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Topological states in a microscopic model of interacting fermions
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We present a microscopic model of interacting fermions where the ground state degeneracy is topologically
protected. The model is based on a double-wire setup with local interactions in a particle number conserving
setting. A compelling property of this model is the exact solvability for its ground states and low energy excitations.
We demonstrate the appearance of topologically protected edge states and derive their braiding properties on a
microscopic level. We find the non-Abelian statistics of Ising anyons, which can be interpreted as Majorana-like
edge states.
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Introduction. Topologically protected ground state degen-
eracies in many-body quantum systems, and the closely related
(non-Abelian) anyonic statistics, are of special interest from
a theoretical point of view [1,2], and have been recognized
as promising concepts for scalable fault-tolerant quantum
computation [3,4]. A well understood class is topological states
with Majorana zero-energy edge modes appearing within
mean-field descriptions of topological superconductors [5].
These free fermion theories have been classified exhaustively
[6,7], and the properties of the Majorana zero modes at
boundaries [8] and in vortices [9] have been characterized.
In contrast, interacting and gapless phases are less well under-
stood [10–13], and to which extent existence and non-Abelian
properties of edge states carry over to interacting theories is
an interesting question lacking conclusive answers [14].

The understanding of topological states is driven by exactly
solvable microscopic models; the paradigmatic one for the
existence of topologically protected Majorana edge modes is
the one-dimensional Majorana chain [8]. It has inspired a vari-
ety of proposals for its experimental realization in condensed
matter systems [5,15–17], and signatures consistent with
Majorana modes have been experimentally observed [18–21].
Nevertheless, these models require large reservoirs to justify
their mean-field description, whereas very little is known
about the fate of Majorana zero-energy edge modes in intrin-
sically interacting and particle conserving settings. Previous
attempts for number-conserving theories featuring Majorana-
like edge states relied either on bosonization [22–26]
or on numerical methods [density-matrix renormalization
group (DMRG)] [27], while the only exactly solvable models
require unphysical long-range interactions [28].

In this Rapid Communication, we present a microscopic,
number-conserving theory with local interactions that features
non-Abelian edge states at the boundaries. The theory allows
for an exact derivation of its many-body ground state as
well as its low-energy excitations, and thereby provides a
viable playground for analyzing its characteristic properties.
We find that the ground state is characterized by a con-
densate of p-wave pairs with a topological degeneracy. The
Green’s function exhibits a revival at the edges, indicating
the appearance of edge states. Remarkably, the system can
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FIG. 1. (Color online) Setup. (a) We consider a double chain
(two-leg ladder) of spinless fermions with upper (lower) chain
denoted as a (b). (b) The number-conserving Hamiltonian is given
by intrachain terms Ax

i (x = a,b) and interchain couplings Bj .

be extended to arbitrary wire networks, which allows us to
derive the non-Abelian braiding statistics of the edge states on
a microscopic level.

We consider a double chain (two-leg ladder) of spinless
fermions with L lattice sites. The fermionic creation operators
at site i are described by a

†
i (upper chain) and b

†
i (lower

chain) (see Fig. 1). The many-body Hamiltonian H = Ha +
Hb + Hab describing the interacting fermion theory combines
intrachain contributions Hx (x = a,b) as well as interactions
Hab between the two chains. The intrachain Hamiltonian takes
the form

Hx =
L−1∑
i=1

Ax
i

(
1 + Ax

i

)
(1)

with the single-particle hopping terms

Aa
i = aia

†
i+1 + ai+1a

†
i , Ab

i = bib
†
i+1 + bi+1b

†
i . (2)

Consequently, it combines single-particle hopping with a
nearest-neighbor attraction nx

i + nx
i+1 − 2nx

i n
x
i+1. The inter-

chain interaction Hab takes a similar form

Hab =
L−1∑
i=1

Bi(1 + Bi) (3)

with the pair hopping between the two chains

Bi = a
†
i a

†
i+1bibi+1 + b

†
i b

†
i+1aiai+1. (4)

It is important to stress that the Hamiltonian H conserves
the total number of particles N , which defines the only free
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FIG. 2. (Color online) Ground states. (a) For every filling N with
parity P = (−1)N , there are two degenerate zero-energy ground states
for open boundary conditions, characterized by their (upper) subchain
parity α = Pa . (b) The chosen fermion gauge leads to the simple
description of the ground states given in the text. (c) Behavior of the
spectrum in the low-energy sector of symmetry subspaces classified
by the total parity P and the subchain parity α. Both open (OBC) and
periodic (PBC) boundary conditions are shown; zero-energy states
are drawn bold.

parameter of the theory and is conveniently expressed as
the filling ρ = N/2L. H features two additional, relevant
symmetries, namely, (i) the subchain parity Px ≡ (−1)

∑
i x

†
i xi

(x = a,b), and (ii) time-reversal symmetry T ≡ K repre-
sented by complex conjugation K and T x

(†)
i T −1 ≡ x

(†)
i .

Ground states. In order to derive the ground states ana-
lytically, the observation that Hamiltonian H is the sum of
local projectors and therefore a locally positive operator is
crucial. Then we exploit the fact that any zero-energy ground
state must be annihilated by all local terms in (1) and (3)
simultaneously. That is, if we find a state with zero energy
which is annihilated by all local terms, we can be sure that it is
a ground state. This yields a viable method to construct them
from scratch—provided zero-energy ground states exist.

For an open ladder, there are exactly two degenerate zero-
energy ground states for each filling 0 < N < 2L [Fig. 2(a)],
denoted as |N,α〉 and characterized by the upper chain
parity α ≡ Pa ∈ {+1,−1} (see the Supplemental Material for
a rigorous proof [29]). For an appropriate fermion gauge
[see Fig. 2(b)], each ground state is given by the equal-
weight superposition of distributing N particles on the two
chains constrained by the fixed subchain parity α. To cast
this in a formal description, we first introduce the fermion
number states |n〉x with x = a,b and n ∈ {0,1}L, i.e., |n〉a =
(a†

1)n1 . . . (a†
i )ni . . . (a†

L)nL |0〉a for the upper chain with the
number of fermions |n| = ∑L

i=1 ni . Then the equal-weight
superposition states on each chain with a fixed number of
particles reduce to |n〉x ≡ ∑

|n|=n |n〉x ; note that this state is
not normalized. Finally, the equal-weight superposition with
fixed particle number N and subchain parity α can be written as

|N,α〉 = N−1/2
L,N,α

∑
n,(−1)n=α

|n〉a|N − n〉b, (5)

where N−1/2
L,N,α is the normalization factor that counts the

number of superimposed fermion configurations.
In contrast, for a closed ladder the situation is more subtle:

For even total particle number N = 2K , there is a unique
zero-energy ground state |2K,−1〉 in the odd-odd (α = −1)

subchain-parity sector, whereas in the odd-N sectors all states
are lifted to finite energy. This is summarized in Fig. 2(c) where
the low-energy scaling is given as well (see below).

At this point it seems advisable to compare these ground
states with those of a single Majorana chain (Kitaev’s chain),
which in analogy features two zero-energy ground states for
open boundary conditions [8]: For vanishing chemical poten-
tial (perfectly localized edge modes), the ground states of the
Majorana chain are given by the equal-weight superposition
of particle number states with fixed (global) parity. In contrast,
here the chains act as mutual particle reservoirs and the ground
state degeneracy arises due to two admissible subchain-parity
configurations within each fixed particle number sector.

We start exploiting the concise description of the ground
states, and derive simple expressions for density correlations,
superfluid order parameter, and the Green’s function (single-
particle correlation). To this end, it proves useful to define
the parity-split binomial coefficients (PsBCs) which count the
configurations to distribute N particles among

∑g

i=1 Li sites
with the additional constraint that the parity of subsystem Li

(1 � i < g) is fixed by αi = ±1,

(
L1, . . . ,Lg

α1, . . . ,αg−1

)
N

≡
N∑

n1,...,ng−1

(
Lg

N − ∑g−1
i=1 ni

) g−1∏
i=1

(
Li

ni

)
δαi

ni

(6)

with δαi
ni

≡ [1 + αi(−1)ni ]/2. Although we are not aware of
simple analytical expressions (except for special cases; see
Supplemental Material), the PsBCs can easily be evaluated
numerically. Due to the simple structure of the ground states,
all correlation functions and expectation values of |N,α〉 can
be rewritten in terms of finite combinations of PsBCs. E.g., the
normalization of the two ground states reads NL,N,α = (L,L

α )N .
We find that the density-density correlation function

factorizes, 〈x†
i xiy

†
j yj 〉 → ρ2 for i �= j ; x,y ∈ {a,b} in the

thermodynamic limit L,N → ∞ with fixed particle density
ρ. The pair correlations read |〈x†

i x
†
i+1yjyj+1〉| → ρ2(1 − ρ)2

for i �= j ; x,y ∈ {a,b}, and indicate a condensate of p-wave
pairs with true long-range order. Note that the results for
both correlators do not depend on the subchain parity α of
the ground states. This is true up to exponential corrections
vanishing with L → ∞. For particularly symmetric setups
(e.g., x �= y and N odd) these corrections even vanish
identically.

The intrachain Green’s function (indicating single-particle
off-diagonal long-range order [30]) can be expressed in terms
of PsBCs (j > i + 1)

〈a†
i aj 〉 = N−1

L,N,α[�+1,−α − �−1,α], (7)

where �α1,α2 ≡ (j − i − 1,L − j + i − 1,L

α1,α2
)N−1. See the Supplemen-

tal Material for a detailed derivation. In the thermodynamic
limit one finds exponentially decaying correlations in the bulk
[see Fig. 3(a)],

〈x†
i xj 〉 = e−γ (ρ)|i−j | for 1 	 i,j 	 L; x ∈ {a,b}, (8)

where γ is some function of the filling with 0 < γ (ρ) � ∞ and
γ (1/2) = ∞. The boundary terms read |〈a†

1aL〉| → ρ(1 − ρ)

041118-2



RAPID COMMUNICATIONS

TOPOLOGICAL STATES IN A MICROSCOPIC MODEL OF . . . PHYSICAL REVIEW B 92, 041118(R) (2015)

FIG. 3. (Color online) Ground state properties. (a) Intrachain
single-particle correlation 〈a†

i aj 〉 (Green’s function) as a function of
the distance |i − j | for various fillings ρ and a chain of length L = 30.
The revival for |i − j | ∼ L indicates exponentially localized edge
states (gray region). (b) Overlap of the ground states for time-reversal
invariant (TRI) and breaking (TRB) perturbations of H in dependence
on the position i,j of the subchain-parity violating single-particle
hopping (blue: ρ = 0.5 TRI; red: ρ = 0.5 TRB; gray: ρ = 0.25
TRB).

in the thermodynamic limit, indicating the existence of
exponentially localized edge states [Fig. 3(a)].

The topological protection of the ground state degeneracy
is most conveniently characterized in terms of their indis-
tinguishability by any local perturbation [14,31]. Let O be
an arbitrary local (Hermitian) operator. Then the expectation
values 〈α|O|α〉 and 〈−α|O|−α〉 are identical up to an
exponentially small correction—as follows from the above
analysis of the correlation functions. However, for operators
violating the subchain parity Px , also the overlap 〈−α|O|α〉
must be taken into account. Then the situation is more
subtle. We illustrate this for the simplest case of a single-
particle interchain hopping (the statements can be generalized
to more complex Px-violating terms, though). Let Oj =
eiφa

†
j bj + e−iφb

†
j aj with complex hopping phase φ ∈ [0,2π ).

Splitting this perturbation into time-reversal invariant (TRI)
and breaking (TRB) contributions, one finds by evaluating the
corresponding PsBCs,

TRI : 〈−α|a†
δbδ + b

†
δaδ|α〉 → 0, (9a)

TRB : 〈−α|ia†
δbδ − ib

†
δaδ|α〉 → e−μ(ρ)δ (9b)

for the distance δ from the edges of the ladder, δ 	 L when
L → ∞ and ρ is fixed. These site-dependent overlaps are
illustrated in Fig. 3(b). Thus the topological ground state
degeneracy for the double-wire setup can either be protected
by time-reversal symmetryT or subchain parity Px , and is only
spoiled if both symmetries are broken at the same time. The
latter, however, is not surprising as the two edge states on the
upper and lower wires are not spatially separated. We will show
below that our model can be generalized to wire networks,
where the different edge states become spatially separated.
Then it follows immediately that the topological properties
are protected against any local operator O conserving the total
number of particles.

Ground state entanglement. Another well-known signature
of topological states is a stable degeneracy of the entanglement
spectrum (ES) [32–34]. In our case, the ES of the ground states
|N,α〉 with respect to a bipartition (S|L \ S) of the ladder [see

FIG. 4. (Color online) Entanglement. (a) Two branches (β =
±1: red/blue) of the entanglement spectrum for a chain of length
L = 20 and splitting S = 10 with fillings N = 10,20,30 (diamonds,
circles, squares, respectively). The half-filling branch is highlighted
gray. Physically, the index n describes the subsystem filling while β

describes the subsystem subchain parity. This illustrates the twofold
degeneracy of the entanglement spectrum. (b) The entanglement
entropy Sent as a function of subsystem size S for various fillings ρ.
It obeys an area law with logarithmic corrections.

inset of Fig. 4(b)] is given by the Schmidt decomposition

|N,α〉 =
∑

n

∑
β=±1

e−ξn,β/2|n,β〉S|N − n,αβ〉L\S (10)

and can be written in terms of PsBCs,

ξn,β = − ln

[(
L − S,L − S

αβ

)
N−n

(
S,S

β

)
n

/(
L,L

α

)
N

]
,

(11)

where max{0,N − 2L + 2S} � n � min{N,2S} and β = ±1.
The β = ±1 branches of the spectra for a half-split system of
length L = 20 are shown in Fig. 4(a) for different fillings
N and reveal the twofold degeneracy of the ES due to the
subsystem subchain parity β.

In addition, the scaling of the entanglement of a sub-
system S with the environmental system as a function of
the subsystem size S in terms of the entanglement entropy
Sent[S] ≡ − Tr [ρS ln ρS], with reduced density matrix ρS =
TrL\S[ρ], yields insight into the low-energy physics of the
theory. Sent can easily be computed from the entanglement
spectrum via Sent[S] = ∑

n,β e−ξn,β ξn,β . Figure 4(b) shows
the (filling dependent) variation of entanglement between
a growing subsystem and its environmental system as a
function of the subsystem size S: It obeys an area law with
logarithmic corrections, as expected from a critical (gapless)
one-dimensional system. That is, in contrast to the gapped
Majorana chain, here we face a low-energy theory of gapless
Goldstone modes due to particle number conservation. With
this in mind, we have a closer look at the low-energy
excitations.

Low-energy excitations. The single-chain Hamiltonians Hx

for an open ladder can be mapped to the ferromagnetic,
isotropic Heisenberg chain via a Jordan-Wigner transforma-
tion. The complete spectrum of Hx is therefore accessible
via the Bethe ansatz [35]. Exploiting this mapping, it is
possible to construct the analog of single magnon states for
our theory. These exact low-energy eigenstates for the open
double chain take the form

|k; N,α〉 = P a
1 (k) ⊕ P b

1 (k)|N,α〉 (12)
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FIG. 5. (Color online) Braiding. (a) Setup of four open chains Li ,
i = 1,2,3,4 (black) with controllable weak single-particle couplings
between the inner four end points. The partner chains (gray) are not
involved in the braiding and can be disregarded. (b) The dynamics
takes place in the eight-dimensional Hilbert space spanned by the
subchain-parity eigenstates with fixed total parity α = α1α2α3α3 =
−1. The colors denote the subchain parities αi of the four black chains.
(c) Spectrum of the weak coupling Hamiltonian during the braiding
procedure depicted below the plot. A black arrow indicates single-
particle hopping. There are four degenerate zero-energy ground states.
The deviation from zero energy (perfect adiabaticity) due to the finite
time evolution is shown in the inset (∼10−8). (d) Time evolution for
the initial zero-energy state |00; 0〉. Shown are the (moduli of the)
overlaps with |00; 0〉 and |11; 0〉 (see inset).

with momentum k = mπ
L

, 0 � m < L, and the operator

P x
1 (k) =

L∑
j=1

cos

[
k

2
(2j − 1)

]
(−1)x

†
j xj . (13)

The eigenenergies are given by a quadratic excitation spectrum
Ek = 4 sin2 k

2 . This behavior of the Goldstone mode is in
excellent agreement with the appearance of a true condensate
and vanishing compressibility; recall that for any fixed number
of particles there is a zero-energy ground state. An equivalent
behavior is well known for noninteracting bosons and the
ferromagnetic Heisenberg model in one dimension. The
interpretation of these features is that our model is exactly
solvable at a critical point.

Wire networks and non-Abelian statistics. A crucial aspect
of our model is that the derivation of the exact zero-energy
ground states can be straightforwardly generalized to much
more complicated wire networks consisting of open and
closed single chains sectionally connected to ladder segments
with arbitrary positive coupling strengths [see Fig. 5(a) for
an example]; the general formalism is presented in the
Supplemental Material. It follows immediately that the ground
state degeneracy scales as 2E/2−1 with E � 2 the number
of open subchain ends. This scaling is in agreement with
the interpretation of the localized edge states as interacting

equivalent of Majorana zero modes. In order to provide a
rigorous proof of the topological properties characterizing the
localized edge states, we derive the full braiding statistics. Note
that the gap � closes algebraically, � ∝ 1/L2 [Fig. 2(c)]. This
still allows for a generalized notion of braiding and thereby
probing the edge state statistics [14].

In order to braid two localized edge states, we consider the
wire network of four open subchains coupled by a common
“bath” chain depicted in Fig. 5(a) and described by H0.
Only the highlighted chains Li (i = 1, . . . ,4) take part in
the braiding evolution. Thus the grayed out subchain can
henceforth be neglected and considered as a “bath,” the effect
of which is fully incorporated into the exactly known ground
states. Note that the zero-energy states of the uncoupled
subchains are given by the total filling N and the subchain
parities α1, . . . ,α4, spanning a 24 = 16 dimensional ground
state space in each particle number sector. As we are only
considering interactions between the four subchains, the total
subchain parity α = ∏

i αi is conserved and may be fixed at
α = −1, reducing the number of relevant ground states to eight
[see Fig. 5(b)]. The braiding of the edges states is described by
Hint(t) and achieved by adiabatically turning off the coupling
between two edges and turning on the coupling between the
next two edges; the full sequence of couplings for the winding
of two edge states around each other is shown below Fig. 5(c),
where arrows indicate single-particle couplings analogous to
Ai(1 + Ai).

The analysis is performed by the full numerical time evolu-
tion of the Hamiltonian H (t) = H0 + ε/L2 Hint(t) with ε 	 1
and 0 � t � 8 to guarantee the (quasi)-adiabatic evolution.
Starting with the initial zero-energy state |00; 0〉 [Fig. 5(d)]
characterized by α1 = −1 = α2 and α3α4 = −1, yields the
orthogonal final state |11; 0〉 = exp [−i

∫
dt Hint(t)]|00; 0〉,

characterized by α1 = +1 = α2 and α3α4 = −1. Repeating
the analysis for alternative braiding operations, we find the
non-Abelian holonomy acting on the degenerate ground state
space that qualifies the edge states as Ising anyons [36], which
corresponds to the braiding statistics of Majorana edge modes
in noninteracting theories.

Conclusion. We presented a microscopic model of inter-
acting fermions giving rise to a gapless topological state with
non-Abelian edge states. The system is at a critical point and
certain perturbations to the Hamiltonian will drive the system
into a phase separated state (e.g., increasing the attractive
interactions), while we expect resilience of the topological
properties against other perturbations (e.g., increasing the
hopping). Then the ground state should be well described by
an approach based on bosonization similar to [22–26], and
might be connected to the state studied with DMRG [27].

Note added. Recently, we became aware of related results
studied by Iemini et al. [37].
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