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Qubit detection with a T-shaped double quantum dot detector
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We propose to continuously monitor a charge qubit by utilizing a T-shaped double quantum dot detector, in
which the qubit and double dot are arranged in such a unique way that the detector turns out to be particularly
susceptible to the charge states of the qubit. Special attention is paid to the regime where acquisition of qubit
information and backaction upon the measured system exhibit nontrivial correlation. The intrinsic dynamics of
the qubit gives rise to dynamical blockade of tunneling events through the detector, resulting in a super-Poissonian
noise. However, such a pronounced enhancement of the detector’s shot noise does not necessarily produce a rising
dephasing rate. In contrast, an inhibition of dephasing is entailed by the reduction of information acquisition
in the dynamically blockaded regimes. We further reveal the important impact of the charge fluctuations on
the measurement characteristics. Noticeably, under the condition of symmetric junction capacitances the noise
pedestal of the circuit current is completely suppressed, leading to a divergent signal-to-noise ratio, and eventually
to a violation of the Korotkov-Averin bound in quantum measurement. Our study offers the possibility for a double
dot detector to reach the quantum limited effectiveness in a transparent manner.
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I. INTRODUCTION

Understanding the fundamental physics in the quantum
measurement process is of vital importance for physically
implementing fast and efficient measurement of a two-state
quantum system (qubit) [1], as well as essential applications
in quantum information processing [2,3]. So far, a variety
of mesoscopic devices have been proposed for fast readout
of qubit information. For instance, a quantum point contact
(QPC) has been widely investigated, with special attention paid
to the nontrivial correlation between the QPC and qubit [4–14].
Alternatively, a single electron transistor (SET) was shown to
have advantages over QPC in many respects, such as high
sensitivity, wide circuit bandwidth, and low noise [15–21]. In
particular, single-shot measurement has recently been realized
based on SET detectors, in which the information of the qubit
is uniquely determined in simply one run [22–24].

Historically, quantum mechanical detection was described
by the projective theory, in which the measurement takes place
instantaneously. In contrast, the essence of the modern theory
of quantum measurement emphasizes that detector extracts
information and renders the measured system in a continuous
manner. The process of information acquisition from the
detector and how it would alter the remaining uncertainty in
the system lies at the heart of the measurement dynamics.
An important figure of merit in continuous measurement is
the detector “ideality” or effectiveness, characterizing how
close to the quantum limit the detector could operate. In
an ideal detection, qubit dephasing generated by detector
backaction is purely associated with the information flow,
rather than a noisy environment. For a less effective detector,
qubit dephasing takes place more rapidly than the information
flow. This imposes an important limit on the signal-to-noise
ratio of the measurement, known as the Korotkov-Averin
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bound: The maximum signal-to-noise ratio the detector can
reach is limited at 4 [25,26]. It has been confirmed in
Refs. [27,28] and measured in experiment [29]. Extensions
of the Korotkov-Averin bound have also been discussed
in continuous measurement of coupled qubits [30,31] and
precession of an individual spin [32,33].

For an SET detector, it usually means a single quantum dot
(SQD) sandwiched between the source and drain electrodes,
in which electron transport exhibits quantum coherence within
the size of the reduced system. Yet, the discrete nature of
the charge exhibits its inherent randomness in the process of
transport. The involved shot noise and telegraph noise were
recently proved to be the two sides of the same coin [34–37],
and may have essential roles to play in the quantum measure-
ment. It has been shown that the SQD detector may achieve
quantum limited measurement under appropriate conditions,
where qubit dephasing is due purely to the information flow,
rather than the detector’s shot noise [21,38]. Yet, in order to
distinguish clearly the two currents corresponding to the two
logical states of the qubit, it poses a very challenging condition
in measurement, i.e., very low temperature.

To loosen the tough temperature restrictions, a double
quantum dot (DQD) SET has recently been proposed to
continuously monitor a qubit [38]. The electrostatic interaction
between the qubit and DQD leads to an energy level mismatch
between the two dots, which causes a prominent current visi-
bility of the measurement even at a relatively high temperature.
Unfortunately, its effectiveness turns out to be less than that
of an ideal detector [39]. The reason is that the generated
dephasing of the qubit stems partially from the detector’s shot
noise, such that the information of the qubit encoded in the
DQD detector’s degree of freedom cannot be fully deduced
from the measured output. It is thus appealing to find a detector
capable of combining advantages of SQD and DQD detectors
together, such that it could operate at a weakened temperature
condition while reaching the maximum effectiveness at the
same time.
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FIG. 1. (Color online) Schematics of a solid-state charge qubit
under the continuous measurement of a TDQD detector. Possible
electron configurations of the reduced system (qubit plus TDQD) are
as follows: (a) the TDQD is empty, (c) QD1 is occupied, and (e) QD2
is occupied while the electron of the qubit resides in the logic state
|α〉. Correspondingly, (b), (d), and (f) denote the same states but with
the electron of the qubit in the state |β〉.

In this work, we investigate this important issue in the
context of a T-shaped DQD (TDQD) detector [40–44], where
only quantum dot 1 (QD1) is directly tunnel-coupled to the
left and right electrodes, whereas quantum dot 2 (QD2) is only
side-coupled to QD1 (see Fig. 1). We pay special attention
to the essential correlation between the qubit and the TDQD
detector. In particular, the inherent dynamics of the qubit may
give rise to bunching of tunneling events though the TDQD de-
tector, which is manifested as a pronounced super-Poissonian
noise in the TDQD detector. However, such a large noise
does not necessarily imply an enhancement of the dephasing
rate. In contrast, the involved dynamical blockade corresponds
to a no-measurement regime, where the qubit dephasing is
actually suppressed. An important advantage of the SET
detector is that the left and right electrodes could monitor
the qubit simultaneously, such that any noise not shared by
two electrodes can be filtered out, making it analogous to
the measurement setup of twin quantum point contacts [45].
However, the crucial difference is that the currents through the
left and right junctions of the TDQD detector are intrinsically
correlated to each other via the charge fluctuations in the
TDQD. We demonstrate that although the signal-to-noise ratio
associated with the junction noise alone could not approach
the quantum limit, the spectrum of charge fluctuations in the
TDQD results in a complete suppression of the the noise
pedestal, leading eventually to a divergent signal-to-noise ratio
and thus a violation of the Korotkov-Averin bound.

The paper is organized as follows. We start in Sec. II
with a description the measurement setup and corresponding
Hamiltonian for this scenario. The particle-number-resolved
quantum master equation (QME) to the reduced dynamics
and measurement characteristics is outlined in Sec. III. The
influence of qubit dynamics on the TDQD detector shot noise
is analyzed in Sec. IV, which is then followed by the discussion
of qubit dephasing behavior associated with the detector’s
output in Sec. V. Section VI is focused on the measurement
effectiveness of the TDQD detector in terms of the signal-to-
noise ratio, with special attention paid to the violation of the
Korotkov-Averin bound. Finally, we conclude in Sec. VII.

II. MODEL DESCRIPTION

The system under study is shown schematically in Fig. 1.
The charge qubit is represented by an extra electron in a
double quantum dot. Whenever the electron occupies the lower
(upper) dot, the qubit is said to be in the logic state |α〉 (|β〉).

The detector is a TDQD SET, in which QD1 is directly
tunnel-coupled to the left (L) and right (R) electrodes, whereas
QD2 is only side-coupled to QD1. The detector can be
considered as an extension of an SQD SET [46], where the
readout can be used to sense the occupation of a nearby
quantum dot electrostatically coupled to the SET. Recently,
investigation of electron transport properties through a TDQD
system has been achieved experimentally [47], where the two
quantum dots interact electrostatically and tunnel-couple to
each other. Under appropriate system parameters, the TDQD
can be tuned to the regime where each dot has only one single
level in transport. Furthermore, the interdot tunnel coupling
can also be adjusted which enables a crossover from weak
to strong interdot tunneling regimes reflected in crossings
of observed Coulomb blockade peaks. The experimental
achievements thus greatly increase the possibility for future
realization of a TDQD detector in quantum measurement.

Here, the proposed TDQD detector is closely related to the
one realized in a recent experiment [47]. We assume that each
quantum dot has only one level involved in transport within the
bias window defined by the Fermi levels of the left and right
electrodes. Furthermore, both interdot and intradot charging
energies are much larger than the Fermi levels such that at
most one electron can reside on the TDQD. The Hilbert space
of the TDQD dot is thus reduced to |0〉, empty; |1〉 (|2〉), one
electron in QD1 (QD2). The qubit is placed in the vicinity of
QD1, as shown in Fig. 1. Under such a unique arrangement the
measured current is expected to be particularly susceptible to
electron configurations of the qubit. It is just this mechanism
that can be utilized to sensitively acquire the qubit-state
information from the output of the TDQD detector.

The entire system Hamiltonian reads

H = HS + HB + H ′. (1)

The first part denotes the Hamiltonian of the reduced system
(qubit plus TDQD):

HS = 1
2εqσz + �σx + 1

2εTQz + WQx + U |α〉〈α| ⊗ |1〉〈1|,
(2)

where we have introduced pseudospin operators σz ≡
|α〉〈α| − |β〉〈β|, σx ≡ |α〉〈β| + |β〉〈α| for the qubit, and
likewise for the TDQD Qz ≡ |1〉〈1| − |2〉〈2|, Qx ≡ |1〉〈2| +
|2〉〈1|. The level detuning and interdot coupling in the qubit
(TDQD) are εq (εT) and �q (W ), respectively. The qubit is
placed in close proximity to the QD1, such that the energy
level of QD1 is very sensitive to the qubit occupations, as
represented by the last term in Eq. (2). There are totally six
possible electron configurations of the reduced system (qubit
plus TDQD), as shown in Figs. 1(a)–1(f). Let {|a〉,. . . ,|f〉}
be the states of the reduced system corresponding to charge
configurations in Figs. 1(a)–1(f). The eigenenergies and
corresponding eigenstates of the reduced system are listed
in Table I for εq = εT = 0, and �, W � U .
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TABLE I. The eigenenergies Ei and corresponding eigenstates
|Ei〉 of the reduced system (qubit plus TDQD) for εq = εT = 0, and
�, W � U .

Ntot Eigenenergy Eigenstate

1 E1 = −� |E1〉 = 1√
2
(|a〉 − |b〉)

2 E2 = +� |E2〉 = 1√
2
(|a〉 + |b〉)

3 E3 	 0 |E3〉 = 1√
2
(|d〉 − |e〉)

4 E4 	 U |E4〉 	 |c〉
5 E5 	 + 1√

2
(� + W ) |E5〉 	 1

2 (|d〉 + |e〉 + √
2|f〉)

6 E6 	 − 1√
2
(� + W ) |E6〉 	 1

2 (|d〉 + |e〉 − √
2|f〉)

The electrodes are modeled as reservoirs of noninteracting
electrons:

HB =
∑

�=L,R

∑
k

ε�kc
†
�kc�k, (3)

where c
†
�k (c�k) stands for the creation (annihilation) operator

for an electron with momentum k in the left (�= L) or
right (� = R) electrode. The left/right electron reservoir is
characterized by the Fermi distribution fL/R(ω). The voltage is
symmetrically applied, which leads to symmetric Fermi levels
in the left and right electrodes; i.e., μL/R = ±eV/2.

Electron tunneling between the QD1 and electrodes is
described by

H ′ =
∑
�,k

(t�kc
†
�k|0〉〈1| + H.c.) ≡

∑
�

(f�|0〉〈1| + H.c.), (4)

where f� ≡ ∑
k t�kc

†
�k . The tunnel-coupling strength between

electrode � = {L,R} and QD1 is given by the intrinsic
tunneling width 
�(ω) = 2π

∑
k |t�k|2δ(ω − ε�k). Hereafter,

we consider wide band in the electrodes, which results in
energy independent couplings 
L/R. The total tunneling width
is thus given by 
 = 
L + 
R. The effects of stochastic
electron reservoirs on the measurement are characterized by
the bath correlation functions

C
(+)
� (t − τ ) = 〈f †

� (t)f�(τ )〉B, (5a)

C
(−)
� (t − τ ) = 〈f�(t)f †

� (τ )〉B, (5b)

where 〈· · · 〉B ≡ trB[(· · · )ρB] stands for the trace over degrees
of freedom of the electron reservoirs, with ρB the local thermal
equilibrium state of the electrodes. Throughout this work, we
set � = e = 1 for the Planck constant and electron charge,
unless stated otherwise.

III. PARTICLE-NUMBER-RESOLVED QUANTUM
MASTER EQUATION APPROACH

The stochastic process of electron tunneling through the
TDQD detector may be characterized by the joint probability
distribution P (NL,NR,t) of finding NL electrons transmitted
thought the left junction and NR electrons tunneled thought
the right one in the given time t . Alternatively, it can be
described by the current cumulants, known as full count-
ing statistics [48,49], which provide a unique signature of

measurement characteristics. For that purpose, we employ a
particle-number-resolved reduced density matrix ρ(NL,NR) for
specific number of NL (NR) electrons passed through the left
(right) junction. The corresponding QME can be derived via
unraveling the Hilbert space of the electrode reservoirs into
those with NL (NR) electrons transmitted across the left (right)
junction [50]. The resultant particle-number-resolved QME
reads [51–57]

ρ̇(NL,NR) = −iLρ(NL,NR) − {R0 + RL + RR}ρ(NL,NR), (6)

where L(· · · ) ≡ [HS,(· · · )] is the Liouvillian associated with
the reduced system (qubit plus TDQD) Hamiltonian,

R0ρ
(NL,NR) = 1

2 {|1〉〈0|A(−)ρ(NL,NR) + ρ(NL,NR)A(+)|1〉〈0|}
+ H.c. (7a)

describes the continuous evolution of the reduced system,
whereas

RLρ(NL,NR)

= − 1
2 {A(−)

L ρ(NL−1,NR)|1〉〈0| + |1〉〈0|ρ(NL+1,NR)A
(+)
L } + H.c.

(7b)

and

RRρ(NL,NR)

= − 1
2 {A(−)

R ρ(NL,NR−1)|1〉〈0| + |1〉〈0|ρ(NL,NR+1)A
(+)
R } + H.c.

(7c)

represent jumps of electrons via the left and right elec-
trodes, respectively. Here A(±) = ∑

� A
(±)
� , with A

(±)
� ≡

C
(±)
� (±L)(|0〉〈1|). The involved reservoir spectral functions

are defined as the Fourier transform of the reservoir correlation
functions

C
(±)
� (±L) =

∫ ∞

−∞
dtC

(±)
� (t)e±iLt . (8)

The particle-number-resolved quantum master equation (6)
provides us direct access to the joint probability distribution
for the number of particles transmitted through the left
and right junctions; i.e., P (NL,NR,t) = tr{ρ(NL,NR)(t)}, where
tr{· · · } represents the trace over the degrees of freedom of
the reduced system (qubit plus TDQD). The first cumulant
of the probability distribution corresponds to the current
through the left (� = L) or right (� = R) junction, given
by I� = d

dt

∑
NL,NR

N�P (NL,NR) = tr{ d
dt

N̂�}, where N̂� ≡∑
NL,NR

N�ρ
(NL,NR) can be evaluated via its equation of motion

d

dt
N̂� = −iLN̂� − RN̂� + T (−)

� ρ, (9a)

with

R(· · · ) = 1
2 [|1〉〈0|,A(−)(· · · ) − (· · · )A(+)] + H.c., (9b)

T (±)
� (· · · ) = 1

2 [A(−)
� (· · · )|1〉〈0| ± |1〉〈0|(· · · )A(+)

� ] + H.c.

(9c)

Straightforwardly, the measured current through junction �

is given by

I�(t) = tr{T (−)
� ρ(t)}, (10)
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where ρ(t) is the unconditional density matrix that satisfies

ρ̇ = −iLρ − Rρ. (11)

The second cumulant of the probability distribution is
directly related to the shot noise. Here, we focus on the noise
spectrum of circuit current. According to the Ramo-Shockley
theorem [48], the circuit current is given by I (t) = ηLIL +
ηRIR. Here ηL and ηR are coefficients related to the junction
capacitances that satisfy ηL + ηR = 1 [48]. The transport
currents through the left and right junctions are actually
fluctuating in time, which give rise to charge accumulation
Q on the TDQD. Due to charge conservation, it simply yields

Q̇ = IL − IR. (12)

One readily obtains the correlation function of circuit current

I (t)I (0) = ηLIL(t)IL(0) + ηRIR(t)IR(0) − ηLηRQ̇(t)Q̇(0).

(13)

As a result, the noise spectrum of circuit current consists of
the following three parts [58,59]:

S(ω) = ηLSL(ω) + ηRSR(ω) − ηLηRSch(ω), (14)

where SL (SR) is the noise spectrum of the left (right) junction
current, whereas Sch(ω) stands for charge fluctuations in the
TDQD.

The noise spectrum of tunneling current S�(ω) (�= L or R)
may be evaluated via MacDonald’s formula [60,61]

S�(ω) = ω

∫ ∞

0
dt sin(ωt)

d

dt

[〈
N̂2

� (t)
〉 − (Ī t)2

]
. (15)

Hereafter, it is assumed that the reduced system evolves
from t0 = −∞, such that reduced state at t = 0, when
measurement begins, has reached the stationary state ρst. The
involving current thus is a stationary one; i.e., Ī = I (t → ∞).
By employing the particle-number-resolved quantum master
equation (6), the quantity 〈N̂2

� (t)〉 ≡ tr{∑NL,NR
N2

� ρ(NL,NR)} is
simply given by

d

dt

〈
N̂2

� (t)
〉 = tr

{
2T (−)

� N̂�(t) + T (+)
� ρst

}
, (16)

where N̂�(t) is obtained from Eq. (9).
For the charge fluctuations in the TDQD, the symmetrized

spectrum reads [58]

Sch(ω) = ω2
∫ ∞

−∞
dτ 〈Q(τ )Q + QQ(τ )〉eiωτ , (17)

where Q ≡ |1〉〈1| + |2〉〈2| stands for the operator
of electron charge on the TDQD, and 〈Q(τ )Q〉 ≡
tr{trB[U †(τ )QU (τ )QρstρB]}, with U (τ ) being the evolution
operator associated with the entire system Hamiltonian (1).
By introducing an alternative reduced density matrix
ρ̃(τ ) ≡ trB[U (τ )QρstρBU †(τ )], the charge correlation can
be further reduced to 〈Q(τ )Q〉 = tr{Qρ̃(τ )}. Under the
second-order Born-Markov approximation, it is found that
ρ̃(t) satisfies the same equation as ρ(t) in Eq. (11), with the
only crucial difference of the initial condition ρ̃(0) = Qρst.
Eventually, the noise spectrum of charge fluctuations reads

Sch(ω) = 2ω2Re{tr[Qρ̃(ω) + Qρ̃(−ω)]}, (18)

where ρ̃(ω) is the Fourier transform of ρ̃(t) and satisfies

−iωρ̃(ω) = −iLρ̃(ω) − Rρ̃(ω) + Qρst. (19)

IV. QUBIT-DYNAMICS-INDUCED
SUPER-POISSONIAN NOISE

The measurement current Ī , zero-frequency noise S(0), and
the Fano factor F = S(0)/(2eĪ ) versus voltage are plotted
in Figs. 2(a)–2(c), respectively. At very low bias V � kBT ,
electron transport through the TDQD detector is exponentially
suppressed. The current fluctuation is dominated by thermal
noise described by the hyperbolic cotangent behavior [48],
which leads to a divergence of the Fano factor at V = 0, as
shown in Fig. 2(c). Each time when a new excitation energy
(as indicated in Table I) lies within the energy window defined
by the chemical potentials of the left and right electrodes,
a new transport channel opens, which gives rise to plateaus,
separated by thermally broadened steps. Owing to symmetric
application of the bias, the steps take place at bias voltages
twice of the corresponding excitation energy.

The plateau heights of the current are found to be inde-
pendent of �. Variation of � changes the eigenenergies (see
Table I), leading thus only to a small shift of the current
steps, as displayed in Fig. 2(a). The plateau heights of noise
and Fano factor, however, are sensitively modulated by �,
showing shot noise as a more sensitive diagnostic tool than the
current. For �/
 = 0.5, the noise is well below the Poissonian
value. An decrease in � leads to a strong enhancement of
the Fano factor. In particular, a prominent super-Poissonian
noise is observed for �/
 = 0.1, as shown by the dotted
curve in Fig. 2(c). In the literature, different mechanisms

FIG. 2. (Color online) (a) The measurement current Ī , (b) zero-
frequency noise S(0), and (c) Fano factor F ≡ S(0)/(2eĪ ) versus the
bias voltage for different values of �. Each time when the Fermi level
of the electrode aligns with one of the excitation energies as indicated
in Table I, a new transport channel opens. This leads to plateaus,
separated by thermally broadened steps. The current and noise are
measured in units of 
 ≡ 
L + 
R. Other plotting parameters are
εq = εT = 0, W/
 = 0.5, kBT/
 = 2.0, 
L/
R = 1

3 , and U/
 = 10.
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TABLE II. The stationary current and Fano factor for εq = εT = 0, and �, W � U in the bias regime 1: 2(E4 − E2) > V > 2(E5 + E2),
and regime 2: V > 2(E4 + E2). Owing to symmetric application of the bias voltage, the steps and hence the different bias regimes are
distinguished at twice the excitation energies indicated in Table I.

i bias regime 1 bias regime 2

Īi

L
R

3
L+2
R


L
R
2
L+
R

Fi

2

L+4
2
R

(3
L+2
R)2 + 
2
L
2

R(W 2+4�2)+4
2
L(W 4+4�4)

2(3
L+2
R)2�2W 2
4
2

L+
2
R

(2
L+
R)2 + 2
2
L(
2

R+8�2)�2+
2
L(
2

L+2W 2)W 2

(2
L+
R)2�2W 2

responsible for super-Poissonian noise have been identified,
such as dynamical channel blockade [62–65], dynamical spin
blockade [66–68], or cotunneling events [69–71]. Our result
reveals that the intrinsic dynamics of the qubit serves as an
additional mechanism that may lead to super-Poissonian shot
noise in a double dot detector.

Specifically, let us investigate the current and noise
in the bias regime 1: 2(E4 − E2) > V > 2(E5 + E2), and
regime 2: V > 2(E4 + E2). Here the factor of 2 arises from
the symmetric application of the bias voltage. In these two wide
regions where electrode chemical potentials are far away from
the excitation energies of the double dot, the Fermi functions
can be well approximated by either one or zero. Analytical
results of the current and noise are obtained for εq = εT = 0,
and �, W � U , as listed in Table II. Indeed, the current plateau
height depends on the coupling parameters 
L and 
R only,
while noise and Fano factor are both sensitive to the interdot
couplings � and W . Strikingly, a divergent Fano factor is found
in the limit � → 0 or W → 0.

To investigate in detail the underlying physics that leads
to the divergent Fano factor, we now resort to the real-time
measurement dynamics of the reduced system, i.e., the usual
single measurement realizations in experiments. In what
follows, we will consider a typical voltage V/
 = 10 in
the bias regime 1 as shown in Fig. 2, such that the state |c〉
[Fig. 1(c)] is energetically prohibited. The reason we consider
this regime is that the measured current visibility, defined as
|Iα − Iβ |/(Iα + Iβ), can reach the maximum value of 1. Here
Iα (Iβ) stands for the current through the TDQD when the
qubit occupies the logical state |α〉 (|β〉). Electrons flow in
one direction: An extra electron injects into the QD1 from the
left electrode, dwells in the double dot for a certain amount
of time, before it escapes to the right electrode. We introduce
two stochastic point variables dNL(t) and dNR(t) (with values
either 0 or 1) to represent, respectively, the number of electron
tunneled into QD1 from the left electrode and that escaped
to the right electrode from the QD1, during the infinitesimal
time interval dt . According to the quantum trajectory theory,
the evolution of the reduced system is given by the following
conditional QME [72]:

dρc = −iLρc(t)dt − {
LA[|1〉〈0|] + 
RA[|0〉〈1|]
−PL(t) − PR(t)}ρc(t)dt

+ dNL

[J [
√


L|1〉〈0|]
PL(t)

− 1

]
ρc(t)

+ dNR

[J [
√


R|0〉〈1|]
PR(t)

− 1

]
ρc(t), (20)

where we have introduced the superoperators J [X]ρc ≡
XρcX† and A[X]ρc ≡ 1

2 (X†Xρc + ρcX†X). The attached

superscript “c” to the reduced density matrix is to specify
that its evolution is conditioned on the measurement results.
A simple ensemble average over a large number of particular
realizations of ρc(t) would recover the unconditional density
matrix ρ(t) in Eq. (11); i.e., ρ(t) = E[ρc(t)], where E[X]
stands for an ensemble average of a large number of quantum
trajectories. The involving stochastic variables for single
electron tunneling events satisfy

E[dNL(t)] = PL(t)dt = Tr{J [
√


L|1〉〈0|]ρc}dt, (21a)

E[dNR(t)] = PR(t)dt = Tr{J [
√


R|0〉〈1|]ρc}dt. (21b)

It is now clear that individual electron tunneling events
condition the future evolution of the reduced density matrix
[Eq. (20)], while instantaneous quantum state conditions
the detected tunneling events through the left and right
junctions [Eq. (21)]. By employing this approach, one thus
is capable of propagating the conditioned quantum state
[ρc(t)] and measurement result [dNL/R(t)] in a self-consistent
way.

The real-time quantum state [ρc(t)] and corresponding
detection record of tunneling to the right electrode [dNR(t)]
are plotted in Figs. 3(a)–3(d) for �/
 = 0.5. For a given
voltage V/
 = 10 in the bias regime 1, the state |c〉 as
shown in Fig. 1(c) is energetically forbidden. When there is
no extra electron in the TDQD, the qubit experiences some
oscillations between the states |a〉 and |b〉 shown in Fig. 1 with
frequency ∼�. Whenever one electron tunnels into the TDQD,
the system collapses to the state |d〉. The electron may stay
in the double dot and experience some oscillations between
QD1 and QD2, until it escapes to the right electrode. Corre-
spondingly, the system jumps to the state |b〉, and an event of
tunneling out to the right electrode is detected; i.e., dNR =
1. A typical example of the tunneling events is shown in
Fig. 3(d).

Very different tunneling behavior is observed in the case
of a suppressed �; see Figs. 3(e)–3(h) for �/
 = 0.1. One
finds unambiguously the bunching of electron tunneling events
though the TDQD. In most of the time, the system is oscillating
between the states |a〉 and |b〉 with a lower frequency ∼�.
Due to strong electrostatic interaction between the qubit and
TDQD, the occupation of the qubit in the logical state |α〉
blocks the current through TDQD until it tunnels to the state
|β〉, which is then followed by a bunching of tunneling events
through the TDQD during a short time window.

It is instructive to further elucidate the underlying physics
responsible for the occurrence of the bunching behavior. When
the qubit dwells in the logical state |α〉, electron transport
through the TDQD “feels” the existence of an electrostatic
repulsion U such that the transport TDQD can be described
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FIG. 3. (Color online) Sets of typical quantum trajectories and corresponding detection records for �/
 = 0.5 [(a)–(d)] and �/
 = 0.1
[(e)–(h)] with the same initial condition ρc

aa(t = 0) ≡ 〈a|ρc(t = 0)|a〉 = 1. The measurement voltage V/
 = 10 is within the bias regime 1
(see Fig. 2), such that the state |c〉 as shown in Fig. 1(c) is energetically prohibited. The Fermi energies are far from the excitation energies of
the reduced system, such that the Fermi functions can be approximated by either 1 or 0, and thus temperature is not involved here. The time
step used is �t = 0.01 
−1. Other plotting parameters are εq = εT = 0, W/
 = 0.5, 
L/
R = 1

3 , and U/
 = 10.

by the following effective Hamiltonian (εT = 0):

HTDQD → U |1〉〈1| + WQx =
⎛
⎝0 0 0

0 U W

0 W 0

⎞
⎠. (22)

It can be diagonalized as

H̃TDQD = 1
2�(|+〉〈+| − |−〉〈−|), (23)

where � = √
U 2 + 4W 2. The TDQD is thus mapped onto a

parallel two-level system as schematically shown in Fig. 4.
The involved energy eigenstates are given, respectively, by

|+〉 = cos
�

2
|1〉 + sin

�

2
|2〉, (24a)

|−〉 = sin
�

2
|1〉 − cos

�

2
|2〉, (24b)

where � is introduced via cos � = U/� and sin � = 2W/�.
Accordingly, electron tunneling between the eigenstates and

+
 
 

−  

L 2
coskt Θ

L R 

R 2
coskt Θ

R 2
sinkt Θ

L 2
sinkt Θ

FIG. 4. The transport TDQD device can be mapped onto a parallel
two-level (eigenstates |+〉 and |−〉) system, where the effective
tunneling amplitude is modulated by electrostatic repulsion (U )
between TDQD and qubit and the interdot coupling (W ) between
QD1 and QD2.

the electrodes is described by

H̃ ′ =
∑

�=L,R

∑
k

(t (+)
�k c

†
�k|0〉〈+| − t

(−)
�k c

†
�k|0〉〈−|) + H.c., (25)

where t
(+)
�k = t�k cos �

2 and t
(−)
�k = t�k sin �

2 are the effective
tunneling amplitudes of electron transport through the eigen-
states |+〉 and |−〉 (as shown in Fig. 4). Apparently, they
are notably affected by �, or equivalently, the electrostatic
interaction (U ) and interdot coupling of the TDQD (W ).

In the case of small interdot coupling W � U , the tunneling
amplitude for transport through the state |−〉 (t (−)

�k = t�k sin �
2 )

is strongly suppressed. Once an electron occupies the state
|−〉, it will stay there for a long time. The presence of interdot
Coulomb interaction prevents double occupation on the TDQD
and electron transport is blocked. Electrons thus can only
flow in time windows where the TDQD is not occupied by
the state |−〉, leading thus to a dynamical channel blockade
mechanism [40,73–75] and bunching of tunneling events as
shown in Fig. 3(h). This explains the observed super-Poisson
shot noise and strongly enhanced Fano factor in the limit of
W → 0, as shown in Table II.

However, the qubit tunnels between the logical states
|α〉 and |β〉 with the characteristic frequency ∼�. Once
the qubit occupies the logical state |β〉, the electrostatic
interaction is not involved in electron transport through the
TDQD, or equivalently U = 0 [cf. Eq. (2)]. It results in
symmetric tunneling amplitude of electron transport through
the eigenstates |+〉 and |−〉; i.e., t

(+)
�k = t

(−)
�k = t�k/

√
2. The

dynamical blockade is lifted and the shot noise is suppressed.
It thus implies that the inherent qubit dynamics can strongly

influence the transport properties through the TDQD system.
In the case of a large �, the qubit experiences fast oscillations
between the logical states |α〉 and |β〉, which inhibits the
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occurrence of the dynamical blockade mechanism. As �

decreases, the qubit may stay in the logical state |α〉 for a
long time, during which the dynamical blockade and thus
bunching of tunneling events take place. This explains the
strong enhancement of the Fano factor in the limit of � → 0
as shown in Table II.

Our result thus reveals that the intrinsic dynamics of the
qubit may serve as an additional mechanism that may lead to
dynamical blockade and eventually to the pronounced super-
Poissonian behavior in the noise spectrum. Normally, detector
shot noise leads to the dephasing of a qubit [19]. However,
we will show in Sec. V that a large detector shot noise at
small � does not necessarily imply a fast dephasing rate. In
particular, it will be revealed that the dynamical blockade may
have essential roles to play in the dephasing process of the
qubit. The dephasing is suppressed at small �, in spite of a
large detector shot noise.

V. DETECTION-BACKACTION-INDUCED DEPHASING

To study the dephasing behavior of the qubit under
continuous measurement of the TDQD detector, we shall make
use of the density matrix of the qubit alone, which can be
obtained by tracing out the degrees of freedom of the TDQD
from the reduced (qubit plus TQDQ) density matrix

�(t) = trTDQD{ρ(t)}, (26)

where trTDQD{· · · } stands for the trace over the degrees of
freedom of the TDQD, and ρ(t) is the unconditional density
matrix that can be obtained from Eq. (11). To obtain time
evolution of qubit state alone �(t), it is thus necessary to derive
the equation of motion ρ(t) first. In the state representation of
Fig. 1, the quantum master equation of ρ(t) is given by

ρ̇aa = i�(ρab − ρba) + 
Lρcc + 
Rρcc, (27a)

ρ̇bb = i�(ρba − ρab) − 
Lρbb + 
Rρdd, (27b)

ρ̇cc = i�(ρcd − ρdc) − 
Lρcc − 
Rρcc

+ iW (ρce − ρec), (27c)

ρ̇dd = i�(ρdc − ρcd)+ 
Lρbb− 
Rρdd

+ iW (ρdf − ρfd), (27d)

ρ̇ee = i�(ρef − ρfe) − iW (ρce − ρec), (27e)

ρ̇ff = i�(ρfe − ρef) − iW (ρdf − ρfd), (27f)

ρ̇ab = i�(ρaa − ρbb) − 1
2
L(ρab − ρcd) + 
Rρcd, (27g)

ρ̇cd = i�(ρcc − ρdd) + iW (ρcf − ρed) − iUρcd

+ 1
2
L(ρab − ρcd) − 
Rρcd, (27h)

ρ̇ce = i�(ρcf − ρed) + iW (ρcc − ρee) − iUρce

− 1
2 (
L + 
R)ρce, (27i)

ρ̇cf = i�(ρce − ρdf) + iW (ρcd − ρef) − iUρcf

− 1
2 (
L + 
R)ρcf, (27j)

ρ̇de = i�(ρdf − ρce) + iW (ρdc − ρfe) − 1
2
Rρde, (27k)

ρ̇df = i�(ρde − ρcf) + iW (ρdd − ρff) − 1
2
Rρdf, (27l)

ρ̇ef = i�(ρee − ρff) − iW (ρcf − ρed). (27m)

From the above coupled equations, one then is able to obtain
the reduced dynamics of the qubit alone by using Eq. (26);
i.e., �αα = ρaa + ρcc + ρee, �ββ = ρbb + ρdd + ρff , and �αβ =
ρab + ρcd + ρef , representing the probability of the qubit in
the logical states |α〉, |β〉, and linear superposition of the two
logical states (so-called “quantum coherence”), respectively.
By collecting relevant terms in Eq. (27), one eventually arrives
at the equation of motion for the reduced density matrix of the
qubit

�̇αα(t) = i�(�αβ − �βα), (28a)

�̇ββ(t) = i�(�βα − �αβ), (28b)

�̇αβ(t) = i�(�αα − �ββ) − iUρcd. (28c)

Equations (28a) and (28b) denote coherent oscillations of the
qubit, while Eq. (28c) stands for the dephasing of the qubit.
Unambiguously, the qubit dephasing is directly related to ρcd

[cf. the last term in Eq. (28c)], which is further coupled to
the dynamics of the entire system as shown in Eq. (27). It
thus implies that the dynamics of the qubit and that of the
TDQD are intimately entangled. Physically, due to detector
current transport through two discrete levels of the TDQD, an
electron tunneled into the TDQD is a linear superposition of
these two states; the qubit itself is a two-state system described
by superposition, leading thus eventually to the entanglement
between the qubit and TDQD.

It was revealed that for a DQD detector, the qubit dephasing
rate is directly related to the strength of the coupling between
DQD and the left or right electrodes (
L or 
R), rather than
the interdot coupling of the qubit (�) [38]. We will show,
however, the interdot coupling of the qubit may also have
essential roles to play in the dephasing process of the qubit
itself. It is thus instructive to study qubit dynamics at different
values of �. The numerical results, obtained by propagating
Eqs. (27) and (28) in parallel, are displayed in Fig. 5. Coherent
oscillations of the qubit are shown in Figs. 5(a) �αα(t) and 5(b)
�ββ(t), respectively. The dephasing of the qubit, described
by the off-diagonal element of the reduced density matrix
�αβ(t), is plotted in Fig. 5(c) for �/
 = 0.1 (dashed curve)
and �/
 = 1.0 (solid curve). In both cases, �αβ(t) vanishes
in the long-time limit, leading thus to the “collapse” of the
reduced density matrix into the statistical mixture. However,
the dephasing processes are indeed very different for the two
cases. It is found via numerical fitting that the dephasing rate
for �/
 = 1.0 could reach almost 4 times larger that that for
�/
 = 0.1. Our result thus shows qubit interdot coupling
(�) as an essential mechanism that may influence qubit
dephasing, complementary to the conventional ways in SET
measurement.

The unique suppression of the dephasing at small � can
be interpreted as follows. In the case of a large interdot
coupling � (for instance, �/
 = 1.0), electrons tunnel
through the TDQD very frequently; see individual electron
tunneling events in Fig. 3(d). It thus gives rise to a frequent
perturbation (measurement) of the qubit. In contrast, for a
small � (cf. �/
 = 0.1), electron transport through the
TDQD is dynamically blockaded during the time windows
where coherent oscillations between the states |a〉 and |b〉
dominate, as shown in Figs. 3(e)–3(h). Yet, these time windows
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FIG. 5. (Color online) Measurement-induced qubit relaxation and dephasing versus time for �/
 = 0.1 (dashed curves) and �/
 = 1.0
(solid curves). (a) �αα(t), (b) �ββ (t), (c) the imaginary part of the off-diagonal element �αβ . The total tunneling width 
 = 
L + 
R is kept
constant, and interdot hopping in the TDQD is W/
 = 1.0. The qubit is assumed to be symmetric (εq = 0) and initially in the logical state
|α〉; i.e., �(t = 0) = |α〉〈α|. Other plotting parameters used are V/
 = 10, εT = 0, 
L/
R = 1

4 , and U/
 = 10.

correspond to no-measurement regimes where acquisition of
qubit information is suppressed, leading eventually to the
inhibition of the dephasing.

As is well known, the fundamental physics involved in
quantum detection is the trade-off between acquisition of
qubit information and the backaction-induced dephasing of
the measured system. A question arises naturally for the
present TDQD detector: Is the measurement more effective
in the small-� regime where dephasing is suppressed, or in
the large-� regime where the measurement takes place more
frequently? Thus, we now investigate the effectiveness of the
measurement at different values of qubit interdot coupling in
Sec. VI.

VI. MEASUREMENT EFFECTIVENESS

A powerful tool to characterize the measurement effective-
ness is the detector’s circuit current noise S(ω) [cf. Eq. (14)].
The qubit oscillations are manifested in S(ω) as a peak located
at the qubit characteristic frequency � = (ε2

q + 4�2)1/2. An
essential feature of this peak is that its height with respect to the
pedestal provides a measure of the detector’s signal-to-noise
ratio (SNR)

SNR = S(�) − SP

SP
, (29)

where SP ≡ S(ω → ∞) is the noise pedestal. The SNR
reflects the detector’s effectiveness, showing how close to the
quantum limit the detector may operate [25,26]. It was argued
that for any linear-response detectors there is a fundamental
limit imposed on the signal-to-noise ratio, i.e., the so-called
Korotkov-Averin bound [25,26]: The peak height can reach
maximally 4 times the noise pedestal for an ideal or quantum-
limited detector; i.e., SNR = 4. In contrast, for a less efficient
detector the qubit dephasing takes place more rapidly than

information acquisition. The resultant signal-to-noise ratio is
less than 4.

Since the circuit current noise spectrum, as shown in
Eq. (14), is a superposition of the noises of tunneling current
and charge fluctuation, it is thus instructive to investigate the
effect of each component on the signal-to-noise ratio of the
TDQD detector. Here, we first study the noise spectrum of
tunneling current through the left or right junction SL/R(ω) [cf.
Eq. (15)]. The noises of left and right junction currents are
found to be consistent within the whole frequency regime; i.e.,
SL(ω) = SR(ω). The numerical result is displayed in Fig. 6(a),
where the noise of the tunneling current is scaled by its own
pedestal,

SP
L/R ≡ SL/R(ω → ∞) = 2
L
R

3
L + 2
R
. (30)

Unambiguously, it is independent of the TDQD interdot
couplings W and �. Furthermore, it is found that the noise
pedestal of the tunneling current, analogous to the situation of
a QPC detector, is directly related to the the steady current and
given simply by SP

L/R = 2I1 (cf. Table II). The noise at various
values of interdot couplings (�) is plotted in Fig. 6(a). The
peaks in vicinity of ω ≈ 2� reflect signal of qubit coherent
oscillations. The peak width increases with rising �, indicating
the enhancement of the dephasing rate. It thus confirms our
previous argument of the dependence of the dephasing on qubit
interdot coupling.

What we are most interested in is the height of the peak
of qubit oscillations, which provides the measure of signal-to-
noise ratio of quantum measurement. For the present TDQD
detector, it is found in Fig. 6 that the peak height at different
values of � does not show striking difference. Although �

has essential roles to play in the dephasing of the qubit, its
influence on signal-to-noise ratio is very limited. At small
�, dephasing is inhibited but information acquisition is also
suppressed. An increase of � leads to fast information gain,
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FIG. 6. (Color online) (a) Noise spectrum of the tunneling current through the left or right electrodes SL/R(ω), scaled by its own pedestal
SP

L/R. (b) Spectrum of charge fluctuation Sch(ω) in the TDQD with respect to its pedestal SP
ch. The total tunneling width 
 = 
L + 
R is kept

constant. Other parameters are 
L/
R = 1
3 , εq = εT = 0, W/
 = 1.0, V/
 = 10, and U/
 = 10.

whereas the qubit loses coherence more rapidly. Eventually,
the measurement effectiveness turns out to be insensitive to the
qubit interdot coupling (�). Furthermore, by considering the
noise spectrum of the tunneling currents, the signal-to-noise
is found to be well below the Korotkov-Averin bound. This is
qualitatively consistent with the result in Ref. [39], where the
signal-to-noise ratio of a serial DQD detector is found below
4. It might lead us to conclude that neither the TDQD nor the
serial DQD can reach the effectiveness of an ideal detector, if
one takes solely the tunneling current noise into consideration.

However, this picture is not yet complete for a TDQD
detector, since the currents through the left and right junctions
are intrinsically correlated via the charge accumulation in
the TDQD, owing to the condition of charge conservation
[cf. Eq. (12)]. The noise of the circuit current is actually
a superposition of each component; see Eq. (14). It is thus
of importance to study the influence of charge fluctuation
[Sch(ω)] on the signal-to-noise ratio. In particular, we will
show in Sec. VII that under appropriate conditions the charge
fluctuation leads to a strong suppression of the noise pedestal. It
gives rise to a strong enhancement of the signal-to-noise ratio,
leading eventually to the violation of the Korotkov-Averin
bound.

VII. VIOLATION OF THE KOROTKOV-AVERIN BOUND

Now we are in a position to investigate the TDQD charge
fluctuations and their influence on the detector’s signal-to-
noise ratio. Figure 6(b) shows the numerical result of the charge
fluctuations in the TDQD for various values of �. The plot of
the charge fluctuation is scaled by its own pedestal,

SP
ch ≡ Sch(∞) = 8
L
R

3
L + 2
R
, (31)

which is irrelevant to the interdot coupling strength W and �.
In the low-frequency limit, the charge fluctuation in the TDQD
is strongly inhibited, as implied in Eq. (17). The basic signals
are the peaks located in the vicinity of frequency 2�, indicating
qubit coherent oscillations; see the arrows in Fig. 6(b).

The charge fluctuation may have a significant impact on
the signal-to-noise ratio of the measurement, as displayed in
Fig. 7. In the case of very asymmetric junction capacitances,
for instance, ηL : ηR = 9 : 1 or ηL : ηR = 8 : 2, the spectrum
of charge fluctuations has only very limited contribution to the
circuit noise [cf. Eq. (14)]. The resultant signal-to-noise ratio
is below the Korotkov-Averin bound; see the solid and dashed
curves in Fig. 7.

It is observed that there is a peak located approximately at
�/
 	 0.5, which can be interpreted as follows. In the case
of small � (for instance �/
 = 0.1), acquisition of qubit
information is suppressed. In the opposite limit of a large �

(� � 
), the measurement takes place more frequently and
the qubit loses coherence rapidly. It is only in the regime of
moderate interdot coupling (�/
 	 0.5) that qubit dephasing
and information acquisition reach a balance, which eventually
leads to the occurrence of the peak in Fig. 7.

FIG. 7. (Color online) The signal-to-noise ratio versus � ob-
tained from the circuit current noise for different configurations
of left and right junction capacitances (ηL : ηR). The coefficients
satisfy ηL + ηR = 1. The total tunneling width 
 = 
L + 
R is kept
constant. Other plotting parameters used are εq = εT = 0, W/
 =
1.0, V/
 = 10, 
L/
R = 0.5, and U/
 = 10.
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As the junction capacitances get more and more symmetric,
the charge fluctuation may have a vital role to play in the
noise of the circuit current. Strikingly, for ηL : ηR = 7 : 3, a
prominent enhancement of the signal-to-noise ratio is observed
and the signal-to-noise ratio exceeds the upper limit of 4, i.e.,
the violation of the Korotkov-Averin bound. Furthermore, by
checking the pedestals of the tunneling current noise [Eq. (30)]
and charge fluctuation [Eq. (31)], one finds that for symmetric
junction capacitances (ηL : ηR = 1 : 1), the pedestal of the
circuit noise [Eq. (14)] can be completely eliminated, resulting
thus in a divergence of the signal-to-noise ratio. Our finding
thus provides a transparent and direct way to improve the
signal-to-noise ratio of a TDQD detector.

In the literature, different approaches have been proposed
that may lead to the violation of the Korotkov-Averin
bound. Normally, they fall into two categories. The first
type is based on the enhancement of measurement signal
by employing approaches such as quantum nondemolition
measurements [76,77], non-Markovian memory effect [78],
or quantum feedback scheme [79,80]. The second one con-
cerns the reduction of the noise pedestal by utilizing twin
detectors [45,81], or strongly responding detectors [20]. The
violation of the Korotkov-Averin bound in this work arises
from the suppression of the noise pedestal. Our analysis is
based on the second-order perturbation of tunneling Hamilto-
nian in Eq. (4), which leads to the simplified noise pedestals as
shown in Eqs. (30) and (31). It was shown in Refs. [82,83] that
when one takes higher order tunneling events into account,
the steady current would have a complicated dependence
on the system configurations. The resultant noise pedestal
would not necessarily be inhibited completely. Our result thus
shows that only under the second-order perturbation the noise
pedestal of a TDQD detector has only a simple dependence
on the intrinsic tunneling widths, and could even be inhibited
remarkably by simply adjusting the junction capacitances. As

a result, it provides us a direct and transparent way to enhance
the signal-to-noise ratio of a TDQD detector in quantum
measurement.

VIII. SUMMARY

We have proposed to continuously monitor a charge qubit
by utilizing a T-shaped double quantum dot detector, in which
only one dot is directly tunnel-coupled to the electrodes.
It is demonstrated that the dynamics of the qubit and the
detector output are intrinsically correlated. In the case of a
suppressed interdot coupling between the two states of the
qubit, a dynamical blockade mechanism takes place, leading
to a super-Poissonian shot noise. However, such a pronounced
enhancement of the noise does not necessarily produce a fast
dephasing rate. Actually, an inhibited dephasing is observed,
since the involving dynamical blockade is directly related
to the regime where no information is acquired. The major
advantage of the present T-shaped double quantum dot detector
is that its spectrum of charge fluctuations may significantly
suppress the pedestal of the circuit noise. Remarkably,
the noise pedestal could be removed completely under the
condition of symmetric junction capacitances, leading to a
divergent signal-to-noise ratio, and eventually to the violation
of the Korotkov-Averin bound in quantum measurement. The
proposed TDQD thus may serve as an essential candidate
detector to reach the quantum limited effectiveness in a very
transparent and straightforward manner.
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