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Semiclassical analysis of intraband collective excitations in a two-dimensional
electron gas with Dirac spectrum
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Solving the initial value problem for semiclassical equations that describe two-dimensional electrons with the
Dirac spectrum, we found that collective excitations of the electrons are composed of a few distinct components of
the oscillations. There always exist sustained plasma oscillations with the well-known plasmon frequency ωpl(k).
Additionally, there are oscillations with a “carrier frequency” ω = vF k slowly decaying in time, according to a
power law (vF and k are the Fermi velocity and wave vector). The reason for the onset of these oscillations has
a fundamental character related to the branching of the polarization function of the Dirac electrons. A strongly
anisotropic initial disturbance of the electron distribution generates an additional component of the undamped
oscillations in the form of an electron unidirectional beam, which are van Kampen’s modes in the Dirac plasma.
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The polarization properties of electrons determine their
response to an external electrical signal, define the collective
plasmon and plasmon-phonon modes, as well as many other
phenomena involving interactions of the charges. Fundamental
and applied aspects of collective excitations in graphenelike
systems were discussed in detail in several reviews [1–8].
The polarizability of two-dimensional (2D) electrons with the
linear Dirac spectrum ε(p) = vF p differs considerably from
that of the electrons with a parabolic spectrum [ε(p) ∝ p2],
the latter characteristic for conventional low-dimensional
heterostructures. Particularly, the absence of the spectrum
curvature leads to less effective screening of the Coulomb
potential [1], gives rise to the divergence of the irreducible po-
larizability [9–11] �(ω,k) ∝ 1/

√
ω2 − v2

F k2 at ω → ±vF k,
where ω and k are the frequency and the 2D wave vector,
respectively, and vF is the Fermi velocity. Then, the square-root
behavior of the polarizability means that �(ω,k) is a double-
valued function on the complex ω plane. For the calculation of
the real characteristics of the physical system, the properties
of the polarizability as an analytical function on the complex
ω plane are critically important. The semiclassical approach
based on the analysis of the Boltzmann-Vlasov system of
equations allows one to construct the principal branch of
the polarizability function �(ω,k) and obtain transparent and
easily interpreted results. These results complement those
calculated with the use of different quantum mechanical
approaches in the long-wavelength limit [9,10].

Recently, new nanoscope techniques were proposed to
launch excitations by the sharp tip of an atomic force
microscope and to monitor them by a scattering type near-field
optical microscope [12,13]. The techniques have enabled
the experimental exploration of the spatiotemporal [14–17]
and time-resolved [18] dynamics of the collective excitations
in graphene and graphenelike systems. Importantly, both
the excitation amplitude and phase can be measured [19].
Similar studies have been performed by the use of a resonant
antenna plasmon launcher and a near-field optical microscope
[20]. Another promising method for plasmon investigation
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is time-resolved electrical measurements [21,22]. Observed in
these works, the macroscopic effects – long-wavelength charge
modes and local electric fields – can be described by using the
semiclassical approach.

In this Rapid Communication, we present the semiclassical
analysis of the longitudinal intraband excitations of a 2D
electron gas with the Dirac spectrum. It is appropriate to
note that the transverse electric mode in graphenelike systems
was analyzed in Ref. [23]. We assume an n-doped system
and restrict ourselves to excitations with ω and k for which
the interband processes can be neglected at a given electron
concentration n and ambient temperature T . Such an approach
is valid for �ω < ε(pF ), �k < pF at kBT � ε(pF ), with pF

being the Fermi momentum and kB is the Boltzmann constant
(for a detailed discussion, see, for example, Ref. [1]).

The Boltzmann-Vlasov system of equations consists of the
collisionless transport equation

∂F

∂t
+ vF

p
p

∂F

∂r
+ e

∂�

∂r

∣∣∣∣
z=0

∂F

∂p
= 0, (1)

and the Poisson equation

�� = 4πeδ[z]

κ

∫
g d2p

(2π�)2
[F (r,p,t) − F0(p)]. (2)

Here, the Dirac spectrum is assumed for electrons confined to
the sheet at z = 0. The electron coordinate and momentum r,p
are the 2D vectors in the x-y plane. F (r,p,t) is the electron
distribution function, and F0(p) is that under equilibrium.
�(r,z,t) is the self-consistent electrostatic potential. In Eq. (2),
e is the elementary charge, δ[z] is the Dirac delta function,
and g is the degeneracy factor of the electron band (for
graphene g = 4). The parameter κ depends on the dielectric
environment. If the electron sheet is between two materials
with the dielectric constants κl,κh, in the final formulas one
shall use κ = (κl + κh)/2.

For the collisionless limit it is necessary to require ωτ � 1,
vF kτ � 1, with τ being a characteristic scattering time. For
our purposes Eq. (1) shall be linearized. We denote the
variation of the distribution function asF(r,p,t) ≡ F (r,p,t) −
F0(p) and set F(r,p,t) = Fk(p,t) exp(ikr), and �(r,z,t) =
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�k(z,t) exp(ikr). Now Eqs. (1) and (2) take the form

∂Fk

∂t
+ ivF

kp
p
Fk = −iek�k(0,t)

∂F0

∂p
, (3)

d2�k

dz2
− k2�k = 4πeδ[z]

κ

∫
g d2p

(2π�)2
Fk(p,t). (4)

Following the Landau approach [24], we consider the initial
value problem by using the Laplace transform,

fω,k(p) =
∫ ∞

0
Fk(p,t)eiωtdt,

(5)

Fk(p,t) =
∫ ∞+iσ

−∞+iσ

fω,k(p)e−iωt dω

2π
,

where σ > 0. Similarly, we define the transformation of the
potential, φω,k(z). Now, one can easily find the solution for
fω,k(p),

fω,k(p) = i
δFk(p) − ieφω,k(0)k dF0(p)/dp

ω − vF (kp)/p
, (6)

with δFk(p) being a given initial perturbation of the electron
distribution. The solution to Eq. (4), which decays at z → ±∞,
also can be easily found. The potential at z = 0 is

φω,k(0) = −2πie

κ k �(ω,k)

∫
g d2p

(2π�)2

δFk(p)

[ω − vF (kp)/p]
≡ N (ω,k)

�(ω,k)
,

(7)

with �(ω,k) = 1 − 2πe2 �(ω,k)/κk and

�(ω,k) ≡ −
∫

g d2p

(2π�)2

(kp)/p

[ω − vF (kp)/p]

dF0(p)

dp
. (8)

It is clear that �(ω,k) has the meaning of the polarizability
obtained in the semiclassical limit. F0(p) is the Fermi distri-
bution, and then

�(ω,k) = κ K

2πe2

[
1

2π

∫ 2π

0
dα

ω

ω − vF k cos α
− 1

]
, (9)

K = e2gkBT

κ�2v2
F

ln

[
exp

(
EF

kBT
+ 1

)]
, (10)

where EF is the chemical potential.
According to the definition of the Laplace transform (5),

in the foregoing Eqs. (6)–(9), ω = ω′ + iω′′ is the complex
variable belonging to the upper half plane, ω′′ > 0. Under the
latter condition, the integral in Eq. (9) can be calculated as

�(ω,k) = κ K

2πe2

⎛
⎝ ω√

ω2 − v2
F k2

− 1

⎞
⎠. (11)

The function (11) is double valued with two branch points,
ω = ±vF k, as discussed above.

Consider an analytical continuation of �(ω,k) given by
(9) to the lower half of the ω plane. We start with the use of
(11) that is valid for all of the complex ω plane except for
the segment at the real axis, −vF k � ω′ � vF k. By choosing
the cut along this segment, we select the principle branch
of the function (11). Defined in such a way, �(ω,k) is

continuous when crossing the real axis at |ω| > vF k, while
it undergoes a jump in its value at the cut.

As a result of this procedure, we obtain also the function
�(ω,k) as a well-defined function in the complex ω plane. It
is easy to see that this function has simple zeros on the real
axis,

ω′ = ±ωpl, ωpl(k) = vF k(1 + k/K)√
(1 + k/K)2 − 1

, (12)

which are the exact solutions of the equation �(ω,k) = 0. For
what follows, it is important that ωpl(k) > vF k.

Before we proceed with a further analysis, let us estimate
the value K for the graphene. Assuming a graphene sheet over
a SiC substrate (κl ≈ 9.7,κh = 1), setting the electron con-
centration n = 2 × 1012 cm−2, and temperature T = 300 K,
we obtain EF ≈ 0.16 eV, EF /kBT ≈ 6.12, pF /� ≡ kF ≈
2.5 × 106 cm−1, and K ≈ 3.9 × 106 cm−1. That is, kF < K

and for the semiclassical analysis we should use k < kF < K .
For example, at k = 0.05 K we obtain ωpl ≈ 6.4 × 1013 s−1

and vF k ≈ 2 × 1013 s−1. We refer to this set of parameters
as the κ-environment-I. To estimate the criteria of validity of
the collisionless approximation, one needs to know the char-
acteristic scattering time τ . The “intrinsic” electron-electron
scattering time is of the order of 10−11 s [25]. Optical phonon
scattering can be neglected for the above accepted parameters.
The acoustical phonon scattering time at T � 300 K is
estimated to be less than 2 × 10−11 s [2]. Elastic scattering
by imperfections is dominant. It can be determined via the
phenomenological relationship for the transport time τ ≈
μEF /ev2

F , with μ being the mobility. Assuming μ = 2.5 ×
104 cm2/V s, we obtain τ ≈ 4 × 10−13 s and find that the
semiclassical approximation criteria are met: ωplτ ≈ 26 � 1,
vF kτ ≈ 8 � 1.

For a graphene sheet in a high-κ environment (for example,
graphene in a solvent [26]), the value K can be sufficiently less
than kF . Then the case k � K may be actual. For example,
at κl ≈ 9.7, κh = 50, and k = K (κ-environment-II) for the
same electron concentration, we obtain K ≈ 7 × 105 cm−1

and ωpl ≈ 8 × 1013 s−1, vF k ≈ 7 × 1013 s−1 (note that the
accepted k is greater than for the κ-environment-I). These
estimates show that the excitations considered are rather of the
THz diapason.

Now, one can perform the inverse Laplace transform to
find desirable functions in the time domain. Below, we will
concentrate on the potential at z = 0:

�k(t) ≡ �k(0,t) =
∫ ∞+iσ

−∞+iσ

φω,k(0)e−iωt dω

2π
. (13)

According to Eq. (7), one can present φω,k(0) as a fraction,
where the nominator N (ω,k) is determined by the initial
perturbation δFk(p). First, we will use the typical assumption
[24] that the initial perturbation is such that N (ω,k) has no
poles in the ω plane. Then, the analytical properties of both
�(ω,k) and the whole integrand in (13) allow one to deform the
integration contour and calculate explicitly the contributions of
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(a)

(b)

(c)

(d)

FIG. 1. (Color online) Normalized potential ϕC
k (t) for (a),

(c) κ-environment-I and (b), (d) κ-environment-II. (a), (b) Isotropic
initial perturbation. (c), (d) Strongly anisotropic initial perturbation:
solid line, α0 = π/3; dotted line, α0 = 0. Insets of (a), (c): Cuts
and integral paths on the ω plane. Inset of (b): ϕC

k (t) for weak
anisotropic perturbation. Inset of (d): Example of temporal pattern
for ωpl ≈ 2ωvK .

the residues related to the zeros of �(ω,k) and branch points:

�k(t) = �R
k (t) + �C

k(t), (14)

�R
k (t) = −i

[
ω2

pl − v2
F k2

]3/2

v2
F kK

{N (ωpl,k) exp [−iωplt]

−N (−ωpl,k) exp [iωplt]}, (15)

�C
k(t) =

∮
C
φω,k(0)e−iωt dω

2π
. (16)

In the integral (16), contour C encloses the cut, as shown in
the inset of Fig. 1(a).

In Eq. (14), the first term oscillating with time describes the
undamped plasmons excited by the initial perturbation of the
distribution function. The latter specifies only the magnitude
of the plasmon excitations, while their frequencies do not
depend on the initial perturbation. They are determined by the
zeros of �(ω,k) given by Eq. (12). For k � K , one obtains
“the square root law” [9,10], ωpl ≈ vF

√
kK/2; in the opposite

limit, ωpl → vF k.
The last term in Eq. (14) arises due to the existence of

branch points in �(ω,k). For electron systems with regular
quadratic energy dispersion, there is no branching and such
a contribution does not exist. In order to perform integration
in Eq. (16) we need to specify the initial perturbations. Let us
consider a few examples of different initial perturbations.

First, assume that the initial perturbation is isotropic,
δFk(p) = δFk(p), i.e., for perturbed electron gas the average
momentum and velocity are zero. Then,

N (ω,k) = i�0
k√

ω2 − v2
F k2

, �0
k = − eg

κ�2k

∫ ∞

0
pdp δFk(p),

(17)

where the square root should be defined as the principal
branch on the ω plane with the above discussed cut. Now,
the contribution of the residues to the potential equals

�R
k (t)

�0
k

= 2
[
ω2

pl(k) − v2
F k2

]
v2

F kK
cos[ωpl(k) t] . (18)

The contour integral of Eq. (16) can be easily estimated for
two limiting cases,

�C
k (t)

�0
k

≈
{

k
K

J1(vF kt)/vF kt, k � K,

J0(vF kt), k � K,
(19)

where J0(x),J1(x) are the Bessel functions. At t � 1/(vF k),
both expressions can be further simplified,

�C
k (t)

�0
k

≈
√

2

π

{
k
K

cos[vF kt−3π/4]
(vF kt)3/2 , k � K,

cos[vF kt−π/4]
(vF kt)1/2 , k � K.

(20)

Thus, the initial isotropic perturbation of the electron distri-
bution generates two different components of the electrostatic
potential oscillating in time and space. The first component is,
obviously, sustained regular plasmon oscillations, excited by
the initial perturbation. The second component corresponds
to oscillations with the “carrier” frequency ω = vF k. The
oscillations decay in time according to a power law. Mathe-
matically, they arise due to the existence of the branch points of
the polarization function (9). Recovering the space-dependent
factor exp[ikr], one can see that the �R

k and �C
k components

correspond to standing waves. The main panels of Figs. 1(a)
and 1(b) show the normalized potential ϕC

k (t) = �C
k /�0

k of
these oscillations for the two κ environments discussed above.

Interestingly, the ratio of the magnitudes of the two com-
ponents depends essentially on the wave vector. Indeed, for
k � K , and t → 0 we obtain the estimate ϕC

k ≈ k/2K � 1.
From Fig. 1(b) we see that at k = K , ϕC

k ≈ 0.33. In the
opposite case, k � K , we obtain ϕC

k ≈ 1. That is, the regular
plasmon component is preferable excited by long-wavelength
perturbations.

Then, consider an initial perturbation of the weak
anisotropic form δFk(p) = δFk(p)pn/p, with n being a unit
vector of a preferential direction. We denote the angle between
n and k as α0. For this case, at t = 0 the perturbed electron gas
receives additional momentum and nonzero velocity, while the
electron density is unperturbed. The calculation gives

N (ω,k) = i
�0

k cos α0

vF k

⎡
⎣ ω√

ω2 − v2
F k2

− 1

⎤
⎦, (21)

where �0
k is given formally by the second relationship of

Eq. (17). Calculating the time-dependent potential �k(t) with
this N (ω,k) function, one can use the analytical continuation
discussed above, as well as Eqs. (14)–(16), and the integration
contour shown in the inset of Fig. 1(a). The residue contribu-
tion to the potential is

�R
k (t)

�0
k

= −2i cos α0

[
ω2

pl(k) − v2
F k2

]3/2

v3
F kK2

sin[ωpl(k)t]. (22)
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For the contour integral of Eq. (16), we present the results
obtained for two limiting cases:

�C
k(t)

�0
k

≈ i cos α0

{(
k
K

)2[ J0[vF kt]
vF kt

− 2 J1[vF kt]
[vF kt]2

]
, k � K,

J1(vF kt), k � K.

(23)
At t = 0, both contributions �R

k and �C
k equal zero. At t �

1/vF k, we obtain

�C
k(t)

�0
k

≈ i

√
2

π
cos α0

⎧⎨
⎩

(
k
K

)2 cos [vF kt−π/4]
(vF kt)3/2 , k � K,

cos [vF kt−3π/4]
(vF kt)1/2 , k � K.

(24)

Thus, weak anisotropic initial perturbation also produces two
component oscillations with purely imaginary magnitudes, �R

k
and �C

k, with frequencies ω = ωpl(k) and ω = vF k, respec-
tively. The latter are decaying in time. At small t ≈ 1/vF k,
these oscillations are quite different from those discussed
above, since such a perturbation does not generate directly
a space charge and an electrostatic potential. Both are devel-
oping with time. The normalized potential ϕC

k (t) = �C
k/�0

k

of these oscillations is illustrated in the inset of Fig. 1(b).
The oscillations’ magnitude depends on the angle α0. The
magnitude reaches maxima for α0 = 0,π . If α = π/2, the
perturbation does not excite the oscillations.

Finally, consider the extremely anisotropic initial pertur-
bation, δFk(p) = 2πδFk(p) δ[α − α0], where α is the angle
between p and k, and α0 determines the anisotropy direction.
For the function N (ω,k) we obtain

N (ω,k) = i�0
k

ω − vF k cos α0
, (25)

with �0
k still defined by Eq. (17). The function (25) has a pole

at the ω′ axis, ω = ωvK (k) ≡ vF k cos α0. That implies that the
above accepted way of analytical continuation of the function
�(ω,k) is no longer applicable. Instead, one can use two cuts
along the semi-infinite lines in the lower part of the ω plane,
ω = ±vF k + iω′′, ω′′ � 0, as shown in the inset of Fig. 1(c).
Now �(ω,k) is continuous across the real axis everywhere,
excluding the points ω = ±vF k, and undergoes jumps at the
semi-infinite cuts. The time-dependent total potential (13)
consists of four contributions:

�k(t) = �R
k (t) + �

Cl

k (t) + �
Cr

k (t) + �vK
k (t). (26)

In contrast to the previous cases, every contribution has
nonzero real and imaginary parts. The term �R

k (t) is the
plasmon contribution determined by Eq. (15), with N (ω,k)
given by (25),

�R
k (t)

�0
k

= 2
[
ω2

pl − v2
F k2

]3/2

v2
F kK

(
ω2

pl − v2
F k2 cos2 α0

)
×{ωpl cos[ωplt] − ivF k cos α0 sin [ωplt]}. (27)

The terms �
Cl

k (t) and �
Cr

k (t) are the contour integrals around
the left and right cuts, respectively [see Fig. 1(c)]. The
main panels of Figs. 1(c) and (d) display the real parts
of the total contribution �C

k = �
Cl

k + �
Cr

k from the contour
integrals. The latter can be found explicitly in the limiting

case t � 1/(vF k sin2 α0):

�C
k(t)

�0
k

≈
√

2/π

sin2 α0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k
K

{cos [vF kt − 3π/4] − i cos α0

× sin [vF kt − 3π/4]}(vF kt)3/2, k�K,

K
k
{cos [vF kt − π/4] − i cos α0

× sin [vF kt−π/4]}(vF kt)1/2, k�K.

(28)
The last term in (26) is generated by the additional pole at
ω = ωvK (k):

�vK
k (t) = �0

k exp [−iωvK (k)t]

1 + K(i cos α0/| sin α0| + 1)/k
, (29)

Thus, the strongly anisotropic initial perturbation produces
four components of the oscillations. As in the previous cases,
one of these components, �R

k (t), is the sustained plasmon
oscillations. The other two components, �Cl

k (t) and �
Cr

k (t), are
oscillations with a “carrier frequency” ω = vF k: They have
different amplitudes and time dependences at finite t and both
are similarly decaying in time. Restoring the space-dependent
factor exp[ikr], one can see that the �R

k and �C
k components

correspond to traveling waves.
The additional fourth component, �vK

k (t), corresponds to
undamped oscillations with the frequency ωvK (k). This wave
traveling along the wave vector k (or in the opposite direction)
can be interpreted as a particle beam modulated in time and
space and moving with the velocity vF cos α0. In the physics
of a three-dimensional plasma with a regular dispersion of
the electrons, such types of waves, with real ω and k, are
known as the van Kampen modes [27,28]. Particularly, van
Kampen has shown [27] that a sharply anisotropic initial
disturbance of the plasma generates waves among which there
is such a monoenergetic modulated wave. To distinguish the
solution (29) from the other components of oscillations, we
will designate it as a van Kampen mode.

At a given k, the van Kampen mode depends on two param-
eters, �0

k and α0, which characterize the initial perturbation.
When the angle of the anisotropy direction, α0, changes from
π/2 to 0, the frequency of this mode increases from 0 to
vF k. At that, the magnitude of the wave varies from infinity
(α0 = π/2) to zero (α0 → 0). In the latter case, when the
pole ωvK → vF k, the �C contribution sharply increases, as
illustrated by numerical calculations presented in Figs. 1(c)
and 1(d). Interestingly, in the Dirac plasma, the modulated
electron beam corresponding to the van Kampen mode is
composed of unidirectional but not necessarily monoenergetic
electrons, as is seen from the accepted above form of the initial
perturbation of the electron distribution.

Note, the region on the ω-k plane, where the van Kampen
modes can be excited, coincides formally with the region for
which the quantum theory predicts the existence of electron-
hole pairs at low temperature [1,4–10]. As contrasted with such
one-particle excitations, the van Kampen modes are collective
charge excitations.

At a given k, all of the obtained oscillating components are
spatially coherent. Their superposition (26) may demonstrate
a complex temporal behavior, for example, a beating effect
between the plasmon waves and the van Kampen modes, as
shown in the inset of Fig. 1(d). To characterize a complex
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temporal signal, it is useful to apply a Fourier analysis. We
performed such an analysis for the obtained oscillations (26)
and found the amplitude and phase of this signal as functions
of the frequency. The amplitude shows very narrow peaks
at frequencies of the regular plasmons and the van Kampen
modes, while their respective phases behave with sharp jumps,
as it is typical near resonance. At the frequency ω = vF k,
corresponding to the �C

k(t) component of oscillations, the
amplitude has a smeared spike, however, the phase appears to
have a clear characteristic kink. These features of the amplitude
and phase of the collective excitations can be verified by
contemporary measurement techniques.

In conclusion, we have used the semiclassical approach
to obtain transparent results on the dynamics of collective
excitations in a Dirac 2D electron gas. By solving the initial
value problem for the system of Boltzmann-Vlasov and
Poisson equations with different forms of initial disturbances
of the distribution function and charge, we found that collective
excitations of the electrons with the Dirac spectrum are
composed of a few distinct components of the oscillations.

Among these, there are always well-known sustained plasmon
oscillations with the frequency given by Eq. (12). Also, there
exist another type of oscillations with the carrier frequency
ω = vF k; they are of a transient character, decaying in
time, according to a power law. Mathematically, the latter
component of the oscillations arises due to the branching
feature of the polarizability function. Finally, a strongly
anisotropic initial disturbance generates another component of
undamped oscillations of frequency ω = vF k cos α0, with α0

being the angle between the wave vector k and the anisotropy
direction. We interpreted these undamped oscillations in the
form of an electron unidirectional beam and an attendant
electrostatic potential both modulated in time and space, as
van Kampen’s mode [27] in the plasma of the Dirac electrons.

The results obtained demonstrate that the semiclassical
approach is adequate to describe the dynamics of collective
excitations of THz spectral diapason in the Dirac electron gas.

This work is partially supported by grant NAS of Ukraine
for young scientists.
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