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I. INTRODUCTION

The fractional quantum Hall (FQH) effect [1] is the
archetypal system for the emergence of topological order [2]
in condensed matter physics. Due to the presence of strong
correlations, the theoretical understanding of its microscopic
properties heavily relies on finite-size numerics [3–7]. Such
calculations are limited to rather small system sizes, as
the many-body Hilbert space grows exponentially with the
system area. An ingenious way to circumvent this problem
comes from the recent development [8–14] of exact matrix
product states [15,16] (MPS) for a large class of FQH model
wave functions derived from conformal field theory (CFT)
correlators [17–19]. Exploiting the area law of quantum
entanglement [20], the MPS factorization enables efficient
calculation of physical observables and gives access to much
larger system sizes than previously attainable.

In a recent paper [12], we applied this technique to
study quasihole excitations in the Moore-Read [19], the
Gaffnian [21], and the Z3 Read-Rezayi [22] states. These
exotic quasiparticles were conjectured to be non-Abelian
anyons, and they constitute the most striking manifestation
of the topological order in the FQH liquids [23,24]. A
hallmark of their non-Abelian character lies in the topological
degeneracy of multiquasihole states. For each set of fixed
quasihole positions, there exists a quasidegenerate subspace
of states, protected against local perturbations, and braiding
the quasiholes induces unitary transformations over this
degenerate subspace. These transformations depend only on
the topology of the braids, rather than their actual shapes, and
those induced by distinct braids do not commute. In Ref. [12],
using the MPS representation, we explicitly demonstrated for
the first time the Fibonacci nature of the Z3 Read-Rezayi
quasiholes from a microscopic calculation. We estimated the
quasihole radii and quantified the length scales associated
with the exponential convergence of the braiding statistics,
but did not provide details regarding the construction of the
quasihole wave functions. In this paper, we discuss in detail
the novel technical aspects of the MPS representation for the
non-Abelian quasiholes.

The construction of the exact MPS is based on the
rewriting of FQH model wave functions as conformal correla-
tors [18,19]. This elegant formalism provides a particularly
nice way to resolve the topological degeneracy of non-
Abelian quasiholes [19] in terms of the so-called conformal
blocks [25,26]. Each conformal-block wave function is in-
dexed not only by the quasihole positions, but also by a tree
of topological charge labels specifying the different fusion
channels of the quasiholes. Enumerating all the possible fusion
tree labelings compatible with a given theory generates a
complete basis over the degenerate subspace. A special benefit
of the conformal-block basis is the explicit manifestation of
the putative braiding statistics in the analytic structure of
the wave functions [27,28]. Specifically, as a function of the
complex quasihole coordinates, the conformal blocks display
branch-cut singularities emanating from the quasihole centers.
The monodromy matrix associated with crossing the branch
cuts is conjectured [19] to coincide with the corresponding
quasihole braiding matrix, up to an Abelian Aharonov-Bohm
phase due to the magnetic field. This conjecture rests on
the observation that the overlaps between conformal blocks
resemble the partition function of a classical plasma [3] with
pinned quasihole charges, a peculiar feature of the quasihole-
dependent normalization of the conformal blocks [29]. This
link eliminates the need to directly integrate the non-Abelian
Berry connection to compute the braiding matrix [30–32].
To demonstrate that the braiding statistics is indeed captured
by the monodromy of conformal blocks, we only have to
establish (through a microscopic calculation) that the plasma
is in a screening phase. This simplification led to the analytic
identification (with the assumption of plasma screening) of the
Moore-Read quasiholes as Ising anyons in Ref. [32], and also
played a crucial role in our numerical demonstration [12] of
theZ3 Read-Rezayi quasiholes as Fibonacci anyons. The main
purpose of the current paper is to explain how to translate the
conformal blocks into calculation-friendly MPS form while
preserving the two highly desirable features, namely, the
monodromy structure and the plasma normalization.

The paper is organized as follows. In Sec. II, we provide a
pedagogical review on the construction of quantum Hall MPS
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in the absence of non-Abelian quasiholes, and in particular, we
derive the plasma normalization from conformal correlators
on the cylinder. And as a precursor, we also discuss the MPS
representation of Abelian quasiholes. In Sec. III, we proceed
to the non-Abelian case. We explain step by step how to
construct MPS for the conformal-block wave functions with
quasiholes in the bulk. A large part of the discussion is devoted
to the derivation of the subtle commutation rules between a
non-Abelian quasihole insertion and the electron operators.
We provide explicit recipes for the Moore-Read [19], the
Gaffnian [21], and the Z3 Read-Rezayi [22] states. Technical
details of the construction are addressed in the Appendices.

II. MATRIX PRODUCT STATES FROM CONFORMAL
CORRELATORS

Before discussing the non-Abelian quasiholes, we first
review the construction [8–11] of the quantum Hall matrix
product states (MPS) from conformal correlators. In prepara-
tion for the later discussion of the quasihole wave functions,
we pay special attention to preserving the normalization of the
conformal correlator.

We consider model wave functions in the lowest Landau
level constructed from chiral conformal correlators [18,19]. In
this formalism, an electron at position z is represented by a
primary field insertion V(z), and the conformal correlator

〈V(z1)V(z2) · · ·V(zn)〉 (1)

can be viewed as a many-body wave function �(z1,z2, . . . ,zn).
Here and hereafter, the single brackets 〈· · · 〉 denote a CFT
correlation function, in contrast to the double brackets 〈〈 · 〉〉
representing the states (wave functions) of the physical
electrons. For example, the Laughlin wave function [3] at
filling ν can be described [18] in terms of a massless free
boson φ. The electron operator V(z) is the normal-ordered
exponential

V(z) = :ei 1√
ν
φ(z) : . (2)

Using the propagator 〈φ(z)φ(z′)〉 = − log(z − z′) in the plane,
we recover from Eq. (1) the familiar Laughlin wave function∏

i<j (zi − zj )1/ν . For more complicated quantum Hall states
(see Sec. III), the corresponding CFT has a direct-product
structure [19], where in addition to the free boson, we also
have a separate so-called “neutral” CFT.

From now on, we adopt the cylinder geometry [33] with
finite perimeter Ly . The complex coordinate z = x + iy has
x running along the cylinder axis and y around its perimeter.
For convenience, we set the magnetic length to unity, and we
define the inverse cylinder radius

γ = 2π

Ly

. (3)

The many-body wave function �(z1,z2, . . . ,zn) is given by
the conformal correlator in Eq. (1) evaluated in the cylinder
geometry, which can be mapped the usual planar geometry
through the conformal transformation z → eγ z.

Interpreting the x coordinate as the imaginary time, the
CFT Hamiltonian is given by γ (L̂0 − 1

24c), with L̂0 being the
Virasoro generator for dilations and c being the chiral central

charge. For the direct-product theory of a neutral CFT and a
free boson, we have the decomposition

L̂0 = L̂neut
0 + L̂boson

0 . (4)

In this section, we focus on the boson part. The mode expansion
of the chiral field φ on the cylinder is given by

φ(z) = φ̂0 − iγ z â0 + i
∑
n�=0

1

n
âne

−nγ z. (5)

Here, the ân modes of the U(1) current satisfy the Heisenberg
algebra

[ân,âm] = n δn+m,0, (6)

while φ̂0 is the canonical conjugate to the zero mode â0,

[φ̂0,â0] = i, (7)

and the dilation operator for the free boson is given by

L̂boson
0 =

∑
m>0

â−mâm + 1

2
â2

0 . (8)

The â0 operator measures the U(1) charge in unit of
√

ν times
the electron charge, in the sense that

[V(z)]−1 â0 V(z) = â0 + 1√
ν
. (9)

The zero mode operators φ̂0 and â0 are decoupled from
(commute with) the ladder operators ân�=0. As a result, the
free boson Hilbert space can be split into sectors labeled by
the U(1) charge â0, with φ̂0 coupling different sectors. The
primary state |Q〉 = :eiQφ̂0 :|1〉 has U(1) charge Q, and the
corresponding Hilbert space sector with charge Q is spanned
by the descendants of |Q〉 under the boson modes {ân<0}.

A. Background charge and gauge choice

The MPS is a tensor factorization of the second-quantized
amplitudes of the many-body wave function �(z1,z2, . . . ,zN )
in Eq. (1) [8,9]. The first step of the construction is to obtain �

in the occupation-number basis. We choose the Landau gauge
for the magnetic field, and work with the orbitals labeled by
the wave number j ∈ Z in the y direction:

ψj (x,y) = 1

(
√

πLy)
1
2

eiγjye− 1
2 (x−γj )2

= e− 1
2 γ 2j 2

(
√

πLy)
1
2

eγjze− 1
2 x2

. (10)

These one-body states take the form of a holomorphic function
in z times a Gaussian in x. Due to the chirality of the
electron operators V(z), the conformal correlator in Eq. (1)
does not produce the (nonholomorphic) Gaussian factor, and
thus does not yet qualify as a many-body wave function in the
lowest Landau level (in any gauge). Fortunately, the Gaussian
factor can be generated naturally by spreading the neutralizing
background charge for the boson field φ uniformly [19] on the
cylinder. This amounts to inserting another (nonprimary) field

Obc = : exp

(
−i

√
ν

2π

∫
d2w φ(w)

)
: (11)
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into the conformal correlator, representing the neutralizing
background charge at filling ν. Here, the integration is
performed over the cylinder surface, and the normal ordering
removes unwanted interactions between background charges
at different locations. However, as discussed in Ref. [19], this
extra insertion of the background charge has a side effect: in
addition to the desirable Gaussian factor, it also introduces a
nonholomorphic gauge factor. Taken altogether, the cylinder
many-body wave function in the Landau gauge is given by [9]

�(z1, . . . ,zn) = ei
∑

i xiyi 〈V(z1) · · ·V(zn) Obc〉. (12)

This relation is proved in Appendix A.

B. Occupation-number basis

We now try to expand the above wave function in the
occupation-number basis. Since each Landau orbital is a
momentum eigenstate, we can extract the second-quantized
amplitudes through a Fourier transform in the y direction.
Notice that the one-body wave function ψj reduces to a simple
plane wave along the orbital center x = γj ,

ψj (γj,y) = 1

(
√

πLy)
1
2

eiγjy . (13)

Taking advantage of this [9], we place the Fourier integration
contours along the orbital centers, and express the amplitude
associated with the occupied orbitals {j1,j2, · · · ,jn} as

�j1,j2,...,jn

=
∏

i

∫ Ly

0

dyi

Ly

e−iγjiyi �(γj1 + iy1, . . . ,γjn + iyn)

=
∏

i

∫ Ly

0

dyi

Ly

〈V(γj1 + iy1) · · ·V(γjn + iyn) Obc〉, (14)

up to a constant normalization factor. Here and hereafter, we
consider only the fermionic quantum Hall states. Notice that
at xi = γji , the gauge transformation eixiyi in Eq. (12) cancels
the Fourier factor e−iγjiyi .

The next step is to rewrite the above expression in terms of
the occupation numbers mj = 0,1 of each Landau orbital j .
We work in the operator formalism of the CFT, and interpret
the x direction along the cylinder axis as the imaginary time
and the perpendicular y direction as the space direction. For
simplicity, we first consider only the electron operators, and
postpone the treatment of the background charge operator. We
are free to pick the index ordering of the occupied orbitals.
Choosing j1 > j2 > · · · > jn ensures the time ordering of the
electron operators and allows us to convert the correlator into
an operator expression:

〈V(γj1 + iy1) · · ·V(γjn + iyn)〉
= 〈out|V̂(γj1 + iy1) · · · V̂(γjn + iyn)|in〉. (15)

We use over-hats on the right-hand side to highlight the
operator nature of the insertions, and we can set the in- and the
out-states to the vacuum. Thanks to the conformal invariance,
the x dependence of the primary field insertion V(x + iy) can
be isolated,

V̂(x + iy) = exγ L̂0 V̂(iy)e−xγ L̂0 , (16)

with γ L̂0 being the CFT Hamiltonian on the cylinder. We
define the zero mode of the electron operator as

V̂0 =
∫ Ly/2

−Ly/2

dy

Ly

V̂(iy). (17)

Without worrying about the background charge for now, we
can rewrite Eq. (14) as

〈out| V̂0 e−(j1−j2)γ 2L̂0 V̂0 e−(j2−j3)γ 2L̂0 · · ·
· · · e−(jn−1−jn)γ 2L̂0 V̂0 |in〉, (18)

up to factors that depend only on the energy of the in- and the
out-state boundaries. The above expression is an imaginary
time evolution along the cylinder axis, punctured by the
electron zero-mode operators at the center of each occupied
orbital [9]. To assign the time evolution to individual orbitals,
we define

Û (s) = e−sγ L̂0 , (19)

which advances in imaginary time any CFT state by s along
the cylinder. Finally, we can write the second-quantized
amplitude 〈〈{m}|�〉〉 associated with the occupation numbers
{m} ≡ [m0,m1,m2, . . .] of the Landau orbitals as

〈〈{m}|�〉〉 = 〈out| · · · Ĉm2Ĉm1Ĉm0 |in〉, (20)

with the orbital Ĉm operators given by

Ĉ0 = Û (γ ), Ĉ1 = Û (γ ) V̂0. (21)

Upon choosing a basis for the CFT Hilbert space, the operator
expression in Eq. (20) becomes a matrix product state.

C. Cylinder evolution operator

We now go back to the issue of the uniform background
charge. We would like to treat it in the same way as the electron
operator. To this end, we first split the two-dimensional integral
in Obc [Eq. (11)] into small patches,

:e−i
√

ν

2π

∫
dxdy φ̂(x+iy) : ∼

∏
x,y

:e−i
√

ν

2π
δxδy φ̂(x+iy):, (22)

where the product over patches (x,y) is time ordered, and
ν is the filling fraction. Evidently, this operation introduces
unwanted self-interactions between background charges at
different locations. Fortunately, this only adds an overall
constant factor that does not depend on the electron position.

Notice that each factor :e−i
√

ν

2π
δxδy φ̂(x+iy) : is now a primary

field, to which Eq. (16) applies:

:e−i
√

ν

2π
δxδy φ̂(x+iy) : = exγ L̂0 :e−i

√
ν

2π
δxδy φ̂(iy) : e−xγ L̂0 .

Thanks to the time ordering, we can recombine the patches at
the same x, and up to an overall constant we have,

:e−i
√

ν

2π

∫
dxdy φ̂(x+iy) : ∼

∏
x

exγ L̂0e
−i

√
νδx

γ
φ̂0e−xγ L̂0 , (23)

where the product over time slices x is still time ordered, and
the zero-mode φ̂0 of the boson field [Eq. (5)] is picked up by

φ̂0 =
∫ Ly/2

−Ly/2

dy

Ly

φ̂(iy). (24)
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Therefore, up to an inconsequential overall constant, the
insertion of the uniform background charge operator amounts
to injecting an exponentiated boson zero mode at each time
slice. We can combine this with the time evolution, and redefine
Û (s) as the path-ordered exponential

Û (s) ≡ P exp

[
−

∫ s

0
dx

(
γ L̂0 + i

√
ν

γ
φ̂0

)]
, (25)

where L̂0 is the dilation operator [Eq. (4)] for the direct-product
CFT. This modification is enough to capture the effect of the
uniform background charge operator. Note that in Eq. (25) the
path dependence comes from the boson zero mode φ̂0 and its
canonical conjugate â0 hidden in L̂0 [Eq. (8)]. This allows us
to simplify the path-ordered exponential [11], yielding

Û (s) = exp

(
−i

s
√

ν

γ
φ̂0

)
exp

[
−sγ L̂0− s2

2

(√
νâ0+ sν

3γ

)]
,

(26)

where the two exponentials do not commute. This new
expression for Û (s) supersedes the original definition in
Eq. (19), and it enters the second-quantized amplitude through
the orbital operators Ĉ0 = Û (γ ) and Ĉ1 = Û (γ )V̂0 [Eq. (21)].

We emphasize that the above treatment of the cylinder
evolution operator is not specific to correlators of the electron
operator. The resulting formula for Û (s) applies generally to
time-ordered correlators of any conformal primary fields in
the presence of a background charge. We will make use of this
fact when we derive the MPS representation of the quasihole
insertion in Sec. II E.

Recall that â0 measures the U(1) charge in unit of
√

ν times
the electron charge. Using Eq. (7), we find that

[Û (s)]−1 â0 Û (s) = â0 − s
√

ν

γ
. (27)

Letting s be the orbital spacing γ , we see that the amount of
background charge contributed by each Landau orbital is equal
to −ν times the electron charge. This indeed neutralizes the
total electric charge at filling ν.

D. Matrix product factorization

The second-quantized amplitude in Eq. (20) can be readily
converted into a matrix product state. Between each pair of
adjacent Ĉm operators, we can insert a unit resolution into a
complete set of states over the conformal Hilbert space,

Î =
∑

α

|α〉〈α|. (28)

For the free boson, the orthonormal basis states |α〉 are simply
normalized descendants under the U(1) current. For the neutral
CFT, the Virasoro descendants are in general not orthogonal,
or even linearly independent. An orthonormal basis can be
obtained through the Gram-Schmidt process after eliminating
the null modes [10].

Due to the e−γ 2L̂0 factor introduced by the cylinder
evolution Û (γ ) in the Ĉm operators, the CFT states with higher
energy (as measured by γ L̂0) are exponentially suppressed at
finite cylinder perimeter. This allows us to truncate [34] the
conformal Hilbert space by keeping only the lowest few levels

of descendants. The resulting finite-dimensional vector space
is the MPS auxiliary space, over which the orbital Ĉm operators
assume a matrix representation

[Cm]αβ = 〈α|Ĉm|β〉. (29)

The calculation of these matrix elements is discussed in
Appendix B. With the truncated representation of the Ĉm

operators, the second-quantized amplitude in Eq. (20) becomes
a product of matrices dotted into the boundary vectors, which
can be evaluated numerically [11].

E. Abelian quasiholes

In the CFT formalism [19], similar to the electrons, a
localized quasihole at η ∈ C is represented by a primary field
insertion in the conformal correlator. As a warm-up for the
non-Abelian case, in the following, we first discuss the Abelian
quasihole, represented by

Q(η) = :ei
√

νφ(η):. (30)

This operator couples only to the free boson, and it generates
the familiar quasihole

∏
i(zi − η) factor when evaluated in the

plane (as opposed to the cylinder). We now discuss how to add
Q(η) to the MPS construction [9].

We consider a single Abelian quasihole at η = χ + iζ . In
Eq. (15), we now have an extra Q̂(χ + iζ ) operator inserted
into the chain of electron operators, at the position determined
by time ordering. Similar to Eq. (16), we can extract the χ

dependence using the dilation operator,

Q̂(χ + iζ ) = eχγ L̂0Q̂(iζ )e−χγ L̂0 . (31)

Following the same steps from Sec. II B to Sec. II C, for
each imaginary-time interval of size s between adjacent
primary field (electron or quasihole) insertions, we can capture
the dilation and the background charge using the cylinder
evolution operator Û (s) [Eq. (25)].

As a result of the quasihole at χ + iζ , the cylinder evolution
is now further punctured by Q̂(iζ ) at the time slice χ . To locate
this time slice relative to the Landau orbitals, recall that the
orbital j is centered at x = γj [Eq. (10)]. The Q̂(iζ ) operator
is thus inserted between the orbitals jχ and jχ + 1 (Fig. 1),
with

jχ ≡ �χ/γ �. (32)

Here, the floor function �t� ∈ Z denotes the largest integer no
greater than t ∈ R. The insertion of Q̂(iζ ) breaks the cylinder
evolution Û (γ ) associated with the orbital Ĉm operator at jχ

into two parts,

Û (γ ) → Û (δχ )Q̂(iζ )Û (γ − δχ ), (33)

x

jχ γ(jχ+1)γ χ

δχ

FIG. 1. (Color online) Insertion of a single quasihole at imag-
inary time χ . The solid vertical lines in orange mark the center
positions of the two Landau orbitals sandwiching the quasihole.
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where δχ ∈ (0,γ ] denotes the displacement of χ from the
center of the orbital jχ + 1 (Fig. 1),

δχ ≡ (jχ + 1)γ − χ. (34)

Note that the cylinder evolution operator Û (s) does not
commute with the Q̂(iζ ) insertion, and from its definition
in term of the path-ordered exponential in Eq. (25), we have

Û (γ − δχ ) = [Û (δχ )]−1 Û (γ ). (35)

Then, without modifying the Ĉm operators, the quasihole
Q̂(χ + iζ ) can be represented in Eq. (20) by the insertion
of

Û (δχ ) Q̂(iζ ) [Û (δχ )]−1 (36)

between the Ĉm operators for orbitals jχ and jχ + 1.
There is one extra complication that we have glossed over.

When we expand the CFT-derived wave function

〈V(z1) · · ·V(zn)Q(χ + iζ ) Obc〉 (37)

into Slater-determinant basis states in Eq. (14), we place the
electron contours at the center of each occupied orbital. To
bring the field insertions into time ordering, the electrons on
orbitals with center position x < χ have to be moved across
the pinned quasihole field at time χ . For the Abelian quasihole
as in Eq. (30), each of these commutations incurs a minus sign,

〈· · ·V(z)Q(χ + iζ ) · · · 〉 = − 〈· · ·Q(χ + iζ )V(z) · · · 〉.
(38)

The above anticommutativity simply reflects the fact that in
the planar wave function an Abelian quasihole is represented
by the odd-power factor

∏
i(wi − η). Formally, one could also

derive this minus sign from the operator product expansion.
We need to collect these minus signs together and attach

them to the quasihole insertion. To this end, for each Slater-
determinant basis state we have to count the number of
occupied orbitals with center position x < χ . This number
can be extracted from the conserved U(1) charge at the time
slice χ of the quasihole insertion. [Note that for each orbital the
cylinder evolution Û (γ ) contained in the Ĉm operator correctly
accounts for the associated background charge.] Specifically,
the number of occupied orbitals with x < χ is given by

√
νâ0 + (jχ + 1)ν (39)

inserted between the Ĉm operators for orbitals jχ and jχ + 1.
Here, the zero-mode â0 measures the U(1) charge in unit
of

√
ν times the electron charge e, and the second term

cancels the background charge −νe carried by each orbital j ∈
{0,1, . . . ,jχ }. Finally, we can write down the full expression
for the quasihole operator in the MPS

Û (δχ ) Q̂(iζ ) [Û (δχ )]−1 (−1)
√

νâ0+(jχ +1)ν . (40)

Note that â0 does not commute with [Û (δχ )]−1, as the latter
contains φ̂0.

The above construction can be easily generalized to the case
of multiple Abelian quasiholes, with

〈V(z1) · · ·V(zn)Q(χ1 + iζ1) · · ·Q(χm + iζm)Obc〉. (41)

We put the m quasiholes in time ordering,

χ1 > χ2 > · · · > χm. (42)

Then, each quasihole has the MPS representation given by
Eq. (40), except for one minor modification. For the l-th
quasihole, to extract the number of occupied orbitals with
x < χl , we need to subtract not only the background charge,
but also the U(1) charge introduced by the other quasiholes
inserted on its right. This modifies the commutation sign in
Eq. (40) to

(−1)
√

νâ0+(jχ +1)ν−(m−l)ν . (43)

The last two terms in the exponent [(jχ + 1)ν − (m − l)ν] only
introduce an overall constant phase factor (independent from
the electron occupations), but they are necessary to eliminate
the branch-cut ambiguity in the fractional power (−1)

√
νâ0 .

This branch cut ambiguity comes from the fact that the operator√
νa0 now counts fractional quasihole charges.
This finishes our review of the MPS construction in the

absence of non-Abelian quasiholes. We conclude this section
with a few remarks. First, the quasihole MPS has a rather subtle
parametric dependence on the quasihole position χ + iζ .
This dependence is not holomorphic due to the presence of
the nonchiral background charge operator Obc, and the χ

dependence differs considerably from ζ . The imaginary part
ζ enters the MPS directly (and solely) through the operator
insertion Q̂(iζ ). The real part χ controls the location jχ of
this insertion, and thereby affects both the cylinder evolution
and the electron-quasihole commutation sign. Second, we
note that the amount of U(1) charge carried by an Abelian
quasihole operator Q̂(iζ ) is exactly opposite to the charge
carried by an empty orbital Ĉ0 = Û (γ ). This can be seen by
comparing the exponents in Eqs. (30) and (25). Therefore,
to keep the CFT boundary states fixed, upon inserting a
quasihole, we need to increase the total number of Landau
orbitals by one. Third, in the presence of multiple quasiholes,
the conformal correlator exhibits a nontrivial monodromy as a
function of quasihole positions. In the MPS, this monodromy
manifests itself as branch cuts originating from the center of
each quasihole. We will discuss this in details in Sec. III F.
Finally, we emphasize that our prescription for the Abelian
quasihole matrix differs from Ref. [9] in the more careful
handling of the background charge. The new formula here
exactly preserves the quasihole-dependent normalization of
the conformal correlator. This feature is desirable as it enables
us to leverage the plasma analogy when checking the braiding
statistics [12].

III. NON-ABELIAN QUASIHOLES

We now proceed to the construction of MPS for the non-
Abelian quasiholes. We consider the so-called (k,r)-clustered
states [35] at filling fraction ν of the lowest Landau level, with
k,r being integers and

ν = k

k + r
. (44)

The electronic correlations in such states are characterized
by the presence of k-particle clusters. The fermionic wave
function is given by the product of a Jastrow factor and a
bosonic part. The latter bosonic wave function vanishes to
order r when (k + 1) particles come together. The r = 2 case
corresponds to the Zk Read-Rezayi series [22], with k = 2
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being the Moore-Read state [19], while the (k,r) = (2,3) case
is the so-called Gaffnian wave function [21]. These wave
functions can be constructed from chiral conformal correlators
of primary fields representing electrons and quasiholes [22].
The electron operator takes the tensor product form

V(z) = ψ(z) ⊗ :ei 1√
ν
φ(z):, (45)

where in addition to the free-boson vertex operator, we also
have a primary field ψ in the so-called neutral CFT. The
fundamental quasihole is represented by

Q(η) = σ (η) ⊗ :ei
√

ν

k
φ(η):, (46)

with σ being another primary field in the neutral CFT.
The reduced exponent in the boson vertex operator reflects
the fact that the fundamental quasihole is a further k-fold
fractionalization of the Abelian quasihole in Eq. (30).

The MPS auxiliary space is now given by the direct product
of the truncated Hilbert spaces of the neutral CFT and the free
boson. As noted in Sec. II, the free boson Hilbert space can
be naturally broken into sectors labeled by the conserved U(1)
charge â0. The neutral CFT Hilbert space can be similarly
split into different representations of the neutral Virasoro
algebra [26]. Each representation, called a Verma module,
is spanned by the conformal family of Virasoro descendants
generated from a single primary state. Therefore each Verma
module of the neutral CFT is labeled by a primary field, which
we refer to as the “topological charge” and denote by Latin
indices a,b,c, . . . . Taken together, the MPS auxiliary space
can be split into different sectors labeled by the topological
and the U(1) charges [11]. For later convenience, we define
the projector into a single Verma module c as

P̂(c) =
∑
α∈c

|α〉〈α|. (47)

As shown in Sec. II E, a quasihole at χ + iζ is represented
by the insertion of Q̂(iζ ) into the cylinder evolution at time
slice χ , as in Eq. (36). There are two extra complications
for the non-Abelian case in Eq. (46). First, we need to
resolve the topologically degenerate states associated with
multiple pinned non-Abelian quasiholes. Second, we need
to generalize the anticommutativity between electrons and
Abelian quasiholes in Eq. (38). As noted earlier, a non-Abelian
quasihole can be seen as a further k-fold fractionalization
of an Abelian quasihole. This hints at a k-way split of the
anticommutation minus sign. However, to have a single-valued
electron wave function, the commutation phase between
an electron and a quasihole must square to unity. As we
demonstrate below, the solution to this conundrum turns out to
be letting each of the k parts of a quasihole anticommute with
only one out of every k electrons.

A. Neutral CFT examples

Before diving into the details of the quasihole operator, we
first go through the field content and the fusion rules of the
neutral CFT for a few representative theories [10,11].

Moore-Read. The neutral CFT for the Moore-Read Pfaffian
state [19] is the minimal model M(3,4) with central charge
c = 1

2 . The primary fields (1,ψ,σ ) have scaling dimensions

(0, 1
2 , 1

16 ). The fusion rules are given by

ψ × ψ = 1, σ × ψ = σ, σ × σ = 1 + ψ. (48)

Gaffnian. The neutral CFT for the Gaffnian wave func-
tion [21] is the nonunitary minimal model M(3,5), with a
negative central charge c = − 3

5 . The primary fields (1,ψ,σ,ϕ)
have scaling dimensions (0, 3

4 ,− 1
20 , 1

5 ). The fusion rules
involving ψ or σ are given by

ψ × ψ = 1, ψ × σ = ϕ, ψ × ϕ = σ,
(49)

σ × σ = 1 + ϕ, σ × ϕ = ψ + σ.

Z3 Read-Rezayi. The neutral CFT for the Z3 Read-
Rezayi state is the Z3 parafermionic variant [22] of
the c = 4

5 minimal model M(5,6). The Virasoro pri-
mary fields (1,ψ1,ψ2,W,ε,σ1,σ2,ϕ) have scaling dimensions
(0, 2

3 , 2
3 ,3, 2

5 , 1
15 , 1

15 , 7
5 ) and Z3 charges (0,2,1,0,0,1,2,0). This

theory actually enjoys an extendedW3 algebra [36] beyond the
Virasoro. In this language, the W field is not a primary field, but
rather a descendant of the identity under the larger W3 algebra.
Similarly, ϕ is actually a descendant of ε. However, as noted
in Ref. [11], the W3 approach is numerically inefficient due to
the complexity of the extended algebra and the proliferation of
null modes. Hence, in the following we stick to the Virasoro
description, but for succinctness we keep W and ϕ implicit
whenever possible. With this caveat in mind, the fusion rules
involving the electron ψ ≡ ψ1 or the quasihole σ ≡ σ1 are
given by

ψ1 ψ2 ε σ1 σ2

ψ1 ψ2 1 σ2 ε σ1

σ1 ε σ2 ψ2 + σ1 ψ1 + σ2 1 + ε

Note that the σ × σ fusion has multiple outcomes in all of
the examples above. Such fusion ambiguity is characteristic
of the CFT representation of the non-Abelian quasiholes. For
completeness, we list the structure constants for the so-called
operator product expansion needed to construct the MPS
matrix elements in Appendix C.

B. Conformal blocks and fusion trees

We consider conformal correlators with multiple non-
Abelian quasihole insertions

〈V(z1) · · ·V(zn)Q(η1) · · ·Q(ηm) Obc〉. (50)

Due to the nontrivial fusion rule of the σ field in Q(η)
[Eq. (46)], for each set of quasihole coordinates, the above
expression does not produce a single wave function. Instead,
it defines a vector space of degenerate wave functions [19]. A
set of basis states in this space, called conformal blocks, can
be obtained by specifying how the fields fuse together in terms
of a fusion tree diagram [25,26]. We only need to consider
the neutral CFT, since the free boson has trivial fusion rules
dictated by the U(1) charge conservation. The structure of the
fusion tree reflects the ordering of the successive fusions, and
different structures correspond to different basis choices for
the same vector space. For a given fusion tree structure, the
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corresponding conformal-block basis states can be enumerated
by finding all the topological charge labelings compatible with
the fusion rules.

We now consider the MPS representation of the conformal
blocks associated with Eq. (50). This mandates the fields to
be fused sequentially in time ordering into the |in〉 state. As
explained in Sec. II E, each quasihole is pinned at a particular
time slice while the electrons need to be placed at the center of
each occupied orbital. This requires us to blend the quasihole
operators into the chain of electron operators. Specifically,
we have a V̂0 operator placed at the center of each occupied
Landau orbital and a Q̂(iζ ) operator inserted at each quasihole
position χ , and the operators are lined up in time ordering.
This leads to a fusion tree with a linear structure. Consider for
example the following amplitude for the Moore-Read state

〈· · · V̂0 Q̂(iζ1) V̂0 Q̂(iζ2) |1〉. (51)

To reduce clutter, here we have omitted the interleaving
cylinder evolution operators Û (s). The fusion tree takes the
form

b a
(52)

where the undecided topological charges (a,b) could be either
(1,ψ) or (ψ,1) according to the fusion rules. It should be
noted that the imaginary time x points in the left direction
in the above diagram, in accordance with the operator time
ordering. To construct the conformal block for either choice
of the topological charges (a,b), we need to materialize the
fusion channel choice in Eq. (51). This amounts to inserting a
Verma module projector to the left of each field insertion,

〈· · · P̂(b) V̂0 P̂(a) Q̂(iζ1) P̂(σ ) V̂0 P̂(σ ) Q̂(iζ2) |1〉. (53)

It should be noted that the placement of the electron V̂0

operators depends on how and where the Landau orbitals are
occupied. As a result, with quasihole insertions in the bulk, the
fusion trees for different Slater-determinant amplitudes natu-
rally have different orderings of their quasihole and electron
“branches.” For example, with a non-Abelian quasihole pinned
at η = 3

2γ , the following two Slater-determinant amplitudes
have different operator ordering and thereby different fusion
tree structure,

· · · 101010
�
11 ⇒ 〈· · ·V̂0V̂0V̂0Q̂(0)V̂0V̂0|1〉,

· · · 011011
�
01 ⇒ 〈· · ·V̂0V̂0V̂0V̂0Q̂(0)V̂0|1〉.

(54)

Here, the occupation numbers are listed in reverse to be
consistent with the time ordering, the star marks the position
of the quasihole relative to the Landau orbitals, and again we
have omitted the interleaving cylinder evolutions in order to
highlight the operator ordering. Now, to obtain the correct wave
function, we must resolve every Slater-determinant amplitude
in the same fusion tree basis. A natural choice is to have all
the quasihole fields placed at the beginning (rightmost end) of
the linear structure. For the example given above, we want

(55)

For each Slater-determinant amplitude, we need to reorganize
the time-ordered fusion tree in Eq. (52), by bringing all
the quasihole branches across the electrons to the rightmost,
while keeping their relative ordering. As we show next, this
reshuffling transformation amounts to adding a particular
minus sign to each quasihole operator, generalizing the
prescription for the Abelian quasihole in Eq. (43).

C. Exchanging two branches

To connect the fusion tree with the desired structure in
Eq. (55) to the primitive time-ordered tree in Eq. (52), we need
to move the quasihole insertions across electron operators into
the bulk. The elementary move is

d d
c c (56)

These two fusion trees span the same vector space, and they
can be related by a linear transform

d e
c =

∑
f

[
B

σψc

d

]
ef

d f
c (57)

which is nothing but the CFT half-braid matrix between the
electron and the quasihole fields. It should be noted that the
U(1) part of the CFT also contributes a phase factor, even
though it has trivial fusions and has been omitted from the
above diagrams. Also, for the CFT correlator to represent a
physical wave function, the electron operator must be local
with respect to the quasiholes. As a result, it does not matter
whether the electron-quasihole half braid is done clockwise or
counterclockwise. This brings Eq. (57) to a more familiar form,

d e
c =

∑
f

[
B

σψc

d

]
ef

d f
c (58)

Formally, the half-braid matrix Babc
d can be decomposed

into the so-called F and R moves of the direct-product
CFT [25]. Again, the contribution from the U(1) part must be
included despite its omission from the diagrams. The fusion
F matrix is a generalization of the Wigner 6j symbol,

d e
c

a

=
∑

g

[
Fabc

d

]
eg

d

a b
g c (59)

where g is summed over all topological charges compatible
with the fusion rules, and the R matrix gives the exchange
phase in a definite fusion channel,

Rba
g

a b

g g

a b
(60)

Note that the fusion tree layout in the above definitions
is slightly different from the standard convention in the
literature [37]. This is due to our choice of pointing
the imaginary time x in the left direction in accordance with
the operator time ordering. Composing the F and R moves,
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we find

c

d e

ba =
∑
f,g

[
Fbac

d

]
eg

Rba
g

[(
Fabc

d

)−1]
gf

c

d f

a b
.

(61)

The transformation coefficient in the above equation is nothing
but [Babc

d ]ef . In principle, we can solve the pentagon and the
hexagon equations [25] for the F and the R matrices, and fix
the gauge according to the structure constants in the operator
product expansion of the chiral fields (see Appendix C). This
would be a time-consuming task. In practice, however, we
can more easily determine the B

σψc

d matrix from a simple
numerical calculation. To this end, we consider the conformal-
block version of Eq. (57),

〈d| V̂(iy) P̂(e) Q̂(iζ ) |c〉
=

∑
f

[
B

σψc

d

]
ef

〈d| Q̂(iζ ) P̂(f ) V̂(iy) |c〉. (62)

Here, we place the operators at adjacent time slices to avoid
complications from the cylinder evolution, and for simplicity
we choose the end states 〈d| and |c〉 to be the primary states
in the corresponding Verma modules. Recall that the core part
of the MPS implementation is a truncated CFT calculator.
By numerically evaluating the two (truncated) correlators in
the above equation as functions of (y,ζ ), we can extract the
B

σψc

d matrix in the gauge determined by the chiral structure
constants.

We first consider the Moore-Read and the Gaffnian states.
They are clustered wave functions with k = 2. For these
theories, the fusion ψ × a always yields a unique result for
any topological charge a. Therefore, the topological charges d

and f in Eq. (57) are completely fixed by the choice of c and
e, namely,

d = ψ × e, f = ψ × c, (63)

with e among the (possibly) multiple fusion outcomes of
σ × c. This allows us to adopt the shorthand notation

[
B

σψc

d

]
ef

→ Bc
e , (64)

and it reduces Eq. (62) to

〈ψ × e| V̂(iy) P̂(e) Q̂(iζ ) |c〉
= Bc

e · 〈ψ × e| Q̂(iζ ) P̂(ψ × c) V̂(iy) |c〉. (65)

The single-valuedness of the electron wave function dictates
that Bc

e has to be ±1. For the Moore-Read state, from the
numerics we find

B1
σ = Bσ

ψ = 1, Bψ
σ = Bσ

1 = −1, (66)

and for the Gaffnian state, we have

B1
σ = B

ϕ
ψ = Bσ

ϕ = Bϕ
σ = 1, Bσ

1 = Bψ
ϕ = −1. (67)

Depending on the fusion channel context, the electron and the
quasihole fields either commute or anticommute.

For the Zk=3 Read-Rezayi state, due to our choice of
keeping the W3 algebra implicit and treating W and ϕ as

primary fields, even the electron field ψ ≡ ψ1 has nontrivial
fusion rules,

ψ1 × ψ2 = 1 + W, ψ1 × σ1 = ε + ϕ, (68)

which would not bode well for our proposed method. However,
the implicit W3 symmetry forbids us to split the channels on
the right-hand side into separate conformal blocks. To take
advantage of this, we bind the Verma module W to 1 and bind
ϕ to ε by redefining the projectors [Eq. (47)],

P̂(1) ≡
∑

α∈1,W

|α〉〈α|, P̂(ε) ≡
∑
α∈ε,ϕ

|α〉〈α|, (69)

and then we simply forget about W and ϕ when labeling the
fusion trees. Now that W and ϕ are formally gone, we are
allowed to use the shorthand notation in Eq. (64). Crucially,
we verify from the numerics that after such patching (but not
before), the reduced linear transform in Eq. (65) still holds.
This compatibility can be attributed to the underlying extended
W3 algebra. The Bc

e coefficients are found to be

B1
σ1

= Bψ1
ε = Bε

ψ2
= B

σ1
ψ1

= Bσ1
σ2

= Bσ2
ε = 1,

Bψ2
σ2

= Bε
σ1

= B
σ2

1 = −1. (70)

D. Reshuffling quasiholes into the bulk

Through successive applications of the elementary move in
Eq. (57), we can achieve the reshuffling

n n

e

e
c

e c

c (71)

across an arbitrary number n of electrons. Note that the
topological charges at the top and the bottom must agree
between the two trees; otherwise the conformal blocks belong
to distinct linear spaces. Also, due to the trivial fusion rules
of the ψ field in the Moore-Read, the Gaffnian, and the Z3

Read-Rezayi states, all the topological charges are completely
fixed by c and e. In particular, we deduce that the in-situ fusion
channels for the σ field after the reshuffling are given by the
successive fusion with n ψ fields,

e′ = ψn × e, c′ = ψn × c, (72)

and the corresponding projected quasihole operator is

Q̂(e,c,n,iζ ) ≡ P̂(ψn × e) Q̂(iζ ) P̂(ψn × c). (73)

The linear transform between the two trees in Eq. (71)
consists of a simple sign factor,

e

e

n

c = (−1)N(e,c,n) ·
n

c
(74)

Here, only a subset of the n ψ fields anticommute with σ , and

N (e,c,n) ∈ Z (75)

counts the size of this anticommuting subset. Consider
(e,c,n) = (σ,1,4) for the Moore-Read state as an example.
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Recall from Eq. (66) that B1
σ = 1 and Bψ

σ = −1. Using
Eq. (57), we find

B

B B

B B B B

(76)
In the above commuting process, the σ field picks up a minus
sign Bψ

σ = −1 from only every other ψ field (dashed line).
This is a direct consequence of Eq. (66). The alternating pattern
in the chain of ψ fields has periodicity two, as expected from
the fusion rule ψ2 = 1.

Following the above procedure, for each channel choice
(e,c), we can identify the subset of ψ fields that anticommute
with σ (dashed lines). For the Moore-Read state, we find

(77)

Counting the dashed lines, we have for Eq. (74)

N (σ,1,n) = N (ψ,σ,n) = ⌊
n
2

⌋
,

N (σ,ψ,n) = N (1,σ,n) = ⌊
n+1

2

⌋
,

(78)

where the floor function �t� ∈ Z denotes the largest integer no
greater than t ∈ R. Similarly, for the Gaffnian state, we have

(79)

and the number of anticommuting ψ fields is given by

N (σ,1,n) = N (ψ,ϕ,n) = ⌊
n
2

⌋
,

N (ϕ,ψ,n) = N (1,σ,n) = ⌊
n+1

2

⌋
, (80)

N (ϕ,σ,n) = N (σ,ϕ,n) = 0.

Note that for (e,c) = (ϕ,σ ) and (σ,ϕ), the σ field commute
with all ψ fields without any minus sign. For the Z3 Read-
Rezayi state, we find

c
e ,

[
c

e

]
=

[
1
σ1

]
,

[
σ1

ψ1

]
,

[
σ2

ε

]
;

c
e ,

[
c

e

]
=

[
ψ1

ε

]
,

[
ε

ψ2

]
,

[
σ1

σ2

]
;

c
e ,

[
c

e

]
=

[
ψ2

σ2

]
,

[
σ2

1

]
,

[
ε

σ1

]
.

(81)

And the number of anticommuting ψ1 fields is given by

N (σ1,1,n) = N (ψ1,σ1,n) = N (ε,σ2,n) = ⌊
n
3

⌋
,

N (ε,ψ1,n) = N (ψ2,ε,n) = N (σ2,σ1,n) = ⌊
n+1

3

⌋
, (82)

N (σ2,ψ2,n) = N (1,σ2,n) = N (σ1,ε,n) = ⌊
n+2

3

⌋
.

Again, we emphasize that the sign structure has contributions
from both the neutral and the implicit U(1) parts of the direct-
product CFT.

E. Putting the pieces together

We apply the reshuffling formula (74) to bring the quasihole
and the electron fields into time ordering. A quasihole at
position χ + iζ should be placed between the orbitals jχ ≡
�χ/γ � and jχ + 1 [Eq. (32)]. Starting from the rightmost end
of the fusion tree, to reach this time-ordered position, the
number of electrons it needs to cross is given by the number of
occupied orbitals with center x < χ . Consider m fundamental
quasiholes with ordering χ1 > · · · > χm [Eq. (41)]. The
number of occupied orbitals with center x < χl is counted
by the operator

n̂l = √
νâ0 + (jχl

+ 1)ν − m − l

k
ν (83)

inserted between the Ĉm operators for orbitals jχ and jχ + 1.
The above formula is adapted from the Abelian case [Eq. (43)].
The extra k in the denominator of the last term reflects
the further k-fold fractionalization of the U(1) charge of a
fundamental quasihole in the non-Abelian states [Eq. (46)].

Now we are finally ready to synthesize the full expression
for the non-Abelian quasihole operator. We would like to
obtain the MPS description of the conformal block with m

fundamental quasiholes specified by the fusion tree

b b b
b

b

m

m

m (84)

Here, the quasihole fields are placed at the rightmost end of
the linear tree structure as in Eq. (55), and we have omitted
the electron branches on the left side. The topological charges
satisfy bl−1 ∈ σ × bl , with bm = 1. In the MPS, the quasiholes
are placed in time ordering, and the l-th quasihole with fusion
context (bl−1,bl) is represented by the insertion of

Û (δχl) Q̂(bl−1,bl,n̂l,iζl) [Û (δχl)]
−1 (−1)N(bl−1,bl ,n̂l ) (85)

between the Ĉm operators for orbitals jχl
and jχl

+ 1. In the
above expression, the displacement δχl is defined in Eq. (34),
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x

ε + iζ −ε + iζ

(a) (b)

FIG. 2. (Color online) (a) Braiding one quasihole around another.
The bystander quasiholes in the shaded regions do not participate in
the braiding process other than setting the fusion channel context. The
vertical dotted line marks the location of the branch cut discontinuity.
(b) An infinitesimal segment of the braiding path crossing the branch
cut from above.

the projected quasihole operator Q̂(e,c,n,iζ ) is defined in
Eq. (73), the occupied orbital counter n̂l is defined in Eq. (83),
and the anticommuting subset counter N (e,c,n) defined in
Eq. (74) has values given by Eqs. (78), (80), and (82).
The above MPS representation preserves the conformal-block
normalization for the non-Abelian quasiholes, and it is the
main result of this paper.

F. Branch cut structure

As the final note, in this section we examine the monodromy
structure of the MPS when we braid one non-Abelian quasihole
around another (Fig. 2). The MPS prescription produces
conformal blocks in a particular fusion tree basis, where the
quasiholes are placed in time ordering at the rightmost end
of the linear structure before the electrons. This allows us
to focus on the fusion tree segment actively involved in the
braiding process

c b
a (86)

without worrying about the bystander quasiholes (Fig. 2) or
the electrons, which just define the topological charges (a,c).
Due to the time-ordered insertion of the quasiholes, each
conformal block develops a branch cut discontinuity when
the two quasiholes coincide in the horizontal direction, as
illustrated by the dotted lines in Fig. 2(a). This discontinuity
represents an abrupt change of basis and does not correspond
to a physical singularity. To understand how the conformal
blocks across the branch cut are related, we consider the two
points infinitesimally close to the cut, as shown in Fig. 2(b).
To be specific, we place the stationary quasihole at η0 = 0 and
examine the infinitesimal segment across the cut above it, from
−ε + iζ to ε + iζ . The conformal blocks on the two sides of
the cut are given by

c b
a

c b
and a (87)

In the limit of ε → 0+, the conformal blocks on the right side
can be related via continuity to the twisted trees

c b
a

c b
a (88)

Further, we can untwist the fusion trees using the half-braid B

matrix of the direct-product CFT [Eq. (58)],

c b
a =

∑
d

[
Bσσa

c

]
bd

c d
a (89)

leading to

c b
a =

∑
d

[
Bσσa

c

]
bd

c d
a (90)

Similarly, across the branch cut below the stationary quasihole,
we find

c b
a =

∑
d

[
Bσσa

c

]
bd

c d
a (91)

Therefore the MPS conformal blocks across the branch cuts are
related by the half-braid B matrices of the direct-product CFT.
In other words, the full-braid monodromy of the conformal
blocks are concentrated in the branch cut singularities. This is
a special feature of our fusion tree basis with time ordering,
and it drastically simplifies the microscopic demonstration of
the topological nature of the quasihole braiding statistics [12].
With the branch cuts contributing the CFT monodromy matrix,
now we just need to show that the braiding process away
from the branch cuts accumulates only a simple Aharonov-
Bohm phase. For the quasihole wave functions constructed
from the conformal correlators, the latter condition can be
further reduced to the exponential convergence of the overlap
matrix between different conformal blocks at large quasihole
separations [32]. In an earlier paper, we took advantage of
this line of simplifications to demonstrate the Fibonacci nature
of the Z3 Read-Rezayi quasiholes. This exploitation depends
crucially on the fact that our MPS construction is a literal
transcription of the conformal blocks preserving both the
monodromy structure and the plasma normalization.

IV. CONCLUSION

In this paper, we have presented a pedagogical derivation
of the conformal-block MPS for non-Abelian quasiholes. The
procedure is exemplified using the Moore-Read, the Gaffnian,
and the Z3 Read-Rezayi states. Our prescription preserves
the monodromy structure and the plasma normalization of the
conformal blocks, and the resulting MPS explicitly manifests
the putative quasihole braiding statistics as half-monodromy
matrices across branch cuts.
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APPENDIX A: UNIFORM BACKGROUND CHARGE

In this Appendix, we prove Eq. (12), namely that the
inclusion of the uniform background charge [Eq. (11)]

Obc = : exp

(
−i

√
ν

2π

∫
d2w φ(w)

)
: (A1)

in the conformal correlator correctly produces the Landau-
gauge Gaussian factor with an extra nonholomorphic gauge
transform, such that

�(z1, . . . ,zn) = ei
∑

i xiyi 〈V(z1) · · ·V(zn) Obc〉 (A2)

is a legitimate many-body wave function in the lowest Landau
level with the Landau gauge.

The above statement applies to quantum Hall states de-
scribed by a generic direct-product CFT. Without loss of
generality, we can focus on the U(1) part of the electron

operator, V(z) = :ei 1√
ν
φ(z) :, since the background charge Obc

does not couple to the neutral CFT. Further, due to the
noninteracting nature of the U(1) boson, we only need to
consider the contraction of a single electron operator with
the background charge,

ef (x,y) ≡ 〈
:ei 1√

ν
φ(x+iy) : :e−i

√
ν

2π

∫
dx ′dy ′ φ(x ′+iy ′):

〉

= exp

(
1

2π

∫
dx ′dy ′ 〈φ(x + iy)φ(x ′ + iy ′)〉

)
.

(A3)

We work on the cylinder geometry with perimeter Ly and
inverse radius γ = 2π/Ly . Plugging the boson propagator

〈φ(z)φ(0)〉 = − log

(
2

γ
sinh

γ z

2

)
(A4)

into Eq. (A3), we find

f (x,y) = − 1

2π

∫
dx ′dy ′ log

[
2

γ
sinh

γ (x + iy − x ′ − iy ′)
2

]
.

(A5)

The integration in the above equation is performed over the
cylinder surface (x ′,y ′) ∈ R × (− 1

2Ly,
1
2Ly). We proceed by

separating the real and the imaginary parts of the complex
logarithm, log u = log |u| + iIm log u.

The real part of the logarithm is nothing but the Coulomb
potential on the cylinder geometry [38], in the sense that

∇2 log

∣∣∣∣ 2

γ
sinh

γ (z − z′)
2

∣∣∣∣ = 2π δ(z − z′), (A6)

with cylinder identification z ∼ z + iLy . The real part of
f (x,y) is thus the scalar potential due to the uniform

background charge, satisfying

∇2Ref (x,y) = −
∫

dx ′dy ′ δ(x − x ′)δ(y − y ′) = −1.

(A7)

Imposing the reflection and the rotational symmetries on the
cylinder,

Ref (x,y) = Ref (−x,y), ∂yRef (x,y) = 0, (A8)

we can integrate the above Poisson equation and obtain

Ref (x,y) = −x2

2
. (A9)

As claimed, this correctly reproduces the Gaussian factor in
the one-body Landau orbital [Eq. (10)].

For the imaginary part of the logarithm, we employ the
identity [39]

Im log sinh
γ (x + iy)

2
=

Z∑
n

arctan
y + nLy

x
. (A10)

It is not hard to see why this holds: starting from Im log γ

2 (x +
iy) = arctan y

x
, the periodic structure introduced by the hyper-

bolic sine is matched by the periodic sum over n. As a result,
the imaginary part of f (x,y) is given by

Imf (x,y) = − 1

2π

∫
cyl

dx ′dy ′
Z∑
n

arctan
y − y ′ + nLy

x − x ′

= − 1

2π

∫
R

dx ′
∫
R

dy ′ arctan
y − y ′

x − x ′

= −y

2

∫
R

dx ′ sign(x − x ′) = −xy. (A11)

Here, we have joined the cylinder integrals in the infinite sum
to tile the R × R plane, with a symmetric regularization for
the ±∞ limits.

To sum up, we have shown that the contraction with the
cylinder background charge is given by

〈:ei 1√
ν
φ(x+iy) : :e−i

√
ν

2π

∫
dx ′dy ′ φ(x ′+iy ′) :〉

= e−ixye−x2/2. (A12)

This proves that the wave function defined in Eq. (12) indeed
lives in the Landau gauge with the correct Gaussian factor.

APPENDIX B: CALCULATING MATRIX ELEMENTS

In the main text the MPS is described in terms of operators
acting on the CFT Hilbert space. In this Appendix, we briefly
describe the construction of the matrix representation of these
operators. A detailed procedure for the calculation of the
primary field matrix elements has been published in Ref. [11].
Leveraging this result, all we need here is to map the operators
of interest from the cylinder geometry to the plane.

Under the conformal map z → eγ z from the cylinder to the
plane, a primary field � with scaling dimension �� transforms
by

�̂(z) = (γ eγ z)�� �̂plane(e
γ z). (B1)
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Between two generic CFT energy eigenstates |α〉 and |β〉 with
L̂0 eigenvalues �α and �β , the matrix element of �̂(iy) reads

〈α|�̂(iy)|β〉 = 〈α|eiyγ L̂0�̂(0)e−iyγ L̂0 |β〉
= eiyγ (�α−�β )γ ��〈α|�̂plane(1)|β〉. (B2)

The planar matrix element 〈α|�̂plane(1)|β〉 can be further
related through algebraic manipulations [11] to the structure
constant associated with the �α terms in the operator product
expansion � × �β , where �α and �β are the parent primary
fields for the states |α〉 and |β〉. This procedure can be directly
applied to the quasihole Q̂(iζ ). As for the electron operator,
we can reduce the zero mode V̂0 [Eq. (17)] to a similar form,

〈α|V̂0|β〉 = γ �V

∫ Ly

0

dy

Ly

eiyγ (�α−�β )〈α|V̂plane(1)|β〉

= γ �δ�α,�β
〈α|V̂plane(1)|β〉. (B3)

The relevant structure constants of the neutral CFT for various
quantum Hall states are documented in the next Appendix.

As noted in Sec. II D, on a cylinder with finite perimeter
Ly = 2π/γ the evolution factor e−γ 2L̂0 allows us to truncate
the conformal Hilbert space according to L̂0 eigenvalues.
In the actual calculations behind our previous paper [12], we
kept the descendant states with L̂0 < 14 for the Moore-Read
and the Gaffnian states, and L̂0 < 13 for the Z3 Read-Rezayi
state. This is necessary to reach convergence for cylinder
perimeter Ly up to 25 magnetic lengths. The resulting MPS
auxiliary space has size up to 3 × 104. The calculation of
physical observables is carried out over the direct product of
two copies of the auxiliary space, one for 〈〈�| and one for
|�〉〉. The size of this direct-product space can be close to 109.

APPENDIX C: OPERATOR PRODUCT EXPANSIONS

In the main text, we have listed the field content and the
fusion rules for the Moore-Read state, the Z3 Read-Rezayi
state, and the Gaffnian wave function. To actually construct
the MPS matrices, we also need the full operator product
expansion with structure constants as noted in the previous
Appendix. In the following, we use a shorthand notation

�m × �n =
∑

l

Cl
mn�l (C1)

TABLE I. The OPE structure constants for the Z3 Read-Rezayi
CFT. Listed in column a, row b is the fusion result a × b using the
shorthand notation in Eq. (C1). The constant C2 is given by [28]

C2 = 1
2

√
�( 1

5 )

�( 4
5 )

[
�( 3

5 )

�( 2
5 )

]
3

.

ψ1 σ1

ψ1
2√
3
ψ2

√
2
3 ε + 1

3

√
7
2 ϕ

ψ2 1 −
√

26
9 W 1√

3
σ2

W
√

26
9 ψ1

1
9
√

26
σ1

ε

√
2
3 σ2

√
2
3 ψ2 + √

C2 σ1

σ1

√
2
3 ε − 1

3

√
7
2 ϕ 1√

3
ψ1 + √

2C2 σ2

σ2
1√
3
σ1 1 − 1

9
√

26
W + √

C2 ε −
√

C2
21 ϕ

ϕ 1
3

√
7
2 σ2 − 1

3

√
7
2 ψ2 +

√
C2
21 σ1

for the operator product expansion

�m(z)�n(0) =
∑

l

Cl
mn zhl−hm−hn [�l(0) + O(z)], (C2)

where hi is the scaling dimension of the primary field �i . For
the Moore-Read state, we have

ψ × ψ = 1, σ × ψ = 1√
2

σ, σ × σ = 1 + 1√
2

ψ. (C3)

For the Gaffnian state, we have

ψ × ψ = 1, ψ × σ = 1√
2

ϕ, ψ × ϕ = 1√
2

σ,

(C4)
σ × σ = 1 + C1 ϕ, σ × ϕ = 1√

2
ψ + C1 σ,

with the constant C1 given by

C1 = eiπ/4

(√
5 − 1

2

)1/4 �
(

4
5

)
√

�
(

2
5

)
�( 6

5 )
. (C5)

Finally, for the Z3 Read-Rezayi state, the structure constants
are listed in Table I.
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