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Field-theoretic methods are used to investigate the large-U Hubbard model on the honeycomb lattice at
half-filling and in the hole-doped regime. Within the framework of a functional-integral approach, we obtain
the Lagrangian density associated with the charge and spin degrees of freedom. The Hamiltonian related to
the charge degrees of freedom is exactly diagonalized. In the strong-coupling regime, we derive a perturbative
low-energy theory suitable to describe the quantum antiferromagnetic phase (AF) as a function of hole doping.
At half-filling, we deal with the underlying spin degrees of freedom of the quantum AF Heisenberg model by
employing a second-order spin-wave analysis, in which case we have calculated the ground-state energy and the
staggered magnetization; the results are in very good agreement with previous studies. Further, in the continuum,
we derive a nonlinear σ model with a topological Hopf term that describes the AF-VBS (valence bond solid)
competition. Lastly, in the challenging doped regime, our approach allows the derivation of a t-J Hamiltonian,
and the analysis of the role played by charge and spin quantum fluctuations on the ground-state energy and,
particularly, on the breakdown of the AF order at a critical hole doping; the results are benchmarked against
recent Grassmann tensor product state simulations.
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I. INTRODUCTION

In the last decade, the physics of electronic correlation
in honeycomb and hexagonal lattice materials has been the
issue of extensive theoretical and experimental investigations
[1]. Indeed, in view of quite recent experimental activities,
it has been reported that the undoped Cu2+(3d9) spin- 1

2
compound In3Cu2VO9 [2–4] displays an antiferromagnetic
Néel (AF) ground state. Likewise, experimental evidence has
been provided that the undoped materials Na3T2SbO6 [5], with
T = Cu2+; T = Ni2+ (3d94s1; S = 1), and T = Co2+ (3d7;
S = 3/2) also exhibit AF order. Moreover, experimental data
have also indicated that Li2RuO3 [6] presents valence bond
solid (VBS) or liquid phase; whereas it has been observed
that Na2IrO3 [7] displays an AF Mott-insulating ground
state.

On the theoretical side, various attempts have been under-
taken with the purpose of describing the underlying mech-
anisms governing the physical properties of these materials.
In the context of the Heisenberg model, the occurrence of an
AF ground state on the honeycomb lattice at half-filling has
been studied via quantum Monte Carlo (QMC) simulations
[8,9], the second-order spin-wave perturbation theory [10],
series expansion [11], tensor product state (TPS) numerical
calculations [12,13] and Grassmann tensor product state
(GTPS) numerical studies [14]. Also, the Hubbard model
at half-filling [15] and generalized (competitive interactions)
Heisenberg models [16] have been used with the aim of
describing the possible occurrence of a VBS ground state
[17–20]. Additionally, it has been shown that the AF-VBS
competition takes place within the framework of the theory of
unconventional quantum critical points [21–24]. However, we
remark that in the context of the Hubbard model detailed QMC
studies [25] at half-filling have excluded the occurrence of a

VBS or liquid phase, while a robust AF phase was predicted
to occur in the strong-coupling regime (Heisenberg limit).

On the other hand, of special interest are doped Mott
insulators, notably its link with the physics of high-temperature
superconductivity [26–28]. In a broader perspective, the
t-J model has provided a comprehensive framework for
investigating the effect of charge and spin quantum fluctuations
on doped Mott insulators [26–28]. Recently, a numerical
analysis through GTPS [14] calculations of the t-J model on
the honeycomb lattice has been reported, in particular the data
concerning the breakdown of the AF order due to hole doping.
Despite all these relevant contributions, including the mean-
field, random phase approximation (RPA) [29], and nonlinear
σ model [30] studies, to the best of our knowledge, no
analytical approach (in a controllable quantitative perturbative
scheme) has been reported to describe the interplay between
charge and spin quantum fluctuations in the Hubbard model
on the honeycomb lattice, and the consequent destruction of
the AF phase in the hole-doped regime.

In this work, we present a systematic and comprehensive
analytical study of the strongly coupled Hubbard model on
the honeycomb lattice at half-filling and in the hole-doped
regime within a unifying functional-integral framework. The
remaining part of the paper is organized as follows: In
Sec. II, we establish the functional-integral representation in
terms of Grassmann fields (charge degrees of freedom) and
SU(2) gauge fields (spin degrees of freedom). In Sec. III, the
Hamiltonian associated with the charge degrees of freedom
is exactly diagonalized. The electronic dispersion exhibits
a gap due to the Coulomb repulsive interaction, while in
the tight-binding case we obtain the well known Dirac-like
spectrum. In Sec. IV, we derive a perturbative low-energy
Lagrangian density suitable to describe both the half-filling
and doped regimes. Section V is devoted to the half-filling case,
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in which case the large-U Hubbard model is mapped onto the
quantum Heisenberg model described by SU(2) gauge fields.
Further, in Appendix, the continuum limit of the referred model
is mapped onto the nonlinear σ model with a topological Hopf
term, which describes the AF-VBS competition. In Sec. VI, we
focus on the hole-doped regime. This most challenging topic
is studied within a controllable perturbative scheme, which
allows us to unveil the role played by charge and spin quantum
fluctuations in the breakdown of the hole-doped AF phase.
Finally, concluding remarks are presented in Sec. VII.

II. FUNCTIONAL-INTEGRAL REPRESENTATION

The Hamiltonian of the Hubbard model on the honeycomb
lattice reads

H = −t
∑

〈iα, jβ〉σ
(ĉ†iασ ĉ jβσ + ĉ

†
jβσ ĉiασ ) + U

∑
iα

n̂iα↑n̂iα↓,

(1)

where ĉ
†
iασ (ĉiασ ) denotes the creation (annihilation) fermion

operator of spin σ (=↑,↓) on one of the inequivalent site α =
A or B of a unit cell i = 1, . . . ,Nc, with Nc(N/2) being the
number of unit cells (sites) [see Fig. 1(a)]; n̂iασ = ĉ

†
iασ ĉiασ is

the electron number operator with spin σ at the position iα. The
first term describes hopping of electrons with kinetic energy
t between nearest-neighbor sites of distinct sublattices, and
the second one is the on-site Coulombian repulsive interaction
U > 0. We remark that the version of the Hubbard model in
Eq. (1) offers an effective means for a proper description of the

FIG. 1. (Color online) (a) Honeycomb lattice in real space with
the two inequivalent A and B lattice sites of a unit cell. (b) Energy
spectrum (in units of t) of the charge Hamiltonian [Eq. (24)] on the
honeycomb lattice, with a Hubbard charge gap U .

magnetic properties of the copper oxide compounds mentioned
in Introduction.

Usually, the interaction term in Eq. (1) is treated by
means of the so-called Hubbard-Stratonovich transformation
[31], which has been used to develop the functional-integral
representation of the Hubbard model suitable to describe
diagrammatic perturbation theory [32], critical phenomena
[33] in 3D, and magnetic [34,35], and superconducting [36]
properties in 2D.

On the other hand, in the context of the large-U Hubbard
model in 1D [37] and quasi-1D [38], it has been shown that this
term can also be treated through the use of a decomposition
procedure. Hence we handle the particle density product in
Eq. (1) by means of such a decomposition procedure [37,38],
which consist in expressing n̂iα↑n̂iα↓ in terms of charge and
spin operators:

n̂iα↑n̂iα↓ = 1
2 ρ̂iα − 2(Ŝiα · niα)2, (2)

where ρ̂iα = n̂iα↑ + n̂iα↓, and Ŝiα = 1/2
∑

σσ
′ ĉ

†
iασ

′ σ σ
′
σ ĉiασ ,

are the charge-density and the spin-1/2 operators, respectively,
σ σ

′
σ denotes the Pauli matrix elements (� ≡ 1), and niα is a

unit vector field along the spin-quantization axis of an electron
at site iα. In addition, since the expectation value of the local
charge-density operator is 0, 1, or 2, we can write down the
formal relation

(Ŝiα · niα)2 = ρiα(2 − ρiα)

4
, (3)

which is consistent with the fact that the expectation value
of the operator on the left-hand side of the above equation
is 〈(Ŝiα · niα)2〉 = (±1/2)2 = 1/4. Hence we have formally
established that

Ŝiα · niα = piα
ρiα(2 − ρiα)

2
, (4)

where the staggered factor piα is conveniently chosen to
be piα = 1 at the A sites with spin-up (σ =↑), and piα =
−1 at the B sites with spin-down (σ =↓). This choice
anticipates the occurrence of a long-range AF ground state
at half-filled band. Furthermore, let us define the normalized
weight function:

∫ ∏
iα d2niαW (niα) = 1, where W (niα) =√

ϕ

π
exp {−ϕ[Siα · niα − piα

2 ρiα(2 − ρiα)]2} and ϕ → ∞
(delta-like limit).

In order to determine the partition function

Z = Tr[exp (−βH)] (5)

at a temperature kBT = 1/β, we are going to use the standard
procedure [39–41], i.e., we formally slice the continuous
imaginary time τ ∈ [0,β) into M finite discrete intervals
[τr ,τr+1) of equal size δτ , where r = 0,1, . . . ,M − 1,τ0 =
0, τM = β, and β = Mδτ . Thus, by considering the limits
M → ∞, δτ → 0, and using the Trotter formula, we can write
down Z as

Z = Tr

{
T̂

M−1∏
r=0

exp [−δτH(τr )]

}
, (6)

where T̂ is the time-ordering operator. We now introduce,
between each time interval, an overcomplete basis of
fermionic coherent states, 1 = ∫ ∏iασ dc

†
iασ dciασ exp
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(−c
†
iασ ciασ )|ciασ 〉〈ciασ |, where {c†iασ ,ciασ} denotes a set of

Grassmann fields satisfying antiperiodic boundary conditions
in the imaginary-time domain: c

†
iασ (0) = −c

†
iασ (β) and

ciασ (0) = −ciασ (β), while the unit vector field satisfies
periodic ones: niα(0) = niα(β) . Thereby, the partition
function takes the form

Z =
∫ ∏

iα

D2niα

∏
iα

Dc
†
iαDciα exp

[
−
∫ β

0
L(τ )dτ

]
, (7)

where the measures are defined by D2niα ≡
limM→∞

∏M−1
r=0 d2niα(τr )W [niα(τr )], Dc

†
iασDciασ ≡

limM→∞
∏M−1

r=0 dc
†
iασ (τr )dciασ (τr ), and L(τ ) reads

L(τ ) =
∑
iασ

c
†
iασ ∂τ ciασ − t

∑
〈iα, jβ〉σ

(c†iασ c jβσ + c
†
jβσ ciασ )

+U
∑

iα

[
1

2
ρiα − piα(Siα · niα)

]
. (8)

At this stage, it is interesting to consider the symmetry
exhibited by the AF order. Here, we shall use a SU(2) matrix
[42], where the group parameter space is the surface of the unit
S3 sphere, parametrized according to the symmetry displayed
by the AF phase. As the unit vector niα , i.e., the Néel order
parameter, lies in the manifold S2, the corresponding SU(2)
matrix, Uiα , assumes the form

Uiα =
[

cos
(

θiα
2

) − sin
(

θiα
2

)
e−iφiα

sin
(

θiα
2

)
eiφiα cos

(
θiα
2

)
]
, (9)

where θiα is the polar angle between the z axis and
the unit vector niα , and φiα is an arbitrary azimuth an-
gle due to the U(1) gauge freedom. Moreover, it obeys
the relation U

†
iα(σ̂ · niα)Uiα = σ z, which explicitly manifest

the rotationally broken symmetry along the z axis. Notice also
that by taking θiA = θiB = 0, together with the proper choice
of the staggered factor piα , one obtains the representation
for the classical Néel order. In this context, it will prove very
useful to introduce a new set of Grassmann fields, {a†

iασ ,aiασ},
according to the transformation

aiασ =
∑
σ ′

(Uiα)†σσ ′ciασ ′ , (10)

whose associated spins point along the global z axis.
Correspondingly, with the help of Eqs. (9) and (10), the

Lagrangian in Eq. (8) is transformed into the following form:

L(τ ) =
∑
iασ

a
†
iασ ∂τ aiασ +

∑
iασσ ′

a
†
iσ ′(Uiα)†σ ′σ ∂τ (Uiα)σ ′σ aiασ

− t
∑

〈iα, jβ〉σ
(a†

iασ a jβσ + H.c.)

− t
∑

〈iα, jβ〉σσ ′
[a†

iασ ′(U
†
iαU jβ − 1)σ ′σ a jβσ + H.c.]

+ U

2

∑
iασ

(1 − piασ )a†
iασ aiασ . (11)

Remarkably, L(τ ) can be split up into two parts. One with only
charge degrees of freedom:

L0 =
∑
iασ

a
†
iασ ∂τ aiασ − t

∑
〈iα, jβ〉σ

(a†
iασ a jβσ + H.c.)

+ U

2

∑
iασ

(1 − piασ )a†
iασ aiασ , (12)

and the other describes the coupling between the charge
(Grassmann fields a

†
iασ and aiασ ) and spin degrees of freedom

[SU(2) gauge fields Uiα]:

Ln =
∑

iασσ ′
a
†
iασ ′(Uiα)†σ ′σ ∂τ (Uiα)σ ′σ aiασ

− t
∑

〈iα, jβ〉σσ ′
[a†

iασ ′(U
†
iαU jβ − 1)σ ′σ ajβσ + H.c.]. (13)

III. ANALYSIS OF CHARGE DEGREES
OF FREEDOM IN L0

We now turn our attention to L0 in Eq. (12). By performing
the Legendre transform

H0 = −
∑
iασ

∂L0

∂(∂τ aiασ )
∂τ aiασ + L0, (14)

where

∂L0

∂(∂τ aiασ )
= a

†
iασ , (15)

we get the Hamiltonian associated with the charge degrees of
freedom:

H0 = −t
∑

〈iα, jβ〉σ
(a†

iασ a jβσ + H.c.)

+ U

2

∑
iασ

(1 − piασ )a†
iασ aiασ . (16)

In order to diagonalize H0 we need a two step procedure.
Initially, we perform a Fourier transform

akσ = 1√
Nc

∑
i

eik·iaiσ ,

(17)
bkσ = 1√

Nc

∑
j

e−ik· jb jσ ,

where akσ (bkσ ) is the Fourier transform of the Grassmann
fields associated with the A (B) sublattice, i.e., for notation
convenience we have replaced a jβσ → b jσ ; in addition, we
introduce the new set of Grassmann fields [43]:

Akσ = akσ√
2

+ w∗
k√

2 |wk|
bkσ , (18)

Bkσ = akσ√
2

− w∗
k√

2 |wk|
bkσ , (19)

where

w∗
k = e−ikx + 2ei kx

2 cos

(√
3 ky

2

)
. (20)

045105-3



F. G. RIBEIRO AND M. D. COUTINHO-FILHO PHYSICAL REVIEW B 92, 045105 (2015)

Therefore one obtains

H0 = −
∑
kσ

εk(A†
kσAkσ − B

†
kσBkσ ) + U

4

∑
kσ

(1 − σ )

× (A†
kσAkσ + A

†
kσBkσ + B

†
kσAkσ + B

†
kσBkσ ),

(21)

in which

εk = t

√
3 + 2 cos (

√
3 ky) + 4 cos

(
3kx

2

)
cos

(√
3 ky

2

)
.

(22)

Now, we can diagonalize H0 in Eq. (21) by means of the
Bogoliubov transformation:

Akσ = ukαkσ − σvkβkσ ; Bkσ = σvkαkσ + ukβkσ , (23)

restricted by the canonical constraint (uk)2 + (vk)2 = 1; as a
result, the diagonal form of H0 reads

H0 =
∑
kσ

(
Eα

k α
†
kσαkσ + E

β

k β
†
kσ βkσ

)
, (24)

where

uk = 1√
2

√
1 + |εk|

Ek
; vk = 1√

2

√
1 − |εk|

Ek
, (25)

with

Ek =
√

ε2
k + U 2

4
; E

α,β

k = ∓Ek + U/2. (26)

The Hamiltonian in Eq. (24) presents two dispersive bands:
the low-energy (αkσ ) and the high-energy one (βkσ ), split up
by the Hubbard gap U , as shown in Fig. 1(b).

Finally, it should be noted that the noninteracting tight-
binding spectrum ofH0 can be recast by setting U = 0. In fact,
these two dispersive bands meet in the so-called Dirac points.
As it is well known, close to the Dirac points the system can
be mapped onto free massless Dirac fermions [1].

IV. EFFECTIVE LAGRANGIAN DENSITY IN THE
STRONG-COUPLING REGIME

In this section, we shall build a strong-coupling (U/t � 1)
perturbative low-energy theory (effective Lagrangian density)
suitable to describe the system in the half-filled and doped
regimes. Our aim is to investigate the relevant processes that
characterize the AF order in the large-U regime in terms of
the lower α band and the upper β band (see Fig. 1).

Let us start by expanding the auxiliary functions uk and vk

in Eq. (25) in powers of t/U as follows:

uk = 1√
2

[
1 + t |wk|

U
− t2|wk|2

2U 2
+ O

(
t3

U 3

)]
,

(27)

vk = 1√
2

[
1 − t |wk|

U
− t2|wk|2

2U 2
+ O

(
t3

U 3

)]
,

where εk = t |wk| [see Eq. (20)]. In the sequence, by using
Eqs. (17)–(19) and (23), we can express the Grassmann field

aiασ in terms of the Bogoliubov fields αkσ and βkσ :

aiασ = 1√
Nc

∑
kσ

eik·i [(uk + σvk)αkσ + (uk − σvk)βkσ ].

(28)
Now, by substituting Eq. (27) into Eq. (28), we can obtain a
perturbative expression for the Grassmann field aiασ in terms
of the spinless Grassmann fields αi and βi (see below), up to
O(t2/U 2), as follows:

aiασ = θ (σ )αi + θ (−σ )βi + θ (−σ )
t

U
αi + θ (σ )

t

U
βi

− t2

U 2

⎡
⎣θ (−σ )

∑
j

(αi+êj
+ αi−êj

) + 3θ (σ )αi

⎤
⎦

+ t2

U 2

⎡
⎣θ (σ )

∑
j

(βi+êj
+ βi−êj

) + 3θ (−σ )βi

⎤
⎦,

(29)

where αi and βi are defined by [37]

αi =
√

1

Nc

∑
σ

θ (σ )
∑

k

eik·iαkσ ,

(30)

βi =
√

1

Nc

∑
σ

θ (−σ )
∑

k

eik·iβkσ ,

θ (σ ) is the Heaviside function, with θ (σ )θ (−σ ′) = θ (σ )δσ,−σ ′ ,
and êj are the standard three unit vectors of the honeycomb
lattice [1]. This representation is appropriated to describe the
AF order, in the large-U regime, in the context of the referred
α and β bands. For example, to O(t/U ), Eq. (29) yields
aiA↑ ≈ αi and aiB↓ ≈ αi , which is consistent with the two
AF sublattice sites in a given unit cell i (low-energy spin
configuration), while for the high-energy β band, one finds an
opposite spin configuration: aiA↓ ≈ βi and aiB↑ ≈ βi .

At this stage, by inserting Eq. (29) into Eq. (16), and keeping
terms up to O(J ≡ 4t2/U ), one can write H0 in terms of the
spinless Grassmann fields αi and βi in direct space:

H0 = −J
∑

i

(α†
i αi − β

†
i βi ) + U

∑
i

β
†
i βi

− J

8

∑
ij

(α†
i αi+êj

− β
†
i βi+êj

+ H.c.). (31)

The charge Hamiltonian above correctly exhibits the phe-
nomenon of band shrinking [44] in the large-U regime.
Notwithstanding, we stress that H0 describe only processes in
the charge sector, i.e., no spin dynamics is involved. Therefore,
in our study of the magnetic properties of the system, these
processes play no role and, after a Legendre transform, the
Lagrangian density can be taken simply as

L0 =
∑

i

α
†
i ∂ταi , (32)

where the dynamic (kinetic) term signals the background of
the charge degrees of freedom.

045105-4



CHARGE AND SPIN QUANTUM FLUCTUATIONS IN THE . . . PHYSICAL REVIEW B 92, 045105 (2015)

We now employ the same perturbative scheme to Ln, i.e., we insert Eq. (29) into Eq. (13), such that, by keeping terms which
incorporates only the most relevant low-energy processes, i.e., quantum charge and spin dynamics between nearest-neighbor
sites, we obtain the following perturbative expansion for Ln:

Ln =
∑
iασ

θ (σ )(U †
iα∂τUiα)σσα

†
i αi − t

∑
ijαβσ

[θ (−σ )(U †
iαUi+êj β − 1)σ,−σ α

†
i αi+êj

+ H.c.]

+ t

2U

∑
ijασ

[θ (−σ )(U †
iα∂τUiα)σ,−σ (α†

i+êj
+ α

†
i−êj

)αi + H.c.]

− t
∑

ijαβσ

{(U †
iαUi+êj β − 1)σσ [θ (σ )α†

i βi+êj
− θ (σ )β†

i αi+êj
] + H.c.}. (33)

It should be noted that the last term in Eq. (33) contains hopping between α and β bands. This term must be treated
perturbatively, so that Ln appears as dependent on the low-energy α band only. We thus consider the perturbing Hamiltonian
below:

H1 = −t
∑

ijαβσ

{(U †
iαUi+êj β − 1)σσ [θ (σ )β†

i αi+êj
− θ (σ )α†

i βi+êj
] + H.c.}. (34)

It can be handled by means of standard second-order perturbation theory [38,45], which is consistent with the strong-coupling
expansion up to O(t2/U ):

�E ≡ Heff =
∑
kσ

|〈αkσ |H1|βkσ 〉|2
Eα

k − E
β

k

, (35)

where the unperturbed state is the system at half-filling: the low-energy α band is filled, while the β band is empty. As a
consequence, the shift in the energy �E due to H1 corresponds to an effective Hamiltonian, Heff , expressed in terms of the
low-energy α band only:

Heff = − t2

2U

∑
ijαβσ

θ (σ )
[∣∣(U †

iαUi+êj β

)
σσ

∣∣2 + ∣∣(U †
iαUi−êj β

)
σσ

∣∣2]α†
i αi . (36)

The above result allow us to obtain a perturbative expression of Ln in terms of the low-energy α band only.
Correspondingly, by adding L0 [see Eq. (32)] to the perturbation expression of Ln, we find that the effective low-lying

Lagrangian density of the honeycomb Hubbard model in the large-U regime, up to O(J ), is given by

L =
∑

i

α
†
i ∂ταi +

∑
iασ

θ (σ )(U †
iα∂τUiα)σσα

†
i αi − t

∑
ijαβσ

[
θ (−σ )

(
U

†
iαUi+êj β

)
σ,−σ

α
†
i αi+êj

+ H.c.
]

+ J

8t

∑
ijασ

(U †
iα∂τUiα)σ,−σ

[
θ (−σ )α†

i

(
αi+êj

+ αi−êj

)+ H.c.
]− J

8

∑
ijαβσ

θ (σ )
[∣∣(U †

iαUi+êj β

)
σσ

∣∣2 + ∣∣(U †
iαUi−êj β

)
σσ

∣∣2]α†
i αi .

(37)

We emphasize that the above low-lying Lagrangian density
incorporates only quadratic terms in α†,α. We can thus inte-
grate out the fermions degrees of freedom in order to explicit
the spin structure embedded in U

†
iαUi+êj α and U

†
iα∂τUiα .

V. HEISENBERG MODEL AND QUANTUM
SPIN FLUCTUATIONS

In the half-filled regime, the charge degrees of freedom
are frozen (〈α†

i ∂ταi 〉 = 0 and 〈α†
i αi+êj

〉 = 0), i.e., the lower-

energy α band is completely filled by electrons: nα ≡〈α†
i αi 〉=

1. Accordingly, it turns out that only the spin degrees of
freedom survive and are described by the SU(2) gauge fields in
Eq. (37). Further, this localized electronic background allows
the emergence of an AF phase [15,25]. Indeed, by performing

the following Legendre transform:

Hs = −
∑
iασ

∂L
∂(∂τUiα)σσ

(∂τUiα)σσ + L, (38)

where

∂L
∂(∂τUiα)σσ

= θ (σ )(U †
iα)σσ , (39)

we can map the large-U Hubbard model, in the half-filling
limit of the effective Lagrangian density in Eq. (37), onto the
following Heisenberg-like Hamiltonian written in terms of the
SU(2) gauge fields:

Hs = −J

8

∑
ijαβσ

θ (σ )
[∣∣(U †

iαUi+êj β

)
σσ

∣∣2 + ∣∣(U †
iαUi−êj β

)
σσ

∣∣2].
(40)

045105-5



F. G. RIBEIRO AND M. D. COUTINHO-FILHO PHYSICAL REVIEW B 92, 045105 (2015)

In fact, with the help of Eq. (9), we can write [38]

∣∣(U †
iαUi+êj β

)
σσ

∣∣2
= [1 + cos(θiα) cos

(
θi+êj β

)
+ sin(θiα) sin

(
θi+êj β

)
cos
(
φiα − φi+êj β

)]
(41)

or

∣∣(U †
iαUi+êj β

)
σσ

∣∣2 = 1
2

(
1 + niα · ni+êj β

)
, (42)

where niα = sin (θiα)[cos (φiα)x̂ + sin (φiα) ŷ] + cos (θiα) ẑ is
the unit vector. Accordingly, Hs can be brought to its standard
form:

Hs = −J
∑
ijαβ

Siα · Si+êj β − h
∑

iα

Siα + h
∑
ijβ

Si+êj β ,

− zNJ

8
, (43)

where Siα = niα/2, z is the coordination number (z = 3 for
the honeycomb lattice) and the two additional Zeeman terms
(h is the magnetic field) allow us to perform the calculation of
the staggered magnetization.

The second-order spin-wave theory [10] can offer an accu-
rate description of the relevant physical quantities, such as the
ground-state energy, E0, and the staggered magnetization per
site, m, which characterizes the AF order. In order to employ
this method to the quantum AF Heisenberg model in Eq. (43)

let us introduce the Holstein-Primakoff transformation:

Sz
iα = −a

†
i ai + S,

S+
iα =

√
2S − a

†
i ai ai , (44)

S−
iα = a

†
i

√
2S − a

†
i ai ,

for an up-spin on A site of sublattice A, and

Sz
i+êj β

= b
†
i+êj

bi+êj
− S,

S+
i+êj β

=
√

2S − b
†
i+êj

bi+êj
bi+êj

, (45)

S−
i+êj β

= b
†
i+êj

√
2S − b

†
i+êj

bi+êj
,

for a neighboring down-spin of sublattice B; the bosonic
creation and annihilation operators ai and a

†
i obey the commu-

tation relations: [ai ,a
†
i ′ ] = δi i ′ and [b j ,b

†
j ′ ] = δ j j ′ . Moreover,

we apply the Fourier transform [see, e.g., Eq. (17)] together
with the following Bogoliubov transformation:

ak = cosh (θk)αk − sinh (θk)β†
k, (46)

bk = − sinh (θk)α†
k − cosh (θk)βk,

where tanh (θk) = −γk and the lattice structure factor γk reads

γk ≡ 1

z

∑
j

eik·ej = 1

3

[
eikx + 2e−i kx

2 cos

(√
3 ky

2

)]
. (47)

The resulting diagonalized Hamiltonian up to O(1/S2), in
k-space, takes the form

Hs = −zS2JN

2
+ hSN + zSJ

∑
k

[(√
1 − γ 2

k − 1
)+

√
1 − γ 2

k (α†
kαk + β

†
kβk)

]

− zJ

2N

[∑
k

(√
1 − γ 2

k − 1
)]2

− h
∑

k

[(
1√

1 − γ 2
k

− 1

)
+ α

†
kαk + β

†
kβk√

1 − γ 2
k

]
− zJN

8
− 2zJ

N

∑
k,k′

α
†
kαkβ

†
k′βk′ . (48)

Correspondingly, in the thermodynamic limit, the ground-state energy per site in the presence of a magnetic field becomes

Eh

N
= −zS2J

2
+ hS + zSJ

4π2

∫
BZ

d2k
(√

1 − γ 2
k − 1

)− zJ

32π4

[ ∫
BZ

d2k
(√

1 − γ 2
k − 1

)]2

− h

4π2

∫
BZ

d2k

(
1√

1 − γ 2
k

− 1

)
− zJ

8
. (49)

In the sequence, we take S = 1/2 and perform the inte-
gration over the first Brillouin zone (BZ): | kx |� 2π/3 and
| ky |� π/

√
3 . As a consequence, we have found that the

ground-state energy per site at zero magnetic field is given
by (we have subtracted the term −zJ/8 with the intention of
comparing Eq. (49) at zero magnetic field to preceding results):
E0/NJ ≈ −0.5489. Indeed, this result agrees very well with
QMC [8,9] (−0.5440), second-order spin-wave analysis [10]
(−0.5489), series expansion [11] (−0.5443), TPS [12,13]
(−0.5445) and GTPS [14] (−0.5441) studies.

On the other hand, with the help of Eq. (49), we can
straightforwardly derive the staggered magnetization per site:

m = 1
N

∂Eh

∂h
|h=0. Thus one finds

m = S − 1

4π2

∫
BZ

d2k

(
1√

1 − γ 2
k

− 1

)
, (50)

which stands for both first- and second-order spin-wave pertur-
bation theory. Further, the integration over the first BZ yields
for S = 1/2: m ≈ 0.2418, which is in good agreement with
QMC results (0.22 ± 0.03 (Ref. [8]) and 0.2681(8) (Ref. [9]),
second-order spin-wave theory [10] (0.2418), series expansion
[11] [0.266(9)], and TPS simulations [0.2142 for the “vir-
tual dimension” D = 8 (Ref. [12]), and 0.285 for D → ∞
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(Ref. [13])], while simulations using GTPS [14] predict
slightly larger values: 0.3257 for D = 10 and 0.3239 for D =
12. Here, the “virtual dimension” D is a concept associated
with the integer bond indices of classical tensor-networks
on honeycomb lattices, and largely used in TPS and GTPS
simulations [12–14]. Furthermore, it has been indicated,
through topological arguments, the possible occurrence of a
VBS phase on the honeycomb lattice [23]. Thus, in Appendix,
we map the effective large-U Lagrangian density in Eq. (37),
in the continuum limit, onto the quantum nonlinear σ model
with a topological Hopf term, in which case its presence
(Chern-Simons term) is crucial for the possible occurrence of a
VBS order. However, despite that our results provide evidence

for the existence of this topological term in the context of our
approach, as mentioned in the Introduction, in the numerical
studies of the Hubbard model at half-filling the VBS order did
not appear as a stable phase [25].

VI. t- J MODEL: CHARGE AND SPIN
QUANTUM FLUCTUATIONS

In this section, we provide a systematic study of the
interplay between quantum charge and spin fluctuations in
the breakdown of the AF order in the doped regime. In order
to obtain the corresponding t-J Hamiltonian, let us apply the
Legendre transform in Eq. (37):

Ht-J = −
∑

i

∂L
∂(∂ταi )

∂ταi −
∑
ijασ

∂L
∂(∂τUiα)σσ

(∂τUiα)σσ −
∑
ijασ

∂L
∂(∂τUiα)σ,−σ

(∂τUiα)σ,−σ + L, (51)

where

∂L
∂(∂ταi )

= α
†
i ,

∂L
∂(∂τUiα)σσ

= θ (σ )(U †
iα)σσα

†
i αi ,

∂L
∂(∂τUiα)σ,−σ

= J

8t
(U †

iα)σ,−σ

[
θ (−σ )α†

i

(
αi+êj

+ αi−êj

)+ H.c.
]
, (52)

so that we indeed can map the large-U Hubbard model onto the following t-J Hamiltonian:

Ht-J = −t
∑

ijαβσ

[
θ (−σ )

(
U

†
iαUi+êj β

)
σ,−σ

α
†
i αi+êj

+ H.c.
]− J

8

∑
ijαβσ

θ (σ )
[∣∣(U †

iαUi+êj β

)
σσ

∣∣2 + ∣∣(U †
iαUi+êj β

)
σσ

∣∣2]α†
i αi , (53)

which describes the coupling between charge (Grassmann fields) and spin [SU(2) gauge fields] degrees of freedom in the regime
where double occupancy is excluded [O(J )].

In order to account for the effect of charge and spin quantum fluctuations on the ground-state energy and magnetization of the
system under hole doping and in the presence of a magnetic field, we shall consider that, in the regime of interest (stable AF phase
and U values not extremely high, such that the Nagaoka phenomenon is frozen; see discussion in the end of this section), these
quantum fluctuations manifest independently, i.e., the charge and spin correlation functions can be decoupled and calculated
separately. Below, we show that the consistent results which come out from this procedure are highly rewarding. The above
reasoning ammounts to consider that in Eq. (53), the charge correlation function is well described by the spinless tight-binding
result [46,47]:

∑
j

〈α†
i αi+êj

〉 = 1

π2

[√
2πδ sin(

√
2πδ ) + 8√

3
sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
, (54)

where δ = 1 − nα measures the hole doping away from half-filling.
We now consider the spin sector in Eq. (53), which is described by the SU(2) gauge fields through the matrix elements:

(U †
iαUi+êj β)

σ,−σ
and |(U †

iαUi+êj β)
σσ

|2, in terms of the usual spin operators [38]. The latter is given in Eq. (42), whereas the
former can be written as follows:(

U
†
iαUi+êj β

)
σ,−σ

= 1
2

{[
1 + 2

(
Sz

iα + Sz
i+êj β

)+ 4Sz
iαSz

i+êj β

]1/2 + [1 − 2
(
Sz

iα + Sz
i+êj β

)+ 4Sz
iαSz

i+êj β

]1/2}
. (55)

At this point, it is worthwhile to introduce the vector potential, A, by means of the Peierls substitution [49]: t −→
t exp (−i

∫ rj

r i
A · d r), which is the complex matrix element for tunneling between neighboring sites, in order to properly describes

the effects of charge and spin quantum fluctuations on the ground-state properties of the AF order. Thus, inserting Eqs. (42),
(54), and (55) into (53), we obtain the following effective t-J Hamiltonian:

Ht-J = −2te−i
∫ r j

ri A·d r

zπ2

[√
2πδ sin(

√
2πδ ) + 8√

3
sin

(√
πδ

2

)
sin

(√
3πδ

2

)]∑
ijαβ

[√
1 − 2Sz

i+êj β
− 2Sz

iα + 4Sz
iαSz

i+êj β

+
√

1 + 2Sz
i+êj β

+ 2Sz
iα + 4Sz

iαSz
i+êj β

]− J (1 − δ)
∑
ijαβ

Siα · Si+êj β − JNz(1 − δ)

8
− h

∑
iα

Siα + h
∑
ijβ

Si+êj β . (56)

Notice that we also coupled the external homogeneous magnetic field, h, to the spins on sublattices A and B.
Let us now implement the second-order spin-wave analysis in the spin sector of Eq. (56), with the help of Eqs. (44)–(47).

Further, it is convenient to choose the following Landau gauge: A = hx ŷ. As a result, we arrive at the following diagonalized
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Hamiltonian up to O(1/S2):

Ht-J = Ht
1 + HJ

2 , (57)

where the hopping Hamiltonian, Ht
1, reads (k-space)

Ht
1 = −8tzeh

√
3 /4

π2

⎡
⎣SN

z
+
∑

k

⎛
⎝ 1√

1 − γ 2
k

− 1

⎞
⎠+ 1

2

∑
k

α
†
kαk + β

†
kβk√

1 − γ 2
k

⎤
⎦

×
[√

2πδ sin(
√

2πδ ) + 8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
, (58)

and the exchange one, HJ
2 , becomes (k-space):

HJ
2 = −zS2J (1 − δ)N

2
+ hSN + zSJ (1 − δ)

∑
k

[(√
1 − γ 2

k − 1
)+

√
1 − γ 2

k (α†
kαk + β

†
kβk)

]

−h
∑

k

⎡
⎣
⎛
⎝ 1√

1 − γ 2
k

− 1

⎞
⎠+ α

†
kαk + β

†
kβk√

1 − γ 2
k

⎤
⎦− zJ (1 − δ)

2N

[∑
k

(√
1 − γ 2

k − 1
)]2

− zJ (1 − δ)N

8
. (59)

Therefore the energy spectrum of Ht
1 in the presence of a magnetic field takes the form

E1 = −8tzeh
√

3
4

π2

⎡
⎣SN

z
+
∑

k

⎛
⎝ 1√

1 − γ 2
k

− 1

⎞
⎠
⎤
⎦[√2πδ sin(

√
2πδ ) + 8√

3
sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
, (60)

whereas the one of HJ
2 reads

E2 = −zS2J (1 − δ)N

2
+ hSN + zSJ (1 − δ)

∑
k

[(√
1 − γ 2

k − 1
)]− h

∑
k

⎡
⎣
⎛
⎝ 1√

1 − γ 2
k

− 1

⎞
⎠
⎤
⎦

− zJ (1 − δ)

2N

[∑
k

(√
1 − γ 2

k − 1
)]2

− zJ (1 − δ)N

8
. (61)

Lastly, by adding Eqs. (60) and (61) and taking the thermodynamic limit, we find that the ground-state energy per site in the
presence of a magnetic field:

Eh

N
= −zS2J (1 − δ)

2
+ hS + zSJ (1 − δ)

1

4π2

∫
BZ

d2k
[(√

1 − γ 2
k − 1

)]− h
1

4π2

∫
BZ

d2k

⎡
⎣
⎛
⎝ 1√

1 − γ 2
k

− 1

⎞
⎠
⎤
⎦

− 8tzeh
√

3
4

π2

⎡
⎣S

z
+ 1

4π2

∫
BZ

d2k

⎛
⎝ 1√

1 − γ 2
k

− 1

⎞
⎠
⎤
⎦[√2πδ sin(

√
2πδ ) + 8√

3
sin

(√
πδ

2

)
sin

(√
3πδ

2

)]

− zJ (1 − δ)

32π4

[ ∫
BZ

d2k
(√

1 − γ 2
k − 1

)]2

− zJ (1 − δ)

8
. (62)

With the aim of corroborating the above analytical results with those obtained by GTPS simulations [14], let us choose t/J = 3,
S = 1/2, and z = 3. Initially, we analyze the destruction of the AF order through the evolution of the electronic structure by
increasing hole doping. Indeed, in Figs. 2(a) and 2(b), we show the evolution of the electronic structure from half-filled band
(δ = 0), at which the system displays a fully staggered AF order, to the doped regime at δ = 0.07, which is quite close to the
region of destruction of the AF phase. Moreover, after performing the integration over the first BZ zone in Eq. (62), we find that
the doping-dependent ground-state energy per site at zero magnetic field can be written as follows:

E0(δ)

NJ
= −0.3444

[√
2πδ sin(

√
2πδ ) + 8√

3
sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
− 0.9239(1 − δ), (63)

where one should notice that, here, for the sake of comparison with GTPS data, we have added the term −z(1 − δ)/8 to the
exchange contribution [second term in Eq. (63)], not considered in our estimate of E0/NJ at half-filling in Sec. V.
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FIG. 2. (Color online) Energy spectrum of the doped AF phase
at zero magnetic field and t/J = 3 for (a) δ = 0 and (b) δ = 0.07.

As shown in Fig 3(a), we compare the analytical result from
Eq. (63) with the recent GTPS [14] calculations, and QMC
simulations [9] at δ = 0. Remarkably, our result for the doping-
dependent ground-state energy agrees very well with the GTPS
one up to hole doping δ � 0.1. This critical value marks a
region of strong magnetic instability, i.e., the breakdown of the
AF order. We further indicate in the insets, Figs. 3(b) and 3(c),
the effect of hole doping in the energetic contributions of the
hopping and exchange Hamiltonians, respectively. Based on
physics ground, one can realize that the energetic contribution
due to the hopping term decreases far below zero at δ = 0,
as we tune up the hole doping away from half-filling, while
a linear increase in the exchange energy for increasing hole
doping is observed.

In order to better understand the effect of charge and spin
quantum fluctuations on the AF order; we also examine the
behavior of the staggered magnetization as a function of
doping. In doing so, we obtain by means of Eq. (62) that
the staggered magnetization per site, m = 1

N

∂Eh

∂h
|h=0, can be

written as (for S = 1/2)

m(δ) = 0.2418 − 0.1491

[√
2πδ sin(

√
2πδ )

+ 8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
. (64)

FIG. 3. (Color online) (a) Ground-state energy per site as a
function of doping for t/J = 3. We also compare with GTPS
numerical results for the virtual dimensions D = 8 (blue color) and
D = 12 (magenta color). (Insets) Energetic contributions of the (b)
hopping and (c) exchange terms [see Eqs. (60) and (61), or first and
second term in Eq. (63), respectively].

FIG. 4. (Color online) Staggered magnetization per site as a
function of doping. We also benchmark against GTPS simulations
for the virtual dimension D = 12. (Inset) Illustration of the low hole
doped AF phase.

It is very important to stress the origin of the two contributions
in Eq. (64): the first term stands for the Zeeman contribution
to m (value of m at half-filling), while the second term is
the orbital contribution to m calculated by means of the
Peierls substitution. Indeed, as seen in Fig. 4, the analytical
result in Eq. (64) indicates that both charge and spin quantum
fluctuations conspire for the breakdown of the AF order at
δ ≈ 0.1. As a benchmark, we also display the GTPS simula-
tions for the virtual dimension D = 12 (Ref. [14]). Indeed,
these findings are in good agreement for the critical hole
concentration δc ≈ 0.1 beyond which the AF phase disappears.
However, at half-filling (δ = 0), the GTPS calculation has
suggested a higher value for m = 0.3239 (D = 12), while
QMC simulations [9] have found m ≈ 0.2681(8), closer to
our value m ≈ 0.2418. Notwithstanding, taking into account
that the results for the ground-state energy and magnetization
from quite distinct techniques (numerical and analytical) are
compatible, we are confident that our analytical approach is
indeed highly rewarding and claims for further development
on this challenging topic.

We close this section by mentioning that the physical
framework described by Eqs. (54) and (55) is in agreement
with density-matrix renormalization-group results (DMRG)
for hole-doped AB2 t-J chains [48] with similar J values, in
which case the holes exhibit charge-density order in anti-phase
with the corresponding spin-density order. Accordingly, a
similar behavior of m versus δ has also been observed in the
low-doped regime of AB2 t-J chains.

VII. CONCLUDING REMARKS

We reported in detail an analytical investigation of the large-
U Hubbard model on the honeycomb lattice at half-filling
and in the hole-doped regime. Our approach, based on field-
theoretic methods, has the advantage of allowing us to derive
the Lagrangian density related to the charge and spin degrees of
freedom in a controllable scheme. As a result, we diagonalized
exactly the Hamiltonian associated with the charge degrees of
freedom only, in which case the electronic spectrum exhibits a
charge Hubbard gap separating the Dirac cones. In the strong-
coupling regime, by performing a perturbative expansion in
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the parameter t/U up to O(J = 4t2/U ), we were able to
derive a low-energy theory suitable to describe the quantum
antiferromagnetic phase (AF) as a function of hole doping.

At half-filling (quantum Heisenberg model), we have used
second-order spin-wave perturbation theory [O(1/S2)] to
study the effect of quantum spin fluctuations on the ground-
state energy and staggered magnetization of the AF order. The
results are in very good agreement with previous numerical
and analytical investigations. Furthermore, in the continuum,
we derived a nonlinear σ model with a topological Hopf term
that describes the AF-VBS competition, although numerical
studies of the Hubbard model indicate a continuous quantum
phase transition from a semimetal (weak-coupling regime) to
an AF phase (strong-coupling regime).

Finally, we stress that the most challenging aspect of our
analysis was the mapping of the hole-doped large-U Hubbard
model onto a t-J Hamiltonian; and the formulation of a
controllable perturbative scheme to analyze the role played
by charge and spin quantum fluctuations on the breakdown of
the hole-doped AF phase. In fact, our findings for the doping-
dependent ground-state energy and staggered magnetization
are quite consistent with recent GTPS numerical studies.
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APPENDIX: DERIVATION OF THE NONLINEAR σ

MODEL WITH A TOPOLOGICAL HOPF TERM

In this Appendix, our goal is to derive the nonlinear σ

model, i.e., to explicit the spin fluctuations by integrating out
the fermions degrees of freedom; as well as to analyze the
presence of the topological Hopf term which is crucial in
describing the Néel-VBS competition [21–24]. Hence, let us
turn the Lagrangian in Eq. (37) into the φ representation, where
the five-component unit vector φ iα is composed by the Néel
vector, niα , and the VBS order parameter, ρ iα , such that φ iα =
(n1

iα,n2
iα,n3

iα,ρ4
iα,ρ5

iα).
In order to write down the effective Lagrangian density in

Eq. (37) in the φ representation, we introduce the following
representation of the SU(4) group [50]: Uiα = cos (λ) −
i sin (λ)φ iα · �, where λ is a group parameter and � are
the usual Dirac gamma matrices. Here, we need a set of
five � matrices and among the possible choices [50], we
use �1,2,3 = σx,y,z ⊗ σy , �4 = σ0 ⊗ σx , and �5 = σ0 ⊗ σz.
Also, notice that these matrices satisfy the anticommuting
relation {�μ,�ν} = 2δμν and �5 = −�1�2�3�4. Hence, by
using the above SU(4) representation of Uiα , along with the
approximation ∂τφ iα × φ iα ≈ ∂τφ iα , we find that the effective
Lagrangian density, L, in Eq. (37) assumes the form

L ≈
∑

i

α
†
i ∂ταi + J

8t

∑
ijα

(1 + iφ iα · �)[α†
i (αi+ej

+αi−ej
) + H.c.]. (A1)

We would like to mention that terms which depend on the total
time derivative and irrelevant additive constant were excluded
(such terms do not contribute to the effective action).

In the sequence, we take the continuum limit in Eq. (A1),
such that the partition function takes the form

Z ≈
∫

DᾱDαe−Seff

=
∫

DᾱDα exp

{∫
d3xᾱ[iτμ∂μ + igφ̃iα]α

}
, (A2)

where τ are the Pauli matrices; besides, we have defined ᾱ ≡
iτzα

†, g ≡ J/4t , and φ̃iα ≡ φ · �. Correspondingly, by means
of the standard procedures [39,40], we can write down the
effective action as

Seff = ln det (iτμ∂μ + igφ̃iα). (A3)

At this stage, we follow Abanov and Wiegmann [51,52],
and write the Dirac operator in the form D = iτμ∂μ + igφ̃iα ,
which allow us to rewrite the fermionic determinant in Eq. (A3)
in a suitable form to evaluate a perturbative expansion. Hence,
by calculating the variation of the effective action, Seff , with
respect to φ, we get

δSeff = −Tr

(
δDD†

−∂2 + g2 − gτμ∂μφ̃

)
. (A4)

Now, by applying the perturbative expansion up to first
order in gτμ∂μφ̃, we find that the real contribution of Eq. (A4)
yields the nonlinear σ model [51–53]:

SRe = g

4π

∫
d3x(∂μφ)2. (A5)

Also, there exist an imaginary contribution which gives rise
to the topological Hopf term. With the purpose of making
its derivation explicit, we must add a parameter ξ such
that the field φ̃iα(x,ξ ) continuously interpolates between the
constant value φ̃iα(x,ξ = 0) = (0,0,0,0,1) and the physical
value φ̃iα(x,ξ = 1) = φ̃iα(x). This leads to

SIm = −i
εabcde

12π

∫ 1

0
dξ

∫
d3xφa∂τφ

b∂xφ
c∂yφ

d∂ξφ
e. (A6)

It is also worthwhile to introduce, without loss of generality,
the four-component unit vector π according to the fol-
lowing parametrization: φa = sin (ξϕ)πa , φb = sin (ξϕ)πb,
φc = sin (ξϕ)πc, φd = sin (ξϕ)πd and φe = cos (ξϕ). Thus,
integrating over the auxiliary variable ξ , we find that

SIm = −i
εμνλεabcd

12π

∫
d3x

[
1 − 9

8
cos(ϕ) + 1

8
cos(3ϕ)

]

×πa∂μπb∂νπ
c∂λπ

d, (A7)

where we can readily identify the topological Hopf term
[23,51–53]

H = εabcd

12π2

∫
d3xπa∂τπ

b∂xπ
c∂yπ

d (A8)

and the θ term

θ = π

[
1 − 9

8
cos(ϕ) + 1

8
cos(3ϕ)

]
. (A9)
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Lastly, by summing up Eqs. (A5) and (A7), we ob-
tain the action of the nonlinear σ model with a Hopf
term:

S = g sin2 ϕ

4π

∫
d3x(∂μπ )2 − iθH. (A10)

We would like to mention that by introducing a CP n−1 formu-
lation this action can be mapped onto a bosonic representation
with the well-known Chern-Simons term [23,39,51].

This nonlinear σ model with the extra topological term
describes the AF-VBS competition [21–24]. It is expected
that, as the Coulombian interaction U varies, which means
to tune the coupling constant g, so that the two insulating
phases become accessible in distinct regimes (quite possibly in
generalized Heisenberg models). The key point in the analysis
of these two distinct ground states is to make explicit the
hedgehog topological defect in the Néel order parameter. In
order to realize this monopole configuration we parametrize
the components of the four-component unit π in terms of the
Néel vector as follows: πa = sin (υ)na; πb = sin (υ)nb; πc =
sin (υ)nc and πd = cos (υ), such that we can write down the
Lagrangian density, LBP, associated with the Berry phase term

in Eq. (A7) as

LBP = i

3
(2υ − sin 2υ)

[
1 − 9

8
cos(ϕ) + 1

8
cos(3ϕ)

]
ρm,

(A11)
where

ρm = εabc

4π
∂τ (na∂xn

b∂yn
c) (A12)

is the monopole charge density. Thus when the monopole
charge density ρm is integrated over the space-time config-
uration of n there exists a change in the Skyrmion number:
�Qxy = ∫ dτdxdyρm.

These monopoles proliferate at the deconfined AF-VBS
critical point. Indeed, it has been shown that the presence
of such monopole events correctly describes the quantum
paramagnet VBS order [53–55], which spontaneously breaks
lattice (e.g., translational) symmetry. We may also identify the
Berry phase, which leads to the VBS order by setting ϕ = π/2
together with the following set of υ = {0,π,2π} in Eq. (A11),
in which case we find SBP = 1, e2iπ/3�Qxy , and e4iπ/3�Qxy ,
respectively, which correspond to a Berry phase shift equal to
2iπ/3�Qxy [55]; in fact, by applying the symmetry operation
in the honeycomb lattice we can construct the VBS order with
distinct patterns [23].
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