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Topological node-line semimetal in three-dimensional graphene networks
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Graphene, a two-dimensional (2D) carbon sheet, acquires many of its amazing properties from the Dirac point
nature of its electronic structures with negligible spin-orbit coupling. Extending to 3D space, graphene networks
with negative curvature, called Mackay-Terrones crystals (MTCs), have been proposed and experimentally
explored, yet their topological properties have yet to be discovered. Based on the first-principle calculations, we
report an all-carbon MTC with topologically nontrivial electronic states by exhibiting node lines in bulk. When
the node lines are projected onto surfaces to form circles, “drumhead”-like flat surface bands nestled inside
of the circles are formed. The bulk node line can evolve into a 3D Dirac point in the absence of inversion
symmetry, the existence of which has been shown to be plausible in recent experiments.
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I. INTRODUCTION

Carbon is one of the most fascinating elements in nature.
It can form many different crystal structures with diverse
electronic properties, such as C60 [1], nanotubes [2], graphene
[3], graphite, and diamond. Among them, graphene is one of
the most amazing materials. It supports the Dirac point in
its low-energy electronic structure, described as H = v�k · �σ ,
where v is the velocity, �k = (kx,ky) is the momentum, and
�σ is the Pauli matrix. This novel electronic state leads to
many interesting phenomena, such as the unconventional
quantum Hall effect, large magnetoresistance, and unusual
optical properties, all of which make graphene potentially
useful [4]. The presence of a two-dimensional (2D) Dirac
cone is fragile, and two conditions are required to protect
it: (i) the absence of spin-orbit coupling (SOC), and (ii) the
presence of inversion symmetry. The first condition is naturally
satisfied in graphene, because its SOC strength is negligible
(∼10−3 meV) [5]. Nevertheless, if sufficiently strong SOC is
introduced in graphene in a proper way, a gap at the Fermi
level will be opened, which would lead to a quantum spin
Hall insulator (i.e., a 2D topological insulator) [6]. The second
requirement is, however, very strong, and it is satisfied only in
the presence of A-B sublattice symmetry, which can be easily
broken, leading to a normal insulating state, similar to that in
a BN nanosheet.

As proposed by Mackay and Terrones [7], graphene can
be extended to 3D space to form 3D networks by placing
graphitic tiles consisting of four- to eight-membered rings
onto the Schwarz minimal surface. Hereafter, we call such
a 3D all carbon allotrope a Mackay-Terrones crystal (MTC).
The Schwarz minimal surface is a 3D periodic minimal surface
with its mean curvature H = (k1 + k2)/2 being zero and its
Gaussian curvature (K = k1k2) being negative everywhere on
it. Here k1 and k2 are the principal curvatures. There are
various Schwarz minimal surfaces, such as primitive (P ),
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diamond (D), and gyroid (G). One type of MTC based on a P

surface is shown in Fig. 1. Different from C60-like fullerene,
which has positive Gaussian curvature, a MTC has negative
Gaussian curvature and is periodically connected. Such a 3D
network of sp2-bonded carbon has unique properties, such
as a high surface-to-volume ratio and remarkable porosity,
which have stimulated extensive studies [8,9]. Theoretically,
MTC has been proved to be dynamically stable and requires
less formation energy than C60 [10,11]. Experimentally, a
saddlelike nanocarbon sheet, the main component of MTC, has
been successfully synthesized [12]. Similar negatively curved
sp2 networks have been observed in spongy carbon [13] and
a negative replica of zeolite [14]. Recently, high-quality 3D
nanoporous graphene fabricated by using nanoporous Ni as a
template showed a very similar MTC structure [15,16], making
its synthesis very promising. On the other hand, the topological
properties of the band structure for these all-carbon MTCs
remain unexplored and will be the main subject of this paper.
We will show that such all-carbon MTCs can host nontrivial
electronic states, including topological node lines and 3D
Dirac points, which are distinct from its 2D counter material
graphene. Similar node lines have also been proposed in
optimally tuned photonic crystal composed of gyroid [17], the
Schwarz minimal G surface. Other proposed carbon systems
include Bernal graphite [18,19] and a hyper-honeycomb lattice
[20]. A carbon gyroid [21] is found to be metal with a Dirac
cone in conduction bands farther away from the Fermi level.
A node line was also proposed in a model of Dirac or Weyl
superconductors [22].

II. RESULTS

We concentrate on the MTC formed with a Schwarz
minimal P surface. As shown in Fig. 1, a stable structure with a
simple-cubic lattice in the Pm3̄m space group, and 176 atoms
per unit cell, has been obtained by Tagami et al. in Ref. [23] and
labeled as 6-1-1-p. We have employed the software package
OPENMX [24] for the first-principles calculation. It is based
on a norm-conserving pseudopotential and pseudoatomic
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FIG. 1. (Color online) (a) The Schwarz minimal P surface in a
2 × 2 × 2 supercell. (b) The top view of a 6-1-1-p MTC in a 2 ×
2 supercell. (c) Bulk and (001)-surface Brillouin zone, as well as
the highly symmetrical k points. (d) Band structure from the first-
principles calculation. The two triply degenerate eigenstates at � and
R with T1g and T2u symmetrical representation are marked. The band
inversion between them can be easily seen.

localized basis functions, which is highly efficient for the MTC
with more than 100 atoms. The choice of pseudopotentials,
pseudoatomic orbital basis sets C6.0-s2p2d1, and the sampling
of a Brillouin zone with a 10 × 10 × 10 grid have been
carefully checked. After full structural relaxation, we get the
lattice constant a = 14.48 Å, and the diameters of the pipes
or pores are around 9.876 and 5.629 Å, respectively, which
are in good agreement with the results from Ref. [23]. The
electronic band structure of this crystal, calculated based on
the local density approximation (LDA), is shown in Fig. 1(d).
We find that this crystal is a semimetal with band crossings
around the Fermi level, similar to the massless Dirac cone in
graphene, but they are in fact very different—this is the key
issue of this paper.

A. Band structure

Detailed analysis of the band structure reveals the follow-
ing: (i) The occupied and unoccupied low-energy bands are
triply degenerate at �, and they have T1g and T2u symmetry,
respectively. The representations of the eigen-wave-functions
are obtained by calculating the eigenvalue of the symmetrical
operators in the little group. Those of T1g are even while those
of T2u are odd under spatial inversion symmetry. Moving
away from the � point their degeneracy is lifted, but upon
arriving at the R point their degeneracy is recovered again.
However, their energy ordering exchanges, leading to the so
called band inversion, which is one of the key ingredients for

the topological insulators [25,26]. Due to the band inversion,
the band crossings happen along both X-R and R-M paths, as
seen from Fig. 1(d). (ii) Including SOC in the first-principles
calculation, a gap will open up around the band crossings,
leading to a 3D strong topological insulator with a Z2 index of
(1;111) [27] by treating the lower half of the anticrossing bands
as occupied. However, similar to graphene, the computed SOC
splitting is small (around 0.13 meV or 1.5 K), and it can be
neglected in cases with temperature higher than 1.5 K.

The low-energy bands near the Fermi level are formed by
the overlapping of the molecular orbitals with T1g and T2u

symmetry. If a single unit cell of this MTC is taken out,
it becomes an isolated carbon cluster having approximately
spherical symmetry. The MTC can be viewed as a cubic
lattice of such a carbon cluster. The above molecular orbitals
can be viewed as “atomic orbitals” with g- and f -wave
symmetry under the cubic crystal field. For example, the
T1g sector consists of gxy(x2−y2), gyz(y2−z2), and gzx(z2−x2)

orbitals, which are a subgroup of g orbitals split under a
cubic crystal field. The T2u sector contains fx(y2−z2), fy(z2−x2),
and fz(x2−y2) orbitals from f orbitals. These can be easily
found in a character table of point group symmetry in any
textbook on group theory. Thus, these six hypothetical atomic
orbitals are used as a basis set to reproduce the low-energy
physics of this system. A Slater-Koster tight-binding (TB)
Hamiltonian has been established, and the on-site energy
levels, as well as hopping parameters, can be obtained by fitting
the band structure from the first-principles calculations (see
the Appendix A 1 for details). The triply degenerate T1g and
T2u bands at � have eigenenergies of Eg + 4Vggp + 2Vggd and
Ef − 4Vff d , respectively. Those at R are Eg − 4Vggp − 2Vggd

and Ef + 4Vff d due to the nearest-neighbor hopping. Here,
Eg and Ef are on-site energies for g and f orbitals. Vggp

and Vggd are the hopping parameters among g orbitals. Vffp

and Vff d are those for f orbitals. From these analyses, we
learned that the band inversion or the switching of g (T1g)
and f (T2u) orbitals between � and R points is due to the
strong energy dispersion (or the large hopping parameters). As
shown in Fig. 2, this TB model can well reproduce the lower
energy bands, which are crucial to the band topology, with the
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FIG. 2. (Color online) (a) Band structure from effective tight-
binding model calculation, which reproduces all the features of
Fig. 1(d). (b) The Fermi surface consists of three lotus-root-like
rings. These rings are center the R point and are parallel to the
kx = π

a
, ky = π

a
, and kz = π

a
plane, respectively. They are formed by

the electron pockets (blue) and hole pockets (red) connected by nodal
points at the Fermi energy.
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fitted Slater-Koster parameters (in eV) Eg = −0.12, Ef =
0.19, Vffp = 0.019, Vff d = −0.075, Vfgp = 0.05, Vfgd =
0.0, Vggp = −0.035, and Vggd = −0.055. The mean-square
error is minimized to 0.0016 eV2 with sampling k points along
the highly symmetrical path shown in Fig. 1(d). Artificially
reducing the hopping parameters (such as by expanding the
lattice parameter) by 50% will eliminate the band inversion,
with T1g states lower than the T2u states at the R point. This
calculation also suggests that the strength of band inversion in
the system is strong.

B. Topological node lines and 3D Dirac points

Interestingly, the band crossings in MTC lead to node lines
rather than node points. In other words, the band crossings exist
along certain closed loops in 3D momentum space, and they
generate three circular-like node lines around the R point, as
shown in Fig. 2. These node lines are protected by two factors:
one is the coexistence of time reversal (T ) and spacial inversion
(P ) symmetry, and the other is that the SOC is negligible.

With the coexistence of P and T symmetries, there exists
a certain gauge choice under which the spinless Hamiltonian
is completely real-valued (see the Appendix B for details).
Now we will show that for this system, if there is an energy
level crossing of two bands at a momentum k0, a stable node
line will unavoidably appear. Around the crossing point, the
two-level 2 × 2 Hamiltonian can be written in the following
general form:

H = d0(�k) + dx(�k) · σx + dy(�k) · σy + dz(�k) · σz, (1)

where the Pauli matrices σi (i = x,y,z) denote the two-band
space. Without loss of generality, di(�k) (i = 0,x,y,z) are all
real functions of �k. The eigenenergy of H is

E(�k) = ±
√

d2
x (�k) + d2

y (�k) + d2
z (�k) + d0(�k), (2)

and the energy degeneracy can be obtained when the three
conditions di(�k) = 0 (i = x,y,z) are satisfied with three
parameters �k(kx,ky,kz) in 3D momentum space. As mentioned
above, the Hamiltonian can be chosen to be real-valued,
leading to dy = 0. The remaining d0(�k), dx(�k), and dz(�k)
can be expanded around k0, and the location of the crossing
points can be determined by dx(�k0) ≈ δx + �vx(�k − k0) = 0
and dz(�k0) ≈ δz + �vz(�k − k0) = 0, where �vi = �∇�kdi(�k) and
δi denote the small perturbative terms with both T and P

symmetries. In the generic case, the above two equations give
a line in the vicinity of k0 with its direction determined by
�vx × �vz. Therefore, the generic solution of the band crossing
point in 3D k space is a closed loop. Any external perturbations
that maintain T , P , and translational symmetry can only shift
or distort but not eliminate the nodal loops.

The topologically stable node line in MTC is only protected
by P and T , and no other symmetry is required. The additional
mirror symmetry in the present system only forces the node
lines to stay in the kz (or kx,ky) = π

a
plane. The cubic

symmetry leads to three in-plane node lines, as was found from
our calculations in Fig. 2. The node lines are not necessarily
flat in energy, and they can have energy dispersion in the
k space determined by the d0(k) term (which breaks the
particle-hole symmetry). In contrast with other proposals for

the topological node lines [28], the appearance of node lines
in MTC is very stable and does not require fine tuning any
parameters. This mechanism to generate topological node
lines in three-dimensional materials only requires T and P

symmetry and weak enough SOC, which can be easily applied
to a large class of materials consisting of mainly the light
elements.

It is now clear that this 3D MTC is different with graphene
in the sense that it is a semimetal with node lines in the
3D momentum space with the presence of both T and P

symmetries. The situation becomes even more interesting
if P symmetry is broken further. In such a case, from the
above discussions, we will generally expect three conditions
di(k) = 0 with three parameters for the band crossing points,
leading to isolated points in the 3D k space. This is merely
the 3D Dirac metals discussed recently [29–34]. On the other
hand, compared with other proposals for Dirac semimetals,
the 3D Dirac point here is topologically stable and does not
require protection from any crystalline symmetry. Similar to
the situation in graphene, finite SOC will open a gap at the
Dirac point, and it makes the system a topological insulator. In
fact, although our calculated structure has inversion symmetry,
most of the known real samples of MTC [15,16] have strong
defects and orientation disorder, which should break inversion
symmetry. The plausible existence of these stable 3D Dirac
points has been indicated by the density of states [15] and heat
capacity measurements [35]. If T symmetry is further broken
in the system, we will expect Weyl semimetal states; this has
been studied extensively but not realized yet experimentally
[36–39].

C. Fermi surface and surface flat band

The two crossing bands within the kz = π
a

plane obtained
by the TB Hamiltonian are plotted in Fig. 3. In general,
the crossing of bands does not happen at the same energy.
They have energy dispersion around 25 meV. The alternative
electron and hole pockets are formed when the band crossing
is lower or higher than the Fermi level, and this results in a
lotus-root-like Fermi surface instead of a dispersionless line.

This topologically stable node-line semimetal state can
have nontrivial surface states [28,40–43]. For the (001) surface,
the three node-line rings are projected to be a ring and

FIG. 3. (Color online) (a) Band crossings of the two bands near
the Fermi level form node line (in green) in the kz = π

a
plane. (b) The

crossing happens at different eigenenergies as indicated by different
colors, where greener denotes lower in energy.
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FIG. 4. (Color online) The (001)-surface state. (a) The nearly flat surface band is nestled between two solid Dirac cones, which are the
projection of one of the node-line circles as indicated in the inset (red circle). The other two node-line rings are projected as two orthogonal
diameters (green line). (b) The surface density of state. (c) The wave function of the surface state indicated by the arrow decays rapidly into
bulk. (d) The eigenenergy distribution of a surface flat band nestled inside of a projected node-line circle, which looks like a vibration model
of a “drumhead.” The mixing of surface and bulk states leads to discontinuity in this plot.

two orthogonal diameter segments inside of it, as shown in
Fig. 4(a). The (001)-surface state is calculated based on the
six-band TB model using both the Green’s function method
and the slab-model method [44]. There is a nearly flat surface
band nestled inside of the projected node-line ring with
its bandwidth being about 40 meV due to the particle-hole
asymmetry. The peaklike surface density of states contributed
by this nearly flat band is clearly shown in Fig. 4(b), which is
proposed to be an important route to high-temperature surface
superconductivity [45,46]. The layer-resolved weight of the
wave function for the surface flat band is shown in Fig. 4(c).
It penetrates just three layers into the bulk with most of the
weight on the surface layer. The surface localization of these
flat bands is well resolved for those separated from bulk
bands. The nestled flat surface states have small dispersion,
and their eigenenergy distribution in the surface BZ is shown
in Fig. 4(d), which looks like some vibrational mode of a
“drumhead.” Such “drumhead”-like states are readily detected

by angle-resolved photoelectron spectroscopy or scanning
tunneling microscopy.

The topological node-line state, as well as its surface
flat band, can be understood by studying an effective 2 × 2
toy model Hamiltonian. Taking dx = kz, dy = 0, and dz =
M − B(k2

x + k2
y + k2

z ), the Hamiltonian gives a node line
determined by k2

x + k2
y = M

B
in the kz = 0 plane. Obviously

M
B

> 0 is required. The topology of this effective continuum
bulk Hamiltonian has been analyzed [47] (see the Appendix C
for details) and found to have topologically protected (001)
surface states with dispersionless zero eigenenergy inside of
the projected node-line circle given by k̄2

x + k̄2
y = M

B
. Here

(k̄x , k̄y) denotes the k point in the (001) surface Brillouin zone.
As mentioned above, d0(�k) determines the energy dispersion
of the node line, as well as the surface flat band, though the
detailed dispersion of surface states is also influenced by the
surface potential in practice [44].
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III. DISCUSSION

We find that 6-1-1-p is not the only MTC having such a
novel node-line semimetal state. The MTC with the structure
labeled as 6-1-2-p [23] also has such a nontrivial topological
state (as shown in the Appendix A 2). The differences are
as follows: (i) The band inversion happens at the M point,
and the Z2 index is (1;000) when even weaker SOC splitting
(about 0.03 meV compared with 0.136 meV in 6-1-1-p) is
considered. (ii) The low-energy physics around the Fermi level
can be described by six atomiclike molecular orbitals also, but
they are T1u (px , py , and pz) and T2g (dxy , dyz, and dxz). A
similar tight-binding model on a simple-cubic lattice can also
reproduce all of its electronic structure. (iii) There are also
three mutually perpendicular node-line circles centering the
M point instead of the R point. A similar surface state with
a nearly flat band can also be obtained. Therefore, it is most
plausible that there are more 3D MTCs that can host such a
node-line semimetal state.

IV. CONCLUSION

In summary, based on the first-principles calculations, we
have predicted that a family of all-carbon 3D allotropes,
namely Mackay-Terrones crystals, can have a nontrivial
topological node-line semimetal state, which is protected by
both time-reversal symmetry and inversion symmetry after
band inversion. When such a bulk node line is projected onto
a surface to form a circle, there are flat bands nestled inside
of it. Such a “drumhead”-like state is an ideal area for many
interaction-induced nontrivial states, such as superconductiv-
ity and fractional topological insulator states. Furthermore,
if inversion symmetry is broken, the node lines will evolve
into stable 3D Dirac points. Two examples of such MTC with
stable structure have been discussed. These predications will
most probably be directly observable in further experiments.

Note added. During our review of this work, we noticed a
similar work by Y. Chen et al. [48], in which the node line,
the nestled nearly flat surface bands, and the stable 3D Dirac
nodes due to inversion symmetry breaking proposed in this
manuscript are also obtained for another carbon system. Other
subsequently proposed candidate materials include Ca3P2

[49], LaN [50], Cu3PdN [51,52], and PbTaSe2 [53].
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FIG. 5. (Color online) The angular distribution of gxy(x2−y2), fxy2 ,
and −fxz2 orbitals.

APPENDIX A: TIGHT-BINDING MODEL

1. 6-1-1-p case

The hypothetic atomic orbital basis set is arranged in the
order of gxy(x2−y2), gyz(y2−z2), gzx(z2−x2), fx(y2−z2), fy(z2−x2),
and fz(x2−y2). Those from g (f ) orbitals are triply degenerate
and the on-site energy is set as Eg (Ef ). Due to the cubic
symmetry, only the gxy(x2−y2) orbital is plotted in the xy plane
in Fig. 5. The fx(y2−z2) is plotted as two parts fxy2 and −fxz2 ,
perpendicular to each other. Arranging these orbitals on a
simple-cubic lattice with lattice constant a, the Slater-Koster
parameters for nearest-neighbor hopping are defined in the
following. The nearest hopping between gxy(x2−y2) in the x

and y directions is Vggp, while that in the z direction is Vggd .
The hopping between fxy2 (−fxz2 ) along x and y (x and z) is
Vffp, and that along the z (y) direction is Vff d . The hopping
between nearest neighboring gxy(x2−y2) and fxy2 (−fxz2 ) along
the y direction is Vfgp (Vfgd ), while that along the x and z

directions is zero. We list some of the nonzero elements of
the final tight-binding Hamiltonian, and others can be easily
derived by using the cubic cyclic symmetry,

Hg
xy(x2−y2),gxy(x2−y2)

= Eg + 2 cos(�k · �ax)Vggp

+ 2 cos(�k · �ay)Vggp + 2 cos(�k · �az)Vggd,

Hgxy(x2−y2),fx(y2−z2)
= i×2 sin(�k · �ay)Vfgp + i×2 sin(�k · �ay)Vfgd,

Hgxy(x2−y2),fy(z2−x2)
= i×2 sin(�k · �ax)Vfgp + i×2 sin(�k · �ax)Vfgd,

Hf
x(y2−z2),fx(y2−z2)

= Ef + 2 cos(�k · �ax)Vffp + 2 cos(�k · �ax)Vffp

− 2 cos(�k · �ay)Vffp − 2 cos(�k · �ay)Vff d

− 2 cos(�k · �az)Vffp − 2 cos(�k · �az)Vff d .

Here �ax , �ay , and �az are the nearest-neighbor sites along the
positive x, y, and z directions, respectively. We have fitted
all the Slater-Koster parameters, and we found that Eg =
−0.12, Ef = 0.19, Vffp = 0.019, Vff d = −0.075, Vfgp =
0.05, Vfgd = 0.0, Vggp = −0.035, and Vggd = −0.055 (all in
eV) can well reproduce the band structure from first-principles
calculation, as shown in Fig. 2.

However, the following set of parameters will modify
the band structure by shifting the band crossing from R-M
to �-M . The band structure with Eg = −0.10, Ef = 0.16,
Vffp = −0.010, Vff d = −0.080, Vfgp = 0.05, Vfgd = 0.0,
Vggp = −0.055, and Vggd = −0.035 is shown in Fig. 6.
Compared with that in the realistic case, there is additional
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FIG. 6. (Color online) The tight-binding band structure with
Eg = −0.10, Ef = 0.16, Vffp = −0.010, Vff d = −0.080, Vfgp =
0.05, Vfgd = 0.0, Vggp = −0.055, and Vggd = −0.035. The band
crossing point is shifted from R-M to M-� compared with Fig. 3.

band inversion at M . This changes the Z2 index to be (0;111)
if the tiny SOC is considered.

2. 6-1-2-p case

For the 6-1-2-p case, the band structure from first-principles
calculation is shown in Fig. 7. Obviously, there is band
inversion around the M point. Careful analysis has shown that
the occupied and unoccupied triply degenerated bands at �

(also at the R point) are T1u and T2g , respectively. Therefore,
we can take hypothetical px , py , and pz orbitals as the basis

for T1u representation in cubic symmetry and dxy , dyz, and
dzx as the basis for T2g . All the p orbitals have on-site energy
Ep and d orbitals have Ed . The Slater-Koster parameters such
as Vppσ , Vppπ , Vddπ , Vddδ , and Vpdπ are defined the same
[54]. Putting these orbitals on a simple-cubic lattice, we can
have the tight-binding Hamiltonian, and some of the nonzero
elements are listed as follows:

Hx,x = Ep + 2 cos(�k · �ax)Vppσ

+ 2 cos(�k · �ay)Vppπ + 2 cos(�k · �az)Vppπ ,

Hx,xy = i × 2 sin(�k · �ay)Vpdπ ,

Hx,zx = i × 2 sin(�k · �az)Vpdπ ,

Hxy,xy = Ed + 2 cos(�k · �ax)Vddπ

+ 2 cos(�k · �ay)Vddπ + 2 cos(�k · �az)Vddδ.

The other elements can be obtained using cubic cyclic
symmetry. The fitted parameters, which can well reproduce
the band structure from first-principles calculation,
are Ep = −0.101 47, Ed = 0.282 81, Vppσ = 0.020 05,
Vppπ = −0.017 848, Vpdπ = 0.034 711, Vddπ = 0.046 94,
and Vddδ = −0.062 523. The mean-square error, around
0.0061 eV2, is estimated for the three conduction bands.
Estimation for the valence bands makes the selection of
proper bands difficult since there are more than three bands
entangled, while the topology of bands from the fitted model
is the same as that from first-principles calculation.

APPENDIX B: REAL-VALUED HAMILTONIAN FOR A
SPINLESS SYSTEM WITH BOTH TIME-REVERSAL AND

INVERSION SYMMETRY

We will show that for a spineless system with both
time-reversal (T ) and inversion (P ) symmetry, its Bloch

FIG. 7. (Color online) The band structure of the 6-1-2-p case calculated from (a) first-principles and (b) the tight-binding model, respectively.
The symmetrical representation, degeneracy, and parity of relevant bands are labeled.
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Hamiltonian H (k) can always be taken as real-valued under a
certain gauge choice. In general, plane waves ei(k+Gn)·r are
taken as a basis set to describe H (k), where Gn are the
reciprocal-lattice vectors. With the above chosen basis set, the
invariance under the time-reversal operator T can be expressed
as

T̂ H (k)T̂ −1 = ÔH ∗(k)Ô−1 = H (−k)

and that of the inversion symmetry reads

ÔH (k)Ô−1 = H (−k),

where the unitary matrix Ô can be defined as Ônm = 1 for
n = −m and zero for all the other matrix elements. From the
above two equations, it is obvious that H (k) is real.

APPENDIX C: TOPOLOGY OF THE BULK
NODE-LINE HAMILTONIAN

As shown in the main text, the effective Hamiltonian for
the bulk node-line state can be written as

H (kx,ky,kz) = d(kx,ky,kz) · σ,

where d = (dx,dy,dz) and σ = (σx,σy,σz). Taking dx = kz,
dy = 0, and dz = M − B(k2

x + k2
y + k2

z ) can reproduce the
bulk node-line state when M

B
> 0. According to Mong et al.

[47], to check its boundary state on the surface perpendicular
to kz, this bulk Hamiltonian should be reformulated as

H (k‖,kz) = c0 + c1kz + c2k
2
z

= (0,0,M − Bk2
‖) + (1,0,0)kz + (0,0,−B)k2

z .

Here k‖ denotes in-plane coordinates (kx,ky), and c0, c1,
and c2 are vectors in space spanned by σ . The above bulk
Hamiltonian is parabolic in the plane spanned by c1 and c2.
Its origin is within the concave side of the parabola when
k‖(kx,ky) takes the value satisfying k2

x + k2
y < M

B
. Thus, there

are topologically protected surface states nestled inside of
the projected node line with zero eigenenergy to form a
“drumhead”-like state.
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