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We study a pseudo-spin- 1
2 quantum dot in the cotunneling regime close to the particle-hole symmetric point.

For a generic tunneling matrix we find a fixed point with interesting nonequilibrium properties, characterized by
effective reservoirs with compensating spin orientation vectors weighted by the polarizations and the tunneling
rates. At large bias voltage we study the magnetic field dependence of the dot magnetization and the current.
The fixed point can be clearly identified by analyzing the magnetization of the dot. We characterize the universal
properties for the case of two reservoirs and discuss deviations from the fixed point model in experimentally
realistic situations.
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Introduction. Nonequilibrium properties of strongly inter-
acting quantum dots have gained enormous interest in the
last decade. Quantum dots are experimentally controllable
systems useful for a variety of applications in nanoelectronics,
spintronics, and quantum information processing [1]. They
are of fundamental interest in the field of open quantum sys-
tems in nonequilibrium with interesting quantum many-body
properties and coherent phenomena at low temperatures [2].
Of particular interest are spin-dependent phenomena where
the quantum dot is tuned to the Coulomb blockade regime.
In the case of a singly occupied dot the spin can fluctuate
between two values leading to a realization of the isotropic
spin- 1

2 antiferromagnetic Kondo model. A hallmark was the
prediction and observation of universal conductance for this
model [3,4]. The equilibrium properties of the Kondo model
have been studied extensively [5,6] and, most recently, by
using renormalization group (RG) methods in nonequilibrium;
also the properties at finite bias voltage and the time dynamics
have been analyzed in weak [7–11] and strong coupling
[12–14] and compared to experiments [15].

The isotropic Kondo model with unpolarized leads is only
a special case out of the whole class of quantum dot models
where a single particle on the dot can fluctuate between
two different quantum numbers (which we call a pseudo-
spin- 1

2 quantum dot in the following). Besides the case of
ferromagnetic leads with arbitrary spin orientations the two
quantum numbers can also label two different orbitals or can
arise from a mixture of spin and orbital degrees of freedom
in the presence of spin-orbit interaction in the leads or on
the dot, leading to non-spin-conserving tunneling matrices.
In equilibrium (or the linear response regime), it has been
found for several cases that exchange fields are generated
but if those are canceled by external ones the universality
properties of the Kondo model are reestablished. This has
been confirmed by numerical renormalization group calcu-
lations for ferromagnetic leads with parallel or antiparallel
orientations [16] and for quantum dots with orbital degrees of
freedom or Aharonov-Bohm geometries [17]. In Ref. [18] a
mapping between these different models and an analytical
understanding in terms of the anisotropic Kondo model
has been established. Concerning nonequilibrium transport
previous studies have focused on exchange fields generated

by ferromagnetic leads [19,20], spin-orbit interaction [21],
or orbital fluctuations [17]. A systematic nonequilibrium
RG study of a pseudo-spin- 1

2 quantum dot with spin-orbit
interaction in the cotunneling regime has been performed in
Ref. [22], where a Dzyaloshinskii-Moriya (DM) interaction
together with exchange fields proportional to the bias voltage
have been identified. For special orientations of the DM vectors
interesting asymmetries in resonant transport were reported
when a magnetic field of the order of the bias voltage is applied.

All previous references treated special cases of pseudo-
spin- 1

2 quantum dots without aiming at finding generic features
common to all these systems, irrespective of the complexity
of the geometry, the special interactions, and the polarizations
of the reservoirs. The purpose of this Rapid Communication
is to establish such features especially in the nonequilibrium
regime. Thereby, we will first use a mapping to a pseudo-
spin- 1

2 quantum dot coupled to effective ferromagnetic leads
as depicted in Fig. 1, similiar to Refs. [18,19]. Based on this
model, we will show that in the Coulomb blockade regime
close to the particle-hole symmetric point a fixed point model
can be identified in the scaling limit where the average of

the unit vectors of the spin orientations �̂dα weighted by the
polarizations pα and the tunneling rates �α compensate each
other (α is the reservoir index):

�d =
∑

α

�dα = 0, �dα = xαpα
�̂dα, xα = �α

�
, (1)

with � = ∑
α �α . This explains why the Kondo effect appears

generically in the equilibrium case where all reservoirs
can be taken together and (1) leads to a vanishing spin
polarization, in agreement with Refs. [16–18]. However, what
has been overlooked so far is that the fixed point model
is generically not the one of the Kondo model with one
unpolarized lead but rather a spin- 1

2 coupled to several leads
with different spin vectors �dα . This is particularly important for
the nonequilibrium case where the reservoirs cannot be taken
together. Thus, an interesting fixed point emerges which, in the
equilibrium case, leads to the usual Kondo physics, whereas
in the nonequilibrium regime, shows essentially different
universal behavior compared to the Kondo model. We will
characterize the universal features by calculating the magnetic
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FIG. 1. (Color online) Sketch of the effective model of two
ferromagnetic leads α = L,R coupled to a pseudo-spin- 1

2 quantum
dot via spin-conserving tunneling rates �L,R = xL,R�. μL,R = ±V/2

denote the chemical potentials of the leads with spin axis �̂dL,R and
spin polarization pL,R . h denotes the Zeeman splitting of the dot
levels including exchange fields. In the main text an arbitrary number
of reservoirs is considered.

field dependence of the dot magnetization and the charge
current at zero temperature and large chemical potentials μα

compared to the Kondo temperature TK at and away from the
fixed point. As a smoking gun to detect the fixed point we
find that the dot magnetization �M = 〈�S〉 is minimal for all
magnetic fields lying on a sphere defined by

|�h − �μ| = | �μ|, �μ =
∑

α

(μα − μ̄) �dα, (2)

where μ̄ = ∑
α xαμα . We note that �h denotes the total

magnetic field including exchange fields. In experimentally
realistic situations, where the fixed point model is not realized,
we will show that the sphere turns into an ellipsoid, the
stretching factor providing a measure for the distance to the
fixed point. We choose units � = e = 1.

Effective model. We start from a generalized Anderson
impurity model, where the dot Hamiltonian is given by H =∑

σ εσ nσ + Un↑n↓, where εσ = ε + σh/2 are the single-
particle energies and U denotes a strong Coulomb repulsion.
The dot is coupled to noninteracting reservoirs by a generic
tunneling matrix (tα)νσ = tανσ , where ν is a channel index
labeling the reservoir bands with possibly different density of
states (DOS) ραν (in dimensionless units). The key observation
is that the reservoirs enter only via the retarded self-energy,
which is fully characterized by the hybridization matrix
�α = 2π t†αραtα , with (ρα)νν ′ = ρανδνν ′ . This means that all

models with the same matrix �α give the same result for the
dot density matrix and the charge current. Once �α is known,
we can write it in various forms to obtain effective models.
�α is a positive semidefinite Hermitian 2 × 2 matrix, i.e., it
can be diagonalized by a unitary 2 × 2 matrix Uα such that

�α = U †
α�̃αUα with the diagonal matrix (�̃α)σσ ′ = δσσ ′�ασ .

�α↑ � �α↓ � 0 are the positive eigenvalues which can be
written as �ασ = �α

1
2 (1 + σpα), with �α � 0 and 0 � pα �

1. Defining �ασ = 2πt2
ασ and �α = 4πt2

α , with tα,tασ � 0, we
can write �α in the two equivalent forms

�α = 2πt2
αρα, ρα = U †

α(2�̃α/�α)Uα, (3)

�α = 2πt†αtα, (tα)σσ ′ = tασ (Uα)σσ ′ . (4)

The first form is the one where the information is fully
shifted to an effective DOS ρα of the reservoirs with spin-

conserving tunneling rates �α . Using 2�̃α/�α = 1 + pασ z

and Uα = ei 1
2 �ϕα �σ we find ρα = 1 + pα

�̂dα �σ , where �σ are the

Pauli matrices and �̂dα = R( �ϕα)�ez is a unit vector obtained by
rotating the z axis with rotation axis �ϕα . As a result we find
an effective model with ferromagnetic leads with pseudospin

channels σ =↑ , ↓, spin orientation �̂dα , and spin polarization
pα (see Fig. 1). Alternatively, one can also shift the whole
information into an effective tunneling matrix tα , as written in
Eq. (4), which describes a model with an effective tunneling
matrix and reservoirs without spin polarization. This will be
the form we will use in the following.

Derivation of the fixed point model. We now present a weak
coupling RG analysis close to the particle-hole symmetric
point in the Coulomb blockade regime, defined by D =
ε + U = −ε � �c = max{{|μα|},h}. Charge fluctuations are
suppressed in this regime and, using a Schrieffer-Wolff
transformation [23], spin fluctuations are described by the
effective interaction Veff = ∑

kk′ a
†
k
�J ak′ �S, where �S denotes

the dot spin and �J = 2t �σ t†/D is an effective exchange
matrix. (ak)ασ = akασ is a vector containing all reservoir
field operators and (t)ασ,σ ′ = (tα)σσ ′ is a matrix containing
all tunneling matrices. Via a standard poor man scaling
RG analysis we integrate out all energy scales between D

and �c. In this regime the chemical potentials μα do not
enter and it is convenient to rotate all reservoirs such that
only one reservoir couples effectively to the dot. This is
achieved by the singular value decomposition t = V t̃ W †,
where V and W are unitary transformations in reservoir and
dot space, respectively, and (t̃)ασ,σ ′ = δα1δσσ ′λσ contains the
two singular values λ↑ � λ↓ > 0 of the tunneling matrix.
We exclude here the exotic case λ↓ = 0 which would mean
that one of the dot levels effectively decouples from the
reservoirs. By rotating dot space, we can omit the matrix
W and the tunneling matrices are given by tα = V αλ with
(V α)σσ ′ = (V )ασ,σ ′ and (λ)σσ ′ = δσσ ′λσ . For the RG we omit
the unitary transformation V such that only one effective
reservoir couples to the dot via the tunneling matrix elements
λσ . This model has also been studied in Ref. [18] and leads
to an effective 2 × 2 exchange coupling matrix �̃J = 2λ �σ λ/D

which can be parametrized by two exchange couplings Jz =
(λ2

↑ + λ2
↓)/D and J⊥ = 2λ↑λ↓/D via J̃

z = c1 + Jzσ
z and

J̃
x,y = J⊥σx,y , with c =

√
J 2

z − J 2
⊥ and Jz � J⊥ > 0. As a

result one obtains the antiferromagnetic anisotropic Kondo
model together with a spin-charge scattering term from the
anisotropy constant c. The weak-coupling RG flow as a
function of the effective bandwidth � leads to an increase
of the exchange couplings towards the isotropic fixed point
Jz = J⊥ with c and TK = �[(Jz − c)/(Jz + c)]1/(4c) being the
invariants. At each stage of the RG flow we can replace
D → � and get the effective hybridization matrix �α =
2πλ V †

αV αλ, where λ contains the renormalized exchange

couplings Jz,⊥ via λ2
↑,↓ = �(Jz ± c)/2. The matrices V α do

not flow under the RG and fulfill
∑

α V †
αV α = 1 since V is

unitary. This leads to
∑

α �α = 2πλ2. Comparing this to the

form
∑

α �α = �
2 (1 + �d �σ ) from (3) we find Jz = �/(2π�)

and d = | �d| = c/Jz. We conclude that the system shows a
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tendency to minimize the vector �d during the RG flow and,
for c � Jz, we can set this vector to zero and obtain the
central result (1). This is reached in the scaling limit, formally
defined in terms of the initial parameters by J

(0)
z,⊥ → 0 and

D → ∞ such that the Kondo temperature TK and the ratio
J (0)

z /J
(0)
⊥ are kept fixed. At this isotropic fixed point, we

get λ↑ = λ↓ = λ and �α = 2πλ2V †
αV α . Using the form (3)

we find V †
αV α = xα1 + �dα �σ providing a recipe to find the

parameters xα and �dα of the fixed point model.
We stress that, in contrast to the equilibrium discussion

in Ref. [18], the determination of the fixed point parameters
xα and �dα of all individual reservoirs is essential to discuss
the universal nonequilibrium properties. The latter deviate
significantly from the Kondo model with unpolarized leads
which is only realized when the initial spin vectors are all
equal �d (0)

α = �d (0), whereas a small deviation between the initial
polarizations pα will still end up in a fixed point with pα � 1;
a small angle between the spin orientations leads to a rotation
of the spin orientations but the polarizations remain finite.

The weak coupling RG is cut off at �c = max{|μα|,h} �
TK . In the scaling limit where �c � D → ∞, the fixed
point model is already realized at this energy scale. Its
universal nonequilibrium properties will be characterized in
the following at large bias voltages by analyzing the magnetic
field dependence of the stationary dot magnetization �M and
the charge current I . However, in experimentally realistic
situations, the fixed point model is not yet fully realized,
and we will discuss how the result (1) is changed in this
case. We note that Ref. [22] has studied the case of parallel
reservoir spin orientations and analyzed the charge current
at resonance. The technical details of our calculations can be
found in the Supplemental Material [24]. For h � γ ∼ J 2

z,⊥�c

(γ sets the scale of the rates) a standard golden rule theory is
sufficient and �M is either parallel or antiparallel to �h. For h � γ

quantum interference phenomena are very important leading
to a strong component of the magnetization perpendicular to
the magnetic field from the nondiagonal matrix elements of
the dot density matrix. The full formulas are very involved but
can be simplified in certain regimes. Here we summarize the
most important nonequilibrium features.

Dot magnetization in golden rule, arbitrary number of
reservoirs at or away from the fixed point. We first start with
the regime h � γ for an arbitrary number of reservoirs. The
magnetization �M in golden rule is zero if the rates between the
two spin states are equal. This occurs for magnetic fields lying
on the surface of an ellipsoid which can be fully characterized
by the two vectors �d and �μ defined in Eqs. (1) and (2), together
with the factor s = Jz/J⊥ = 1/

√
1 − d2 � 1 characterizing

the distance to the isotropic fixed point s = 1. We find an
ellipsoid which is rotationally invariant around �d and stretched
along �d by the factor s,

(�h⊥ − �μ⊥)2 +
(

h‖ − s2μ‖
s

)2

= �μ2
⊥ + s2μ2

‖, (5)

where we have decomposed the two vectors �h and �μ in
two components parallel and perpendicular to �d . This result
provides an experimental tool to measure the distance to

FIG. 2. (Color online) The dot magnetization M as a function of
hz and h⊥ for h < V with xL = xR = 1

2 , pL = pR = 3
4 , J = 1

100
√

π
,

and γ = 10−4V . The white line indicates hmin
⊥ (hz) where M is

minimal. Inset: The same plot on logarithmic scale for hz > 0.

the fixed point model via the stretching factor s and sets
a smoking gun for a characteristic universal feature of the
fixed point s = 1, where the ellipsoid turns into the sphere (2).
These features are essentially different from the Kondo model
with unpolarized leads where �d = �μ = 0 such that minimal
magnetization in golden rule occurs only for �h = 0. We note
that at the fixed point the center of the sphere is given by
the vector �μ, which is a characteristic vector determining the
exchange field generated by the reservoirs given by �hexc =
J (2 �μ − �hext), where �hext is the externally applied field (this can
be obtained by a perturbative calculation similar to the one of
Ref. [19]). Outside (inside) the ellipsoid the magnetization is
antiparallel (parallel) to �h but the rotational symmetry around
the vector �d is no longer valid since all scalar products �dα

�h
enter. Only in the special case of two reservoirs α = L,R at the
fixed point �dL = −�dR we obtain antiparallel spin orientations
of the two reservoirs with rotational symmetry around the
reservoir spin axis. The universal properties of this case are
shown in Fig. 2 for the dot magnetization and in Fig. 3 for
the charge current and will be discussed in more detail in the
following including the quantum interference regime h � γ .

Dot magnetization, two reservoirs at the fixed point. For
two reservoirs at the fixed point, we choose �dL = −�dR

in the z direction and characterize the coupling J by the
Korringa rate γ = 4xLxRπJ 2V , where V = μL − μR is the
bias voltage. From �μ = V �dL and | �μ| = V xLpL the minimum

FIG. 3. (Color online) The charge current I/γ in units of the
Korringa rate, analog to Fig. 2. The black line corresponds to the
white one of Fig. 2 indicating minimal M .
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of the magnetization in the golden rule regime h � γ lies on
a sphere centered around hz = xLpLV , h⊥ = 0 with radius
xLpLV . Since 2xLpL = 2xLxR(pL + pR) � (pL + pR)/2 �
1, the sphere will always lie inside the region h < V . At h = V

we get �M = −�h/(2V ). These features follow from energy
conservation and the fact that the majority spins in the left/right
lead are ↑ / ↓. For small h⊥ the upper level of the dot consists
mainly of the spin-↑ state which will be occupied from the
left lead but has a small probability to escape to the right one.
Therefore the magnetization is parallel to the external field
and quite large (but not maximal). Increasing h⊥ will lead to
transition rates between the upper and lower dot level until they
are equal, which defines the minimum of the magnetization.
For large h⊥ ∼ O(V ) the energy phase space for the transition
from the lower to the upper level becomes smaller leading
to an increase of the population of the lower level. Thus, the
magnetization becomes antiparallel to the magnetic field and
the magnitude increases until h = V , where only the lower
level is occupied and the magnetization becomes maximal.
For hz < 0 this mechanism does not occur since in this case
the lower level will always have a higher occupation. For small
magnetic fields h � γ quantum interference processes become
important and the minimum position of the magnetization
saturates at hmin

⊥ (hz) ∼ O(JV ) (see the inset of Fig. 2). For
hz � γ and h⊥ � V , the precise line shape follows from
M ≈ √

π2J 4x2 + M2
z (1 + x2) with

Mz ≈ 1

2

pL + pR − 2πJ 2x2hz/γ

1 + pLpR + x2
, x = h⊥√

h2
z + γ 2

. (6)

At h = 0 we obtain M0 = Mh=0 = (1/2)(pL + pR)/(1 +
pLpR) which, together with xL + xR = 1, xLpL = xRpR , and
the value xLpL from the minimum magnetization, deter-
mines the four parameters xL,R and pL,R of the fixed point
model. The coupling J is related to the Korringa rate which
follows from the curvature of the magnetization as a function of
h⊥ at the origin: (∂2M/∂h2

⊥)h=0 = −γ −2M0(1 + pLpR)/(1 −
pLpR). Furthermore, for vanishing h⊥, the point hz = 0 can be
characterized by a jump of the derivative (∂M/∂hz)|h=0 with a
ratio given by the parameters xL,R and pL,R (see Supplemental
Material).

Charge current, two reservoirs at the fixed point. The charge
current I in units of the Korringa rate is shown in Fig. 3. The

current is related to the magnetization in a universal way by
the formula

(I − I0)/γ = �M⊥�h⊥/V + (1 + pLpR)

× (Mz − M0)(hz/V − 2M0), (7)

with I0/γ = Ih=0/γ = 1/2 + (1 + pLpR)(1 − 8M2
0 )/4. At

fixed hz the current shows a maximum as a function of h⊥
at a value roughly of the same order where the magnetization
is minimal. This is caused by enhanced inelastic processes
increasing the current in this regime. However, since the
current varies only slowly in a wide region around the
maximum this is not useful to determine the model parameters.
An exception is the axis hz = 0, where the maximum current
follows from the formula Imax

hz=0/γ = (3 + pLpR)/4. Another
point of interest is h = V where the magnetization is maximal
�M = −�h/(2V ) (see above). At this point the upper dot

level has no occupation and transport happens via elastic
cotunneling processes through the lower one. From Eq. (7)
we get Ih=V /γ = [1 − pLpR(2h2

z/V 2 − 1)]/4. For hz = 0,
h⊥ = V or hz = V , h⊥ = 0 this gives I/γ = (1 ± pLpR)/4.
These two values are related to Imax

hz=0 in a universal way.
Together with I0 the parameters pL,R and γ can be determined
and xL,R follow from xL + xR = 1 and xLpL = xRpR . In
the quantum interference regime of small magnetic fields
the current is shown in the inset of Fig. 3. Analytically the
features follow for hz � γ and h⊥ � V from (I − I0)/γ ≈
(pL + pR)M0x

2/(1 + pLpR + x2).
Conclusions. We have shown that the Kondo model with

unpolarized leads is generically not the appropriate model to
describe the nonequilibrium properties of pseudo-spin- 1

2 quan-
tum dots in the Coulomb blockade regime. Noncollinear spin
orientations in effective reservoirs give rise to characteristic
features as a function of an applied magnetic field in the strong
nonequilibrium regime independent of the microscopic details
of the model, even away from the fixed point. These features
are experimentally accessible. For future research it is of high
interest to characterize the universal properties of the model
also in the strong coupling regime V ∼ TK where more refined
techniques have to be used [12–14].
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