 = (

√
3/2)γ3, G23 = (

√
3/2)γ4,

and then for the diagonal elements

G11 = −1

2
γ5 +

√
3

2
γ1, (9)

G22 = −1

2
γ5 −

√
3

2
γ1, (10)

G33 = γ5. (11)

The Hermitian Dirac matrices γa , a = 1, . . . ,5 satisfy the
Clifford algebra {γa,γb} = 2δab. With this particular choice

the Hamiltonian can also be rewritten as

H =
5∑

a=1

da( �p)γa, (12)

where da( �p) = p2d̃a(θ,ϕ) are proportional to five real
spherical harmonics for the angular momentum of
two; explicitly, d̃1 + id̃2 = (

√
3/2) sin2(θ )e2iϕ , d̃3 + id̃4 =

(
√

3/2) sin(2θ )eiϕ , d̃5 = (3 cos2 θ − 1)/2, with θ and ϕ as the
spherical angles in the momentum space.

Note that among the five four-dimensional Dirac matrices
we can always choose two (say γ4 and γ5) as imaginary and the
remaining three as real, so H is also time-reversal invariant, but
now with (unique) T = γ4γ5K [25]. Most importantly, T 2 =
−1, and in three dimensions H inevitably describes particles
with half-integer spin. In fact this “Luttinger Hamiltonian” is
well known to arise from the spin-orbit coupling in gapless
semiconductors such as gray tin, for example [26,27]. Also,
the Kramers theorem applies in this case and dictates that the
spectrum is doubly degenerate at any momentum.

(3) For completeness, let us also display the solution
for d = 4. For the off-diagonal elements we now need
six mutually anticommuting matrices and for the diagonal
elements three more. The nine-component Clifford alge-
bra has the unique irreducible representation being 16 di-
mensional. We may then choose the off-diagonal elements
as (G12,G13,G23,G14,G24,G45) = √

2/3(γ2,γ3,γ4,γ6,γ7,γ8),
and the diagonal elements as

G11 = −1

3
γ9 −

√
2

3
γ5 +

√
2

3
γ1, (13)

G22 = −1

3
γ9 −

√
2

3
γ5 −

√
2

3
γ1, (14)

G33 = −1

3
γ9 +

√
8

3
γ5, (15)

G44 = γ9. (16)

Displaying H in the form equivalent to Eq. (12) would define
the four-dimensional generalization of the 	 = 2 spherical
harmonics. Note also that among the nine 16-dimensional
Dirac matrices, four (say with indices a = 6,7,8,9) can be
chosen to be purely imaginary, with the remaining five then
as real [28]. The time-reversal operator that commutes with
H exists and is unique: T = γ6γ7γ8γ9K , but again T 2 = +1,
and the minimal Hamiltonian in d = 4, similarly to d = 2,
describes a spinless particle.

The solutions to the above conditions for the matrices
Gij can be found in all dimensions, with the properties of
the minimal Hamiltonian under time reversal, for example,
being strongly dimension dependent, as our examples al-
ready illustrate. Further details on the construction of the
d-dimensional QBT Hamiltonian are provided in Appendix B.
The construction can also be generalized to higher-order
band touching, which would involve the higher-rank tensors
and higher-angular-momentum spherical harmonics. Further
elaboration of this point would be somewhat tangential to our
main subject, and we leave it for another occasion.
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III. THE GROSS-NEVEU-YUKAWA FIELD THEORY

We consider next the QBT fermions in d = 3 and at T =
0. The system may possibly harbor several QC fixed points
which for large-enough short-range interactions could lead
to various different instabilities and corresponding symmetry-
breaking patterns, in analogy to the 2D Dirac system describing
interacting fermions on the honeycomb lattice [20]. Due to
the vanishing density of states at the QBT point in 3D any
such QC point will be located at strong coupling—as long
as the long-range tail of Coulomb interaction is suppressed.
With the long-range interaction included, however, the critical
coupling is expected to decrease significantly and might even
vanish completely [8], in contrast to the Dirac systems. We
have shown recently [8], that in the isotropic and particle-hole
symmetric case the long-range interaction favors the nematic
instability, and if indeed the QBT point becomes unstable at
low temperatures, then the rotational symmetry would break
spontaneously. To substantiate this scenario and to understand
to concomitant ordering, in the present work we therefore
focus on the nematic interaction channel.

In order to establish the existence of a nematic QC point and
to discuss its characteristics, in what follows we will suppress
the long-range part of the Coulomb interaction. In the vicinity
of the upper critical dimension, its inclusion is expected to
only quantitatively improve our numerical predictions. Away
from the upper critical dimension, however, the situation may,
according to the scenario of the “fixed-point collision” [8],
dramatically change, and we will briefly comment on this in
the conclusions. The continuum quantum action, coupled to the
fluctuating nematic order parameter, then is S = ∫

dτdd �xL,
with the Lagrangian density

L = Lψ + Lψφ + Lφ, (17)

and with the individual terms defined as

Lψ = ψ†[∂τ + γada(−i∇)]ψ, (18)

Lψφ = gφaψ
†γaψ, (19)

Lφ = 1
4Tij

( − c∂2
τ − ∇2 + r

)
Tji + λTijTjkTki + O(T 4).

(20)

ψ is the four-component Grassmann field, whereas φa is a
real field. The summation over the repeated indices is now
assumed, and a = 1, . . . ,5, and i,j,k = 1,2,3. γa are the
five mutually anticommuting four-dimensional Dirac matrices
introduced earlier.

The real, symmetric, traceless tensor field Tij is defined as

Tij = φa�a,ij , (21)

where �a are the five real, symmetric, three-dimensional
Gell-Mann matrices. Their explicit form and important prop-
erties are discussed in Appendix A. Since the five spherical
harmonics da( �p) transform as the components of the traceless
symmetric tensor of rank 2 under rotations, the Lagrangian
L will be invariant under rotations provided that the five
components of the tensor Tij , φa , a = 1, . . . ,5 do so as well.

At the level of the quantum mechanical averages

〈φa〉 = −g

r
〈ψ†γaψ〉, (22)

and finding 〈φa〉 �= 0 signals spontaneous breaking of the
rotational symmetry. The tensor Tij can be understood as the
nematic order parameter, in analogy with liquid crystals, where
the identical object describes the finite-temperature phase
transition between the isotropic and anisotropic phases [24].

In the context of 2D metals, a nematic QC point describing
the 	 = 2 Pomeranchuk instability of Fermi-liquid theory has
been thoroughly investigated previously [29,30] and still com-
mands attention [31], also due to its potential role in the phase
diagram of certain high-temperature superconductors [32].
Nematic instabilities have also been predicted in 2D Fermi
systems with QBT [2–4]. In two dimensions, however, the
order parameter is odd under π/2 spatial rotation, which
forbids a cubic term ∝ Tr T 3 in the action [29]. By contrast,
the 3D system defined by Eqs. (17)–(20) is an immediate
generalization of the field theory describing the classical
nematic transition in liquid crystals [24], which is recovered
when the fermions are decoupled, i.e., in the limit g → 0. The
critical point we will find shortly therefore represents possibly
the simplest quantum analog of this familiar classical nematic
transition.

The above form of the Lagrangian L contains the minimal
number of parameters, and the imaginary time, length, and
the Grassmann and the real fields have been rescaled so the
coefficients in front of the first and the second terms in Lψ , and
the second term in Lφ , are brought to unity. Besides the tuning
parameter r , this still leaves the coefficient in the first term
in Lφ , c, and the two interaction coupling constants: Yukawa
coupling g and the cubic term self-interaction λ. These have
the engineering dimensions

dim[g] = dim[λ] = 6 − z − d

2
, (23)

whereas

dim[c] = 2 − 2z. (24)

Keeping the coefficients in Lψ fixed demands the dynamical
critical exponent to be z = 2 at the Gaussian fixed point
λ = g = 0. One then finds that both couplings g and λ become
relevant in the infrared simultaneously below d = 4. This
observation allows one to formulate a perturbative approach
to the problem of the infrared behavior as the expansion in the
small parameter

ε = 4 − d (25)

and search for possible non-Gaussian critical points in the
theory. The terms O(T 4) in Lφ have for this reason been
omitted as irrelevant to the leading order in ε. The parameter
c also is irrelevant at the Gaussian fixed point when z = 2. At
the QC fixed point, however, we will find c to be shifted to
a finite positive value, leading to nontrivial dynamical scaling
of the order parameter (see Sec. V).

The rescaling procedure involves an apparent ambiguity, as
one might equally well fix the coefficient c in front of the first
term in Lφ , ∝c(Tij ∂

2
τ Tji)/4, to unity, and let the coefficient,

let us call it a, in front of the first term in Lψ , ∝a(ψ†∂τψ),
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to flow instead. This would dictate a different dynamical
exponent, z = 1, at the Gaussian fixed point, reflecting the
fact that the noninteracting system possesses two different
characteristic time scales. In Appendix D we show that this
alternative prescription leads to an equivalent RG flow and
the same universal quantities at criticality. The QC point thus
will be characterized by a single diverging time scale and a
unique dynamical exponent. A similar ambiguity occurs in the
effective order-parameter theory for the nematic instability in
2D metals, when the fermions have been integrated out, though
its resolution differs from the present case [33].

We should also comment on yet another rotational invariant
quadratic in Tij , which is proportional to

∂iTij ∂kTkj (26)

and that we have omitted in Lφ . It couples spatial rotations
to internal rotations of the nematic order parameter and
is thus possible only when the dimension p of the tensor
Tij (i,j = 1, . . . ,p) is equal to the spatial dimension d (as
is the case in our problem). We find that although of the
same engineering dimension as the term we included at
the noninteracting fixed point, this term develops a negative
anomalous dimension to the leading order in interactions, and
as such we expect it to become irrelevant at the interacting
critical point (see Appendix C). One can analogously justify
the common omission of this term in the studies of the classical
isotropic-to-nematic transition in three dimensions.

IV. MEAN-FIELD THEORY

Before we present the solution of the problem in the vicinity
of the upper critical dimension, let us consider the mean-field
theory in which the fluctuations of the order-parameter field φa

are neglected. This approximation can be justified by adding
an additional “flavor” index to the fermions (e.g., by allowing
more than one QBT point at the Fermi level) and taking the
limit of large flavor number N [8]. The mean-field theory is
solved by minimizing the total energy

EMF(φ1, . . . ,φ5) = r

2
φaφa + 2

∫ �

0

d �p
(2π )3

ε( �p), (27)

where ε( �p) denote the lower-branch energy eigenvalues of
the mean-field Hamiltonian HMF( �p) = p2d̃a(θ,ϕ)γa + gφaγa

in the presence of constant φa , viz.,

ε(p,θ,ϕ) =−p2

√
1 + 2d̃a(θ,ϕ)

gφa

p2
+

(
gφa

p2

)2

. (28)

� is the UV momentum cutoff, 0 � | �p| � �. For convenience,
and without loss of generality, let us assume g > 0. The first
term in Eq. (27) represents the energy cost of a finite φa .
By contrast, the second term decreases with increasing order
parameter, and thus involves the energy gain due to a (possible)
ordering. It can be interpreted as the sum of the energies of the
filled, doubly degenerate single-particle states in the ordered
phase, with the Fermi level at the QBT. In the present model
without the long-range Coulomb interaction and in d = 3 we
expect the ordered state to be energetically favorable if the
parameter g2/r exceeds a certain strong-coupling threshold.
This threshold, however, may decrease substantially upon the

inclusion of the long-range part of the Coulomb repulsion and
might even vanish completely [8].

In the reference frame in which the tensor order parameter
becomes diagonal,

(Tij ) =

⎛
⎜⎝

φ1 − φ5√
3

0 0

0 −φ1 − φ5√
3

0

0 0 2 φ5√
3

⎞
⎟⎠, (29)

we can write (φa) = (φ sin ξ,0,0,0,φ cos ξ ) with φ :=√
φaφa � 0. Shifting the parameter ξ by ξ �→ ξ + 2π/3

corresponds to a cyclic permutation of the x, y, and z

axes. For example, the state (φa) = φ(
√

3/2,0,0,0,1/2) for
ξ = π/3 transforms into the state (φa) = φ(0,0,0,0,−1) for
ξ = π by permuting (x,y,z) �→ (y,z,x). We may thus restrict
the range of ξ to 0 � ξ < 2π/3. Finding a finite φ �= 0
to be energetically favorable corresponds to a spontaneous
breaking of the rotational symmetry. While for generic ξ

no continuous part of the symmetry is left intact, for ξ ≡ 0
mod 2π/3 or ξ ≡ π/3 mod 2π/3 only two generators of the
O(3) are broken, with a residual O(2) symmetry resulting. The
corresponding uniaxial states (φa) = (0,0,0,0,±φ) (modulo
rotations) are characterized by a single director, in analogy to
the uniaxial nematic phase in liquid crystals [24].

The energy in the present basis reads as

EMF(φ,ξ ) = r

2
φ2 − 2(gφ)5/2

∫ �√
gφ

0
dx

∫
d�

(2π )3

× x2
√

x4 + 2x2(d̃1 sin ξ + d̃5 cos ξ ) + 1, (30)

where we substituted p/
√

gφ �→ x and abbreviated the an-
gular integration as

∫
d� = ∫ π

0 dθ sin θ
∫ 2π

0 dϕ. The integral
becomes finite for �/

√
gφ → ∞ when we add a suitably

written zero (corresponding to the parts in EMF that are
constant and quadratic in φ, respectively) as

0 =− 4π

(2π )3

(
2

5
�5 + 4

5
�g2φ2

)

+ 2(gφ)5/2
∫ �√

gφ

0
dx

∫
d�

(2π )3

(
x4 + 2

5

)
. (31)

The mean-field energy then is (modulo irrelevant additive
constants ∝�5)

EMF(φ,ξ ) = r ′

2
φ2 + t(ξ )(gφ)5/2 + O(φ3) (32)

with r ′ = r − 8
5

4π�
(2π)3 g

2 the curvature at the origin and with the

coefficient of the nonanalytic term ∝φ5/2 as

t(ξ ) = 2
∫ ∞

0
dx

∫
d�

(2π )3

[
x4 + 2

5

− x2
√

x4 + 2x2(d̃1 sin ξ + d̃5 cos ξ ) + 1

]

� 4π

(2π )3

[
π

8
+ 1

2

(
19

30
− ln 3

8
− π

8

)
(1 − cos 3ξ )

]
.

(33)
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FIG. 1. (Color online) Mean-field energy EMF(φ5) for the uniax-
ial states (φa) = (0,0,0,0,φ5) that preserve a residual O(2) symmetry
(i.e., ξ ≡ 0 mod 2π/3 or ξ ≡ π/3 mod 2π/3) for different values
of the coupling g2/r in the vicinity of the critical coupling (g2/r)c.
The unique absolute minimum of the potential is at zero or positive
gφ5, corresponding to the isotropic state and uniaxial nematic fully
gapped state, respectively. The transition into the latter phase for
overcritical coupling is continuous.

The second line of Eq. (33) approximates the numerical
quadrature within an error range of �0.5% for generic ξ and
becomes exact for ξ = 0 and ξ = π/3. t(ξ ) is positive and
bounded from below and above as π

8 � t(ξ )/ 4π
(2π)3 � 19

30 − ln 3
8 .

The QC point at the critical coupling(
g2

r

)
c

= 5

8

(2π )3

4π�
, (34)

when the curvature r ′ of EMF(φ,ξ ) at φ = 0 changes sign,
thus corresponds to a continuous phase transition—in contrast
to the discontinuous (at least on the mean-field level) classical
isotropic-to-nematic transition in liquid crystals [24]. A similar
such unconventional continuous phase transition has recently
been found in a model describing the spontaneous breaking of
time-reversal symmetry in the pyrochlore iridates [34].

t(ξ ) attains its unique miminum at ξ = 0. When g2/r >

(g2/r)c the transition is thus into the state with the order param-
eter (φa) = (0,0,0,0,φ), φ > 0, which breaks the rotational
O(3) symmetry but leaves rotations about the z axis intact.
The spectrum of fermions in this state has a full, anisotropic
(θ -dependent) gap, with the minimal value at θ = π/2 and
p2 = gφ/2 of

√
3gφ/2. The system appears as if under

(dynamically generated) uniaxial strain [7,35], and, for the
systems with the band structure equivalent to that of α-Sn or
HgTe, represents a topological Mott insulator [8]. We depict
the mean-field energy EMF(φ5) for the O(2)-invariant states
(φa) = (0,0,0,0,φ5) for different values of the coupling g2/r

in Fig. 1, illustrating the continuous nature of the transition
and the energetically favored minium at gφ5 > 0 [36].

V. RG FLOW EQUATIONS

In order to show the existence of the nematic QC point
beyond the mean-field theory we include next the effects of
the bosonic fluctuations. To this end we perform the standard
Wilson’s renormalization group calculation, in which both the

order parameter and the fermionic fields with the momenta
within the momentum shell [�/b,�] and with all Matsubara
frequencies are integrated out [37]. At the critical surface r =
0, to the leading order in the self-interaction λ and the Yukawa
coupling g the result is the differential flow of the couplings:

dc

d ln b
= (2 − 2z − ηφ)c + 2

5
g2 + 21

4

√
cλ2, (35)

dg

d ln b
= 1

2
(6 − d − z − ηφ − 2ηψ )g + 6

5
H (c)g3, (36)

dλ

d ln b
= 1

2
(6 − d − z − 3ηφ)λ − 27

4

λ3

√
c

−
√

3

35
g3. (37)

Here we have rescaled the couplings as g2�d+z+ηφ+2ηψ−6Sd/

(2π )d �→ g2 and λ2�d+z+3ηφ−6Sd/(2π )d �→ λ2 with Sd the
surface area of the (d − 1) sphere. The parameter c has been
rescaled as c�2z+ηφ−2 �→ c. The order parameter’s and the
fermion’s anomalous dimensions, and the dynamical critical
exponent, are to the leading order

ηψ = 4

5
F (c)g2, (38)

ηφ = 44

35
g2 + 21

4

λ2

√
c
, (39)

z = 2 + 5

2
G(c)g2 − ηψ. (40)

The functions F (c), G(c), and H (c) are the result of the one-
loop frequency integrals and are defined as

F (c) = 8 + 9
√

c + 3c

8(1 + √
c)3

, (41)

G(c) =
√

c

(1 + √
c)2

, (42)

H (c) = 4 + 3
√

c

4(1 + √
c)2

. (43)

Small perturbations out of the critical surface are relevant
in the sense of the RG and governed by the flow equation

dr

d ln b
= (2 − ηφ)r − 8

5
g2 − 21

λ2

√
c

1

(1 + r)3/2
, (44)

where we have rescaled r�ηφ−2 �→ r .
Two comments on the computation of the RG flow

equations are in order: First, we have chosen the anomalous
dimensions ηψ and ηφ and the dynamical exponent z so the
coefficients in both terms in Lψ as well as the momentum
term in Lφ [i.e., Tij (−∇2)Tji/4] remain unity after the mode
elimination, which forces the remaining coefficient c in Lφ

then to flow. However, while c is irrelevant at the Gaussian
fixed point, its stable fixed-point value is shifted towards finite
c > 0 when g �= 0. At an interacting fixed point c thus scales
as c ∝ ξ 2z+ηφ−2 relative to a characteristic (diverging) length
scale ξ ∝ ω−1/z. The scaling form of the inverse two-point
function at the anticipated QC point then is

〈φa(ω, �p) φb(0,0)〉−1 = p2−ηφ f

(
ω

pz

)
δab (45)
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with the scaling function f that has the asymptotic limits

f (x) ∝
{

1 for x � 1,

x(2−ηφ )/z for x � 1.
(46)

The alternative scaling prescription that chooses the anoma-
lous dimensions and the dynamical exponent such that the
coefficients of both the momentum and frequency terms in
Lφ remain fixed, and in turn allows a flowing parameter a

in front of the frequency term in Lψ , a(ψ†∂τψ), leads to the
equivalent flow equations and same universal predictions at
the interacting fixed point (see Appendix D).

Second, in order to arrive at Eqs. (35)–(44), we have kept
the general counting of dimensions in the couplings but have
performed the angular integrations directly in d = 3 spatial
dimensions. For details we refer to Appendix C. In Appendix E
we present the analogous derivation of the RG flow for the
theory near d = 4 with nine-component order-parameter field
φa and 16 × 16 gamma matrices γa , a = 1, . . . ,9.

The mean-field result from the previous section can be
recovered by neglecting all bosonic fluctuations (e.g., by
reintroducing the flavor number N and taking the limit of large
N ). The flow equation for the coupling g2/r then becomes

d(g2/r)

ln b
= (2 − d)

g2

r
+ 8

5

(
g2

r

)2

, (47)

which in d = 3 has the zero exactly at the mean-field
critical coupling (g2/r)c = 5/8, cf. Eq. (34) and the coupling
rescalings below Eqs. (37) and (44).

To show that there exists a stable (quantum critical) fixed
point of the equations also at N = 1 we introduce new
variables:

u = λ

c1/4
, v = g

c1/12
, (48)

with c chosen such that it satisfies its own fixed-point equation:

0 = (2 − 2z)c +
(

2

5
− 44

35
c

)
c1/6v2. (49)

In terms of the new variables we can rewrite the flow equations
as

du

d ln b
= 1

2
(ε + 2 − z − 3ηφ)u − 27

4
u3 −

√
3

35
v3, (50)

dv

d ln b
= 1

2
(ε + 2 − z − ηφ − 2ηψ )v + 6

5
c

1
6 H (c)v3, (51)

where we used Eq. (49) and also displayed the small parameter
ε = 4 − d.

After this change of variables, the stable fixed point is
readily found to lie at u = O(ε1/2), v = O(ε1/2), and c =
O(ε6/5). Since F (0) = 1, G(0) = 0, and H (0) = 1, the fixed
point features the critical exponents at leading order in ε,

ηψ = O(ε6/5), ηφ = ε + O(ε6/5), z = 2 + O(ε6/5),

(52)

and it is located at the values of u and v that satisfy the
equations:

21

4
u2 = ε,

√
3

35
v3 = u

(
− ε − 27

4
u2

)
. (53)

The last equation, in particular, implies that at the fixed point
sgn(v) = − sgn(u), whereas the first one leaves the sign of u

undetermined. We find the following finite fixed-point values

u∗
± = ∓ 2√

21

√
ε, v∗

± = ±2

(
20

3

) 1
3
(

1

7

) 1
6 √

ε. (54)

As the partition function is invariant under the simultaneous
sign change of g and λ, so are the flow equations. Thus, the
two fixed points at (u∗

±,v∗
±) are physically equivalent. It is

easy to check that this fixed point is indeed critical, i.e., with
no other unstable directions except for the direction of the
tuning parameter r . From the flow of r we find the exponent
ν that governs the scaling of the correlation length ξ ∝ |δ|−ν ,
with δ denoting the deviation from the critical point, as

1/ν = 2 + 5ε + O(ε6/5). (55)

Notably, the correction to the mean-field exponent 1/ν = 2 is
positive, in contrast to the QC points in Dirac fermion systems
that are described by the z = 1 Gross-Neveu universality
classes [21,38]. The reason for the difference in sign is the
presence of the cubic term ∝ Tr T 3 in the action, which renders
the bosonic contribution to the flow equation of the tuning
parameter r [last term in Eq. (44)] of opposite sign as compared
to systems with quartic bosonic interactions. Likewise, in
the field theory of the classical isotropic-to-nematic phase
transition in liquid crystals which allows the cubic tensor
invariant, the leading correction to 1/ν is also positive [39].

We emphasize that our quantitative predictions for the
critical exponents obtained near the upper critical dimension,
although interesting in their own right, may not describe well
real 3D systems in which long-range Coulomb interaction is
important, such as α-Sn or HgTe. In these cases, a nematic
gap might already open up at infinitesimal coupling [8]. Our
result, however, at the very least shows that a QC fixed point
exists near the upper critical dimension, substantiating the
“fixed-point-collision” scenario, and it allows us to study the
qualitative properties of the nematic instability. We therefore
refrained from displaying the subleading terms ∝ε6/5 in
Eqs. (52) and (55), which are straightforwardly computable
from our one-loop flow equations, but do not, in our opinion,
necessarily have direct relevance for the physics in d = 3.

We have plotted the leading-order RG flow in the u-v
plane for c = O(ε6/5) in Fig. 2, showing besides the unstable
Gaussian (G) and stable fermionic (F) fixed points also the
purely bosonic fixed point (B) at v = 0 and finite u �= 0. B
is unstable in the direction of v, in analogy to the bosonic
Wilson-Fisher fixed point in Dirac fermion systems [21].

In the calculation with four-dimensional tensor order
parameter we find that the bosonic fixed point B disappears,
in full analogy to the p = 4 critical point in the field theory
of the classical isotropic-to-nematic phase transition in liquid
crystals [39]. In contrast, the fermionic fixed point (F in Fig. 2)
survives for any dimension p of the tensor field, changing only
its stability properties at larger values of p. Furthermore, our
universal predictions for the anomalous dimensions ηφ and ηψ

as well as the critical exponents z and 1/ν at the fermionic fixed
point turn out to agree at leading order exactly with Eqs. (52)
and (55), see Appendix E.
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FIG. 2. (Color online) RG flow in the u-v plane for r = 0 and
c = O(ε6/5) to leading order in ε. Arrows point towards infrared. The
purely bosonic fixed point (B) is unstable in direction of the Yukawa
coupling v. The fermionic fixed point (F) is critical, with no other
unstable directions except for the direction of the tuning parameter r .
It governs the transition into an infrared phase that has fully gapped
fermions and a spontaneously broken rotational symmetry.

VI. INTERPRETATION

At the mean-field level, the model features a continuous
(quantum) phase transition, described by the large-N fixed
point of the Gross-Neveu-Yukawa field theory. It therefore
seems natural to associate the identified fixed point also for
N = 1 with a continuous nematic quantum phase transition.
One should note, however, that near the upper critical dimen-
sion and at small N the parameter c in Lφ becomes small at
the fixed point, emphasizing the significance of purely bosonic
fluctuations. The result of the mean-field theory may thus as
well be overturned in the physical limit, and the possibility that
at small N the nature of the transition differs from the mean-
field picture cannot be excluded with certainty. We believe,
nonetheless, that even in a scenario with a discontinuous
quantum phase transition the above critical fixed point would
still retain its physical significance: such a situation arises,
for example, in the related classical Ginzburg-Landau-Wilson
theory for the (presumably discontinuous) thermal isotropic-
to-nematic transition in liquid crystals, which also exhibits a
critical fixed point in the related ε = 6 − d expansion [39].
A plausible interpretation of the latter is that it describes the
disappearance of the energy barrier between the high- and
low-temperature phases and the ultimate instability of the
metastable symmetric phase.

An interesting feature of the identified fixed point is
worth pointing out. In the reference frame where the ne-
matic tensor would become diagonal [Eq. (29)], the bosonic
part of the Lagrangian for uniform order parameter (φa) =
(φ sin ξ,0,0,0,φ cos ξ ), φ > 0, becomes

Lφ = r

2
φ2 + 2λ√

3
cos(3ξ )φ3 + bφ4 + O(φ5), (56)

where we have displayed the unique symmetry-allowed quartic
term as well. At intermediate steps of the RG the Lagrangian is
analytic in φ, and the nonanalytic term ∝φ5/2 will only emerge
in the deep infrared, when all modes are integrated out. During

this process it may in general receive contributions from the
flow of all higher-order terms. If we focus for simplicity
only on the leading cubic and quartic invariants and consider
(without loss of generality) the fixed point at λ < 0, we find that
the effective quantum potential at the fixed point is minimized
for ξ = 0. If this remains true up to the infrared, when the φ5/2

term in Lφ emerges, it indicates that the interacting ground
state for strong coupling has (also for small N ) the uniaxial
form with φ5 > 0 and φ1 = 0. The fate of fermions in this
state depends crucially then on the sign of the remaining
Yukawa coupling g. If g > 0, then the combination gφ5 > 0,
and we recover the mean-field ground state with the spectrum
of fermions having the full, anisotropic gap (cf. Sec. IV). If,
on the other hand, g < 0 and gφ5 < 0, the spectrum has two
gapless points in the vicinity of which the energy dispersion
becomes linear [8].

We see, however, that the leading term in the flow equation
for λ is −g3, so a negative self-interaction λ is generated
only by a positive Yukawa coupling g. This is reflected
in the fixed-point location, at which the signs of the two
couplings are inevitably opposite. Incidentally, this feature is
also responsible for the stability of the fixed point. Also, even
if we start the RG flow at microscopic couplings λ and g of
the same sign, we always flow to a regime in which λg < 0, at
least in the vicinity of the critical surface (see Fig. 2). We thus
find that the consistent theory in the infrared has the fermions
fully gapped in the broken symmetry phase, in agreement with
the mean-field result.

VII. CONCLUSIONS

In sum, we constructed the field theory of the fermions
with the chemical potential at the point of quadratic band
touching in three spatial dimensions coupled to the second-
rank tensorial nematic order parameter. We argued that this
field theory has an upper critical dimension of four and that
it possesses a perturbatively accessible quantum critical point
in the vicinity of four dimensions. The critical point governs
the (presumably continuous) transition between the semimetal
to the fully, but anisotropically gapped, Mott insulator. The
existence of the critical point in the theory supports the scenario
of the “fixed-point collision” [8], according to which the Fermi
system with QBT in the presence of the long-range tail of
Coulomb interaction, which we have here suppressed, features
a lower critical dimension dlow with 2 < dlow < 4. At dlow the
nematic QC point and the Abrikosov’s NFL fixed point collide
and then disappear from the real space of physical couplings,
leaving behind the runaway flow. The ground-state physics of
the 3D systems such as clean α-Sn or HgTe crucially depends
on whether dlow is above or below d = 3. The one-loop analysis
points to dlow slightly above three, which would make the
QBT point unstable towards the nematic insulator even in the
weak-coupling limit [8]. If, on the other hand, the true value
of dlow would turn out to be below 3 and both the Abrikosov’s
NFL as well as the QC fixed points persist all the way down
to the physical dimension, the weakly interacting systems are
governed by the attractive NFL fixed point and should exhibit
anomalous power laws in several observables [7]. If dlow is
below but not too far from d = 3, however, and the nematic QC
point is, consequently, located at not too large a coupling, one
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could still speculate on situations, e.g., in uniformly strained
systems or in cold-atom quantum simulators, in which the
interactions may be tuned through the nematic QC point. In
any case, it would obviously be desirable to gain a firmer
theoretical control over the true value of dlow. This work is
underway [40].
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APPENDIX A: GENERALIZED REAL
GELL-MANN MATRICES

For completeness, let us review the construction of the gen-
eralized Gell-Mann matrices in d dimensions [the generators

of SU(d)] [41]. They can be classified into three groups. The
first group is given by the real, diagonal, and traceless matrices

ŵl =−
√

2

l(l + 1)

l∑
j=1

(|j 〉〈j | − |l + 1〉〈l + 1|), (A1)

where 1 � l � d − 1 and |1〉, . . . ,|d〉 denote the (standard)
orthonormal basis vectors inRd , 〈i|j 〉 = δij . The second group
are d(d − 1)/2 real symmetric matrices that have nonvanishing
elements only on the off-diagonal, namely the matrices ûjk

with ones in the jk-th and kj -th entries and zero otherwise,

ûjk = |j 〉〈k| + |k〉〈j |, where 1 � j < k � d. (A2)

The third group are d(d − 1)/2 imaginary matrices which can
be constructed similarly to ûjk . However, for the purposes of
the present work we only need the real Gell-Mann matrices of
the first and second groups.

In d = 2, this construction gives ŵ1 = −σ3 and û12 = σ1.
In d = 3, we recover the standard (modulo name and sign
conventions) 3 × 3 real Gell-Mann matrices:

�1 =−ŵ1 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �2 = û12 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, �3 = û13 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

�4 = û23 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, �5 = ŵ2 = 1√

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠. (A3)

In d = 4, we find

�1 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, �2 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, �3 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠,

�4 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠, �5 = 1√

3

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 0

⎞
⎟⎠, �6 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠,

�7 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎠, �8 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, �9 = 1√

6

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

⎞
⎟⎠. (A4)

In general dimension d, the (d2 − d)/2 + (d − 1) off-
diagonal and diagonal, respectively, real matrices �a form
an orthogonal set:

Tr(�a�b) = 2δab, (A5)

and, together with the unit matrix, they form a basis in the
space of real symmetric d-dimensional matrices. We therefore
can write the matrix element of any symmetric matrix M as

Mij = 1

d
δijMkk + 1

2
Mlm�a,ml�a,ij (A6)

or, equivalently, as

1

2
(δliδmj + δlj δmi)Mlm =

(
1

d
δij δlm + 1

2
�a,ml�a,ij

)
Mlm.

(A7)

From here we deduce an important relation:

�a,ml�a,ij = δliδmj + δlj δmi − 2

d
δij δlm, (A8)

which we use in the computation of the RG flow equations.
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APPENDIX B: QBT HAMILTONIAN IN d DIMENSIONS

We can construct the general QBT Hamiltonian H =
Gijpipj in d dimensions with the help of (d2 − d)/2 +
(d − 1) = (d + 2)(d − 1)/2 gamma matrices γa . They have
dimension dγ = 2�(d+2)(d−1)/4� with � · � denoting the floor
function. The relationship between the Gij and the gamma
matrices γa , a = 1, . . . ,(d + 2)(d − 1)/2 are given by the real
and symmetric (generalized) d × d Gell-Mann matrices �a as

Gij =
√

d

2(d − 1)
�a,ij γa. (B1)

Together with the Clifford algebra {γa,γb} = 2δab and
Eq. (A8), this immediately gives H 2 = p4, as expected. In
any dimension, we can thus write the Hamiltonian in the form

H = da( �p)γa, a = 1, . . . , 1
2 (d + 2)(d − 1), (B2)

with

da( �p) = p2d̃a(�) =
√

d

2(d − 1)
pi�a,ijpj . (B3)

This defines the real hyperspherical harmonics d̃a(�) for
angular momentum of two in general dimension, with �

denoting the spherical angles on the (d − 1) sphere in �p space.

APPENDIX C: COMPUTATION OF RG FLOW EQUATIONS

Let us provide some details on the computation of the RG
flow equations (35)–(40). In the perturbative expansion, after
integrating out the high-energy modes with momenta in the
thin shell [�/b,�], we arrive at the effective action for the
low-energy modes:

S< =
∫ �/b

0

d�k
(2π )d

∫ ∞

−∞

dω

2π

{
ψ†[bη1 iω + bηψ da(�k)γa]ψ

+ 1

2
φa[(c + δc)ω2 + bηφ k2 + (r + δr)]φa

+ (β + δβ)kikj�a,il�b,lj φaφb

}

+
∫ �/b

0

d�k1d�k2

(2π )2d

∫ ∞

−∞

dω1dω2

(2π )2
[(g + δg)(φaψ

†γaψ)

+ (λ + δλ)�a,ij�b,jl�c,li(φaφbφc)], (C1)

where we have included the second symmetry allowed,
quadratic, momentum-dependent term ∝βkikjTilTlj [third line
in Eq. (C1)] for generality. The anomalous dimensions η1,
ηψ , and ηφ and the explicit renormalizations δc, δr , δβ,
δg, and δλ are determined by evaluating the corresponding
one-loop diagrams, as depicted in Fig. 3. η1 and ηψ are given
by the fermion-boson loop in Fig. 3(a), expanded to first
order in external frequency ω and second order in external
momentum k, respectively. ηφ has two contributions, given by
the diagrams in Figs. 3(b) and 3(c), when expanded to second
order in external momentum. When alternatively expanded in
frequency, these diagrams explicitly renormalize the frequency
term ∝cω2φ2

a . The constant parts of the diagrams determine
the shift of the tuning parameter r . At the upper critical
dimension the coefficients of the diagrams become universal

λ λg g

λ

λ λ

g

g g

g g

g

g

g

(a) (b) (c)

(d) (e) (f)

ν − ω, p − k

ω, k
ω, k ω, kν, p

ω, k

ν − ω
2

p − k
2

ν + ω
2

p + k
2

ν − ω
2

p − k
2

ν + ω
2

p + k
2

ω, k ω, k

FIG. 3. Diagrams that contribute to the flow equations. Solid
lines represent fermions and dashed lines represent bosons. Top:
Contributions to (a) η1, ηψ ; (b) ηφ , r , β; and (c) ηφ , r . At finite
external momenta �k and frequencies ω the diagrams are evaluated
using the momentum and frequency routings as displayed, with loop
momentum | �p| ∈ [�/b,�] and frequency ν ∈ (−∞,∞). Bottom:
Contributions to (d), (e) dλ/d ln b, and (f) dg/d ln b.

(see Appendix E). Here we will perform the angular inte-
grations directly in d = 3 spatial dimensions. The diagrams
may then receive (slight) regularization dependencies. To be
explicit, we distribute finite external momentum and frequency
in the fermion-boson loop in Fig. 3(a) such that the fermion
loop momentum is on-shell, | �p| ∈ [�/b,�], while we choose
a symmetric momentum and frequency distribution in the
fermion-fermion and the boson-boson loops in Figs. 3(b)
and 3(c).

One further comment on the bosonic contribution to
ηφ [Fig. 3(c)] should be made: We note that the dia-
gram is invariant under the “pseudorelativistic” rotation
(
√

cω,�k)μ �→ Oμν(
√

cω,�k)ν with (d + 1)-dimensional rota-
tion matrix OTO = 1, μ,ν = 0, . . . ,d. In order to compute
the contribution to ηφ one may therefore expand the diagram
either in external frequency cω2 or in external momentum k2,
and both prescriptions should give the same result due to the
“pseudorelativistic” invariance of the diagram. Put differently,
in dc/d ln b, the two contributions from ηφ and δc from this
diagram should cancel. The invariance, however, is broken
by our regularization scheme, in which we integrate out all
frequencies at once, rendering the coefficients of the cω2 term
and the k2 term different. It is therefore a priori not clear
which one to choose as the one giving the contribution to ηφ .
To resolve this issue we recompute the diagram Fig. 3(c) using
a “pseudorelativistic” regularization with loop momentum
and frequency �/b �

√
cν2 + p2 � �, which gives the same

contribution independent of whether one expands in cω2 or
k2. We find that the value obtained in this scheme is in fact
exactly the same as the one obtained by expanding the diagram
in cω2 in our standard scheme, so we thus use this value as the
bosonic contribution to ηφ .

The boson- and fermion-loop diagrams in Figs. 3(d)
and 3(e), respectively, renormalize the bosonic self-interaction
λ. In order to evaluate these diagrams, we continually make
use of the identities in Eqs. (A8) and (B3) derived above. For
instance, for the evaluation of the fermion loop in Fig. 3(e) we
need the following angular integral over the (d − 1) sphere in
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�p space:∫
d�da( �p)db( �p)dc( �p)

=
(

d

2(d − 1)

)3/2 ∫
d�pipjpkplpmpn�a,ij�b,kl�c,mn

=
√

d

2(d − 1)

4Sd

(d − 1)(d + 2)(d + 4)
Tr(�a�b�c) p6,

(C2)

where Sd = 2πd/2/�(d/2) is the surface area of the (d −
1) sphere and � again denotes the spherical angles on the
sphere. The evaluation of the triangle diagram in Fig. 3(f),
which renormalizes the Yukawa vertex g, is straightforward
when making use of the orthogonality of the real spherical
harmonics∫

d�da( �p)db( �p) = 2Sd

(d + 2)(d − 1)
p4δab. (C3)

In order to bring the cutoff in S< back to � we shift the
momenta b�k �→ �k and frequencies bzω �→ ω with suitable
dynamical exponent z. The coefficients of the momentum
terms ∝k2 in the fermionic and bosonic propagators in the
first and second lines of Eq. (C1), respectively, can be fixed to
1 if we renormalize the fields as

b−(2+d+z−ηψ )/2ψ �→ ψ, b−(2+d+z−ηφ )/2φ �→ φ. (C4)

However, then only one of the frequency terms can be
fixed. We choose the fermionic term ∝iω, which is done by
setting

z = 2 + η1 − ηψ. (C5)

At the noninteracting fixed point we thus have z = 2. The
low-energy action S< is hence brought back into the same form
as before integrating out the momentum shell if the couplings
are renormalized as

dc

d ln b
= (2 − 2z − ηφ)c + ∂δc

∂ ln b
, (C6)

dg

d ln b
= 1

2
(6 − d − z − ηφ − 2ηψ )g + ∂δg

∂ ln b
, (C7)

dλ

d ln b
= 1

2
(6 − d − z − 3ηφ)λ + ∂δλ

∂ ln b
, (C8)

dr

d ln b
= (2 − ηφ)r + ∂δr

∂ ln b
. (C9)

If we rescale the parameters as c�2z+ηφ−2 �→ c,
g2�d+z+ηφ+2ηψ−6Sd/(2π )d �→ g2, λ2�d+z+3ηφ−6Sd/(2π )d �→
λ2, and r�ηφ−2 �→ r , the explicit evaluation of the diagrams
leads to Eqs. (35)–(44) in the main text.

Let us comment on the β term proportional to

kikj�a,il�b,lj φaφb = kikjTilTlj , (C10)

which couples the internal rotations of the tensor T to
the spatial rotations. Evaluating the particle-hole diagram
in Fig. 3(b) for zero external frequency involves the

integral

Iab(�k) =
∫ �

�/b

d �p
(2π )d

∫ ∞

−∞

dν

2π

× Tr

[
γa

iν + dc( �p + �k)γc

ν2 + ( �p + �k)4
γb

iν + de( �p)γe

ν2 + p4

]

= S3

(2π )3

[
− 8

5
δab�

2 + 44

35
k2δab − 27

70
kikj�a,il�b,lj

]

×�d−4 ln b + O(k4), (C11)

where in the last line we have for explicitness evaluated the
angular integral in d = 3. We note that the contribution to the
bosonic propagator ∝k2δab [second term in Eq. (C11)] is larger
than the contribution to the β term ∝(�a

�k)(�b
�k) (third term).

The anomalous dimension of the latter thus becomes negative
and β is irrelevant in the sense of the RG. This justifies its
omission in Lφ , as anticipated in Sec. III. Another way to view
this is to regard β as a coupling which flows according to

dβ

d ln b
= −44

35
g2β − 27

140
g2, (C12)

which indeed has a stable fixed point at β = −27/176. We
note that the action is bounded from below when

δ2S

δφaδφb
> 0 ⇔ 1

2
+ 4

3
β > 0, (C13)

and a negative fixed-point value for β is still consistent with
stability.

APPENDIX D: ALTERNATIVE DYNAMICAL SCALING

We now show that the alternative dynamical scaling scheme
in which we fix the coefficient c in front of the frequency term
in Lφ and in turn allow for a flowing parameter a in front
of the fermionic frequency term leads to the equivalent flow
equations and the same universal observables at criticality.
After integrating out the high-energy modes the low-energy
effective action can be written as

S< =
∫ �/b

0

d�k
(2π )d

∫ ∞

−∞

dω

2π

{
ψ†[(a + δa)iω + bηψ da(�k)γa]ψ

+ 1

2
φa[bη2ω2 + bηφ k2 + (r + δr)]φa

+ (β + δβ)kikj�a,il�b,lj φaφb

}

+
∫ �/b

0

d�k1d�k2

(2π )2d

∫ ∞

−∞

dω1dω2

(2π )2
[(g + δg)(φaψ

†γaψ)

+ (λ + δλ)�a,ij�b,jl�c,li(φaφbφc)], (D1)

which is equivalent to Eq. (C1) upon identification

η1 = 1

a

∂δa

∂ ln b
, η2 = 1

c

∂δc

∂ ln b
, (D2)

and c = 1/a2. Note that although ω and k now have the same
units, the engineering dimensions of g and λ still retain their
above form, Eq. (23), albeit with a different dynamical expo-
nent at the Gaussian fixed point. The engineering dimension
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of the parameter a is

dim[a] = 2 − z. (D3)

After the RG step bk �→ k, bzω �→ ω and renormalizations of
the fields as in Eq. (C4), both the momentum term and the
frequency term of the bosonic field in S< can be brought back
into the form of the initial action if we choose

z = 1
2 (2 + η2 − ηφ), (D4)

and thus z = 1 in the noninteracting limit. This is in contrast
to Eq. (C5), reflecting the ambiguity of the dynamical scaling
at the Gaussian fixed point. The β functions then become

da

d ln b
= (2 − z − ηψ )a + 5

2
G(a−2)g2, (D5)

dg

d ln b
= 1

2
(6 − d − z − ηφ − 2ηψ )g + 6

5
H(a−2)

g3

a
, (D6)

dλ

d ln b
= 1

2
(6 − d − z − 3ηφ)λ − 27

4
λ3 −

√
3

35

g3

a
, (D7)

with the anomalous dimensions

ηψ = 4

5
F(a−2)

g2

a
, (D8)

ηφ = 44

35

g2

a
+ 21

4
λ2, (D9)

η2 = 2

5
ag2 + 21

4
λ2, (D10)

and where we have rescaled g and λ as displayed below
Eq. (37) in the main text and �z+ηψ−2a �→ a. The functions F ,
G, and H are also precisely the ones given in Eqs. (41)–(43)
in the main text.

Starting the RG flow on the critical surface r = 0 in the
vicinity of the Gaussian fixed point, λ � 0, g � 0, we have
initially z � 1, which renders the parameter a relevant in the
sense of the RG. Together with a, however, z increases towards
the infrared and the flow of a will eventually stop when the
dynamical exponent satisfies

z = 2 + ηψ − 5

2
G(a−2)

g2

a
. (D11)

Equating Eqs. (D4) and (D11) determines the value of a at the
interacting fixed point:(

2 − 2z − 44

35

g2

a

)
1

a2
+ 2

5

g2

a
= 0. (D12)

Upon rescaling g2/a �→ g2 and λ2/a �→ λ the Eq. (D12)
becomes exactly the fixed-point equation for c [Eq. (35)] when
c = 1/a2. With this identification, the flow equations for g

and λ as well as the anomalous dimensions and the dynamical
exponent at the fixed point have precisely the same form as in
the main text, cf. Eqs. (36)–(40) with Eqs. (D6)–(D11). The
alternative dynamical scaling scheme therefore leads to the
same fixed-point structure and universal critical exponents.
The ambiguity in the dynamical scaling is thus resolved at
the QC point, which is determined by the unique dynamical
critical exponent

z = 2 + O(ε6/5). (D13)

APPENDIX E: FLOW EQUATIONS FOR
FOUR-DIMENSIONAL TENSOR FIELD

We finally discuss the flow equations and fixed-point
structure when evaluating the angular integral directly at
the upper critical dimension d = 4 with the nine 16 × 16
gamma matrices γa , the 16-component Dirac fermion ψ , and
the four-dimensional tensor field Tij , i,j = 1, . . . ,4 with its
irreducible components φa , a = 1, . . . ,9. The computation of
the one-loop diagrams in Fig. 3 now gives

dc

d ln b
= (2 − 2z − ηφ)c + 16

9
g2 + 9

√
cλ2, (E1)

dg

d ln b
= 1

2
(6 − d − z − ηφ − 2ηψ )g + 28

9
H̃ (c)g3, (E2)

dλ

d ln b
= 1

2
(6 − d − z − 3ηφ)λ + 27

2

λ3

√
c

− 1

9

√
2

3
g3, (E3)

with the anomalous dimensions

ηψ = 7

6
F (c)g2, (E4)

ηφ = 49

9
g2 + 9

λ2

√
c
, (E5)

z = 2 + 9

2
G(c)g2 − ηψ. (E6)

F (c) and G(c) are given in Eqs. (41)–(42) in the main text and

H̃ (c) = 8 + 7
√

c

8(1 + √
c)2

. (E7)

The flow of the tuning parameter is
dr

d ln b
= (2 − ηφ)r − 64

9
g2 − 36

λ2

√
c

1

(1 + r)3/2
. (E8)

The only qualitative and universal difference to the com-
putation in d = 3 is the sign of the λ3 term in dλ/d ln b,
which eliminates the (unstable) purely bosonic fixed point
(B in Fig. 2) at g = 0. This is in full analogy to the
Ginzburg-Landau-Wilson theory for the classical nematic
phase transition in liquid crystals, which exhibits a fixed point
if and only if the dimension p of the tensor order parameter is
p < pc with pc = 4 to leading order in the related ε = 6 − d

expansion [39]. However, the existence of the fermionic fixed
point (F in Fig. 2) remains unaffected by this, and we find the
nontrivial solution for c = O(ε6/5):

λ∗
±

c∗1/4
= ±1

3

√
ε,

g∗
±

c∗1/12
= ±

√
3

2

√
ε, (E9)

where albeit λ∗
± and g∗

± now have the same sign. Examination
of the stability matrix shows that the fermionic fixed point
now exhibits a second relevant direction in direction of λ.
This again reflects the fact that for the four-dimensional tensor
order parameter there is no purely bosonic fixed point at g = 0
and λ �= 0 and the flow in the direction of λ is unbounded. In
agreement with the discussion of the classical nematic phase
transition [39] we thus believe that the physical situation in
d = 3 is more accurately described by the calculation directly
in d = 3 as presented in the main text, which gives the stable
fermionic fixed point with g∗ and λ∗ being of opposite sign.
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In any case, to the leading order we find for the d = 4 calculation precisely the same values for the critical exponents at the
fermionic fixed point as in the main text [cf. Eqs. (52) and (55)],

ηψ = O(ε6/5), ηφ = ε + O(ε6/5), z = 2 + O(ε6/5), (E10)

and

1/ν = 2 + 5ε + O(ε6/5). (E11)
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