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We study the S = 1/2 Heisenberg model on the triangular lattice with nearest- and next-nearest-neighbor
interactions J1 and J2 with the density matrix renormalization group, on long open cylinders with widths up to
nine lattice spacings. In an intermediate J2 region 0.06 � J2/J1 � 0.17, we find evidence for a spin liquid (SL)
state with short range spin-spin, bond-bond, and chiral correlation lengths, bordered by a classical 120◦ Néel
ordered state at small J2 and by a two sublattice collinear magnetically ordered state at larger J2. Focusing on
J2/J1 = 0.1, we find a number of signatures of a gapped SL phase.
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In Anderson’s paper introducing the resonating valence
bond (RVB) state [1], the prototypical example of a spin liquid
(SL) [2], the ground state of the triangular lattice nearest-
neighbor Heisenberg model was argued to be a likely candi-
date. Later, a variety of analytical and numerical studies [3–6]
demonstrated that this system has three sublattice 120◦
long range antiferromagnetic order. More recent numerical
studies [7–9] have confirmed this result, and more accurately
determined the magnetization, with M ∼ 0.2.

It is natural to include small second-neighbor J2 terms to
the Hamiltonian, in addition to the nearest-neighbor terms with
coupling J1, to see if this additional frustration induces a spin
liquid state. The corresponding classical phase diagram has a
single phase transition point at J2 = 1/8 (setting J1 = 1 here
and below) between the 120◦ phase and a large number of
degenerate four sublattice magnetically ordered states. This
degeneracy is broken by quantum fluctuations within spin
wave theory, selecting a two sublattice collinearly ordered
state through the order by disorder mechanism [10,11].

One might expect an intermediate phase to appear near
the classical critical point at J2 = 1/8. The limited number
of studies on this question, which have usually relied on ap-
proximations with uncertain reliability, have given conflicting
results, particularly on the nature of a possible disordered phase
and the location of the phase boundaries [12–15]. Here, we try
to resolve the nature of this possible intermediate state using
density matrix renormalization group (DMRG) methods [16].
We do find a spin liquid intermediate phase, gapped with
fairly large singlet and triplet gaps, which is bordered by the
expected magnetic phases, the

√
3 × √

3 ordered state (120◦
classical Néel order pattern) at J2 < 0.05 ∼ 0.07 and a two
sublattice collinear ordered state at J2 � 0.17. The SL state
away from the phase boundaries at J2 = 0.1 has very short
range magnetic, bond, and chiral correlations. We also observe
a dimerization pattern of bond strengths on odd cylinders and
obtain two different topological sectors on even cylinders. This
behavior is in a number of ways similar to that observed in the
Z2 spin liquid state of the kagome Heisenberg model [17,18].
A possible Z2 SL state on the triangular lattice was treated
analytically in the early 1990’s [19,20]. However, in contrast to
the kagome, it has a strong tendency towards spatial anisotropy
in the bond strengths.

We study the Hamiltonian

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where 〈i,j 〉 and 〈〈i,j 〉〉 run over nearest- and next-nearest-
neighbor pairs of sites. We set J1 = 1 and consider only
J2 > 0. We study open-ended cylinders, with the axis along
the x direction. If one of the three bond directions lies along
the x (y) direction, we call it an XC (YC) cylinder. An XCn

cylinder has n sites along the zigzag y direction, while a YCn

cylinder has a circumference of n vertical bonds.
The triangular lattice, with six J1 and six J2 bonds, has

more connecting bonds than other lattices recently studied
with DMRG. This both increases the number of Hamiltonian
terms and increases the entanglement, which is to first order
governed by the area law. For example, a vertical line through
the YCn cylinder cuts 2n near-neighbor bonds; thus, one
would expect a greater entanglement entropy in this system
than in a square, honeycomb, or kagome lattice with the same
width. This means we have to keep more states m for the
same accuracy, while the greater number of Hamiltonian terms
increases the computational and memory cost for a given m.
The widest cylinders that we can calculate accurately are YC9
and XC10, keeping up to M = 6400 states, which produces a
truncation error that is always less than 10−5.

First, we present one calculation which shows all three
phases along a single cylinder. In Fig. 1, we vary J2 spatially
from 0 (left edge) to 0.24 (right edge) on a YC6 cylinder, where
we label the possible phase transition points in this model. At
J2 � 0.06, we see the

√
3 × √

3 magnetically ordered state,
with a diminishing order parameter as one nears the transition.
For large J2 values, we see a two sublattice collinear ordered
phase consistently across various cylinders, which resembles
the Néel order on a tilted square lattice, consistent with spin
wave theory [11].

For 0.06 � J2 � 0.16 on this YC6 cylinder, there is a region
with very small magnetic moments, and with a nearly uniform
nearest-neighbor bond strength pattern. Below we will study
in detail the point J2 = 0.1, near the center of the intermediate
phase. We find that all of our results are consistent with this
phase being a gapped SL.

We now focus on J2 = 0.1, in the center of the nonmagnetic
phase. To understand the results it is essential to distinguish the
different possible topological sectors for a finite cylinder with
open ends. (We consider an even number of sites.) Infinitely
long cylinders are either even or odd, based on the number
of sites in a one-dimensional (1D) unit cell. For example, a
YCn cylinder is even if n is even. Call this type of parity
C. In addition, another parity arises based on a near-neighbor
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FIG. 1. (Color online) For a YC6 cylinder, we vary J2 with position, from J2 = 0 on the left edge to J2 = 0.24 on the right edge. We also
apply a pinning magnetic field along both the x and z directions on the left edge to favor the classical 120◦ order. Two approximate phase
transition lines are shown. The size of the arrow represents local measurement of 〈S〉 = √〈Sx〉2 + 〈Sz〉2 with the direction of the angle given
by tan−1[〈Sz〉/〈Sx〉], and the widths of lines proportional to |〈Si · Sj 〉 + 0.18|. The solid lines along the bonds mean the bond measurement is
negative, i.e., a stronger than average bond, while dashed lines indicate bonds that are weaker than average.

dimer picture. Given any dimer covering, if we cut the cylinder
with a vertical line not intersecting any sites, the number of
dimers cut gives another parity. Call this parity D; we also
refer to it as the even or odd (topological) sector. For a finite
cylinder, assuming perfect dimer coverings, the D parity is
determined by how the left and right ends are terminated, and
moving a site from the left end to the right (or vice versa)
switches the topological sector. In a C-odd cylinder, the two
D-parity sectors are related by a translation of one 1D unit cell,
so the bulk properties are identical. In a C-even cylinder, the
two D-parity sectors are significantly different, but the bulk
properties become identical as the cylinder width increases in
a Z2 SL. For finite width, a ground state of the higher-energy
sector may be able to fall into the lower-energy sector, through
the creation of a spinon at each end of the system. The C parity
is a rigorous concept associated with the Lieb-Schultz-Mattis
theorem. It is not obvious that the D parity is a useful concept
for every spin liquid, but for both the kagome and the triangular
SL found here, the classification appears to work perfectly.

In Fig. 2 we show results for the ground states for both
sectors for the (C-even) YC6 cylinder. Here we see that the
lower-energy sector has a very uniform bond strength pattern
(bottom panel), whereas the higher-energy sector is much less
uniform. This behavior is seen in all the C-even cylinders,
in both this triangular system and in the kagome Heisenberg
system, thought to be a Z2 spin liquid [17].

For a Z2 spin liquid, these two sectors in a C-even cylinder
should become degenerate in the two-dimensional (2D) limit,
with the energy separation depending exponentially on the
width of the cylinder. Here, for YC6, extrapolating in the
truncation error and in the cylinder length, we find an energy
per site for the lower-energy odd sector of E0 = −0.520 96(1).
For a long enough cylinder, the even sector produces end
spinons and falls into the odd sector. The end spinons cost
a finite energy, of order of the triplet spin gap, but being in
the wrong sector in the bulk costs an energy proportional
to the length of the system. Thus, short system even sector
ground states are stable. Longer systems, during the course
of a DMRG simulation, may stay in the even sector ground
state for a number of sweeps, but then as we increase the
number of states kept m, they may suddenly fall into the
lower-energy sector by producing two end spinons. (We can
also prepare the initial DMRG state to make it start off in the
two spinon sector, in which case there is no sudden fall.) For

example, for a YC6 cylinder with length Lx = 30, we have
observed a sudden drop near m ∼ 3000, but this depends on a
variety of details of the DMRG simulations. Thus, estimating
the higher-energy ground state energy cannot be done as
accurately as the low-energy sector. (The DMRG calculations
also converge faster and with smaller truncation errors for
the lower-energy sector.) Using shorter cylinders, for YC6
we find an even sector energy of E1 = −0.5152(2), higher
than the odd sector by about 0.0058(2) per site, or about 1.1%.
The magnetic correlations, the bond-bond correlations, and the
chiral correlations for the YC6 low-energy sector are all very
short ranged, with correlation lengths roughly one to two lattice
spacings [21].

Similar behavior is seen for the C-even YC4 and YC8
cylinders. However, whereas for YC6 the bond strengths in
the three bond directions were almost identical, for YC4 they
are highly anisotropic. For YC4, the ground state is in the even
sector, while the odd sector energy is higher by about 3%. In

FIG. 2. (a) The higher-energy even and (b) the lower-energy odd
sector ground states for a YC6 cylinder with J2 = 0.1, where we
subtract −0.18 from all the bonds. The odd and even sector systems
differ primarily by the removal of a single site at each edge; in
addition, we needed to make the higher-energy system shorter to
avoid falling into the low-energy sector through the creation of two
end spinons. In the plot the bond thickness is restricted to a maximum;
otherwise, many edge bonds would be much thicker. (c) Central
portion of the ground state on the XC6 cylinder. The solid (dashed)
bonds have strength 〈Si · Sj 〉 = −0.287/−0.157. (d) A similar central
region for a YC5 cylinder. The solid (dashed) bonds have strength
〈Si · Sj 〉 = −0.158/−0.126.

041105-2



RAPID COMMUNICATIONS

SPIN LIQUID PHASE OF THE S = 1
2 J1 − J2 . . . PHYSICAL REVIEW B 92, 041105(R) (2015)

the even sector, the diagonal bond strength (−0.045) is almost
ten times weaker than the vertical bond strength (−0.442).
In the odd sector, the opposite happens: The diagonal bond
(−0.23) is three times larger than vertical bonds (−0.08). It
appears that this spin liquid state is highly susceptible to bond
anisotropy, and the small circumference of the YC4 cylinder
elicits very large anisotropic responses.

On the YC8 cylinder, the ground state is in the odd sector
with an energy 0.6% lower than the even sector. The odd sector
has uniform bond strengths in the cylinder center, but as YC4 it
has a significant bond anisotropy, with a vertical bond strength
of −0.225 and a horizontal bond strength of −0.159. (This
strong tendency towards anisotropy on such a large lattice is
completely absent in the kagome system.) The higher-energy
even sector has nonuniform bond strengths, appearing as if
there are strings connecting two ends of the cylinder [21].

Comparing YC4, YC6, and YC8, we see that the energy dif-
ference between the two sectors falls steadily with increasing
width. For a gapped Z2 SL, the energy splitting should decay
exponentially with increasing the cylinder width. Our results
are consistent with this exponential decay, with a decay length
of about 1.7 lattice spacings (not shown). The YC cylinders can
have significant bond anisotropy, although for YC6 it is very
small. Comparing YC4 and YC8, the strength of the anisotropy
falls rapidly with width, while for YC6 it is anomalously small.

On the C-even XC cylinders, such as XC4 and XC8,
anisotropy is also observed. (XC6 is an odd cylinder, so we
will discuss that below.) With the XC cylinder geometry, finite
size effects make the horizontal bonds weaker than the two
diagonal bonds. The anisotropy is less pronounced on XC8
than on XC4.

We have tried to measure the topological entanglement
entropy to more directly measure the topological order for
the SL state. However, because of the strong anisotropy, the
entanglement entropy for various cylinders cannot be linearly
extrapolated versus the cylinder width for our current range of
widths.

For C-odd cylinders, the dimer picture predicts two de-
generate ground states which differ only by a horizontal
translation, thus obeying the Lieb-Schultz-Mattis theorem.
These two states are always visible in our results through
bond strength distortions, as they are for the kagome SL.
These distortions decrease in intensity with cylinder width,
as expected. Figures 2(c) and 2(d) show the dimerization
patterns on the XC6 and YC5 cylinders. Similar dimerized
patterns are also observed on all other C-odd XC and YC
cylinders.

To quantify the bond distortion, we define the dimerization
order parameter D as the difference between the strong and
weak bonds along the two diagonal directions, for both YC
and XC cylinders. We find that, for all C-odd cylinders,
D is almost constant in the cylinder center, indicating long
range dimerization order, and decreases for wider cylinders.
In contrast, on C-even cylinders, D decays exponentially away
from the left and right edges [21]. The behavior is quite similar
to that of the kagome SL and provides additional evidence in
support that the state is a spin liquid.

We display results for triplet spin gap in Fig. 3 for J2 = 0.1.
The gaps are typically two to three times as large as that of the
kagome system (�T ∼ 0.14 [18]). The gaps show a relatively
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FIG. 3. (Color online) The spin triplet gap for various long
cylinder geometries at J2 = 0.1 with Lx = 20. The inset shows the
linear extrapolation of spin triplet gap for YC6 cylinders vs 1/L2

x .
The triplet gap is roughly �T = 0.357 for an infinitely long YC6
cylinder.

minor finite size behavior, compared to their magnitude. Each
of these gaps in the main part of the figure is for Lx = 20;
one should extrapolate these to Lx → ∞, and the inset shows
this extrapolation for YC6. The gap is proportional to 1/L2

x ,
as expected for a simple massive particle (e.g., a particle in
a 1D box). The correction to the Lx = 20 results is small
and we expect that the main figure would only be slightly
changed if it used extrapolated results. Note that for wider
cylinders, we need to constrain the spin excitation to the
cylinder center, since otherwise low-energy edge excitations
might hide the bulk gap (again, as one must do for the kagome).
A conservative estimate for the bulk 2D triplet gap would be
0.3(1) for J2 = 0.1, and it is hard to imagine it being zero.

One can look at the bond and particularly the spin patterns
for the lowest-energy triplet excitations. On even cylinders,
the spin excitation resembles a single particle, which we
might interpret as two tightly bound spinons. However, on
odd cylinders, the spin excitation typically looks more as
two separate spinons, and seems more complicated than on
even cylinders, with more Lx dependence of the gap [21].
We have only calculated the spin singlet gap for the YC6
and YC8 cylinders. In the kagome system, the singlet gap is
small, about 0.05. Here, it is much larger: �s = 0.30 for YC6
and �s = 0.26 for YC8. Overall, our results strongly support
a fully gapped SL state, instead of the gapless SL state in
Ref. [14].

The finite gaps, short correlation lengths, and topological
sector behaviors are all qualitatively similar to the kagome
system and strongly indicate a gapped spin liquid. However,
the directional anisotropy of the bonds apparent in most
cylinders is unlike the kagome, and raises the question of
whether it persists in the 2D limit—which would make it a
“nematic spin liquid” [22]. To try to understand the finite
size effects associated with bond anisotropy, we have studied
systems where we strengthen all the near-neighbor exchange
couplings J along one particular direction and measure the
response in the spin-spin correlation pattern. For the normally
isotropic YC6 cylinder, increasing the J ’s along one diagonal
direction by 5% increases the corresponding bonds by roughly
30% and decreases the other diagonal bonds by roughly
30%—a rather large response. For the XC8 cylinder, which
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is normally quite anisotropic, if we strengthen the J ’s on the
weaker (horizontal) bonds by about 3%, the weaker bonds
increase by about 50% and the system becomes approximately
isotropic. These results indicate a large susceptibility associ-
ated with a tendency towards nematicity. This tendency is a
key property of this system, independent of whether the system
actually breaks rotational symmetry in the thermodynamic
limit. Reference [22] theoretically studied the phase transition
between a Z2 SL state and different valence bond solid (VBS)
orders on a triangular lattice. They found that the transition
from a columnar or resonating plaquette VBS order can
be either first order or there could be two transitions with
an intermediate phase. The intermediate phase would host
a nematic Z2 spin liquid that breaks 2π/3 lattice rotation
symmetry. Is the triangular system in such a nematic spin
liquid state? The anisotropy generally decreases with system
width in the system sizes we can study, but the behavior
is irregular, and the effects still large on the largest widths.
Answering this question will require future studies on larger
systems.

In summary, we conclude that there is a gapped spin
liquid state in the triangular lattice Heisenberg model with

next-nearest-neighbor exchange J2 = 0.1. This phase is bor-
dered by a three sublattice 120◦ Néel ordered state at J2 <

0.05 ∼ 0.07 and a two sublattice magnetic collinear ordered
state at J2 � 0.17 [23]. This phase has fairly large gaps, very
short correlation lengths, and topological behavior very similar
to that seen in the kagome Heisenberg spin liquid, although we
have not been able to measure whether there is a topological
entanglement entropy. Unlike the kagome, the system has a
strong tendency towards nematicity, and whether rotational
symmetry is broken in two dimensions, making it a nematic
spin liquid, remains to be determined.

Recently, we became aware of two papers working on the
same model with DMRG [24,25], where the spin liquid state
is also found [25]. The classification of Z2 spin liquid states is
subsequently proposed in Refs. [26,27].
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