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Berry phase and Rashba fields in quantum rings in tilted magnetic field
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We study the role of different orientations of an applied magnetic field as well as the interplay of structural
asymmetries on the characteristics of eigenstates in a quantum ring system. We use a nearly analytical model
description of the quantum ring, which allows for a thorough study of elliptical deformations and their influence
on the spin content and Berry phase of different quantum states. The diamagnetic shift and Zeeman interaction
compete with the Rashba spin-orbit interaction, induced by confinement asymmetries and external electric fields,
to change spin textures of the different states. Smooth variations in the Berry phase are observed for symmetric
quantum rings as a function of applied magnetic fields. Interestingly, we find that asymmetries induce nontrivial
Berry phases, suggesting that defects in realistic structures would facilitate the observation of geometric phases.
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I. INTRODUCTION

The phase acquired when a system is subjected to a cyclic
adiabatic process, as described by Berry and others [1–3],
contains information on the geometrical properties of the
parameter space over which the system is defined. In a spatially
extended and multiply connected quantum system, this phase
conveys nonlocal information on the system and possible net
fluxes akin to the Aharonov-Bohm phase [4]. As such, it
is attractive to develop experimental probes to measure this
Berry phase, as well as theoretical models that connect its
behavior to microscopic information or external fields. The
geometric Berry phase has indeed played a fundamental role
in understanding the behavior of a variety of systems and
phenomena [2,3,5].

In mesoscopic systems, the Berry phase in electronic states
has been explored by transport experiments, providing a
unique window into microscopic fields and spin textures that
arise from the interplay of external fields, as well as intrinsic
spin-orbit effects in structures defined on semiconductors
[6–12]. More recently, transport experiments have demon-
strated that it is possible to control the geometric phase of
electrons by the application of in-plane fields in semiconductor
quantum rings built on InGaAs structures [13]. Moreover,
modulation of the Berry phase in semiconductor quantum dots
under a varying flux has been proposed to implement gates for
quantum computation [14].

Motivated by these experiments, we present here an analysis
of the influence of magnetic field orientation and intensity on
the Berry phase experienced by electrons in a realistic quantum
nanoring structure. As we will describe, the modulation of
the geometric phase can arise from the symmetry reduction
in the confinement potential or the competition between the
external magnetic field and the intrinsic field arising from spin-
orbit coupling effects. As such, this study addresses the link
between spatial symmetry and spin properties, and the possible
tuning of the geometrical phase by varying the intensity and/or
orientation of an external magnetic field.

To this end, we use an effective mass description of the
conduction band, and incorporate the effects of confinement
asymmetry for electrons in a realistic nanoring, as well as
the resulting Rashba spin-orbit coupling (SOC) fields arising

from confinement and external fields. By studying spin maps
for angle and magnetic field intensities, we gain insights into
the competition between different energy scales and how they
impact the Berry phase associated with each electronic state.
As level mixing is enhanced under near resonant conditions,
one anticipates interesting behaviors at the anticrossing regions
produced, for example, by varying magnetic field dependence
in a given structure. There are pronounced spatial asymmetry
effects in the angular momentum and spin character of different
states, as one would expect. These asymmetries, introduced or
enhanced by shape anisotropies and confinement potential in
the rings, are found to play an important role in determining
the Berry phase of the different states. We also find that effects
of varying magnetic field tilt angle and intensity, as well as
SOC, are reflected in the Berry phase and associated spin
texture. The substantial phase modulation observed in the
lower energy level manifold can be monitored and exploited in
transport experiments. In fact, our results suggest that detailed
exploration of the Berry phase with magnetic field orientation
and/or strength, would give information into the effective
system asymmetries experienced by the charge carriers in the
nanoring systems.

The remainder of the paper is organized as follows:
Section II describes the theoretical model, as well as the
different quantities used to characterize the states, including
the Berry phase and spin density maps. Section III is devoted
to the discussion of the main results. A discussion of possible
experimental consequences of our results and concluding
remarks are presented in Sec. IV.

II. MODEL

The system under investigation consists of a quantum ring
in the presence of an external tilted magnetic field, as shown
in Fig. 1(a). The confinement potential, V (�r) = Vρ + Vz, with
a general elliptical ring shape is characterized by planar and
vertical contributions [15],

Vρ = a1

ρ2
+ a2ρ

2 − 2
√

a1a2 + δρ2 cos2 ϕ, (1)

Vz =
{
eFz, 0 < z � Lz

∞, otherwise ,
(2)

1098-0121/2015/92(3)/035441(7) 035441-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.035441


V. LOPES-OLIVEIRA et al. PHYSICAL REVIEW B 92, 035441 (2015)

Bz
B

(a) Bz
BB

(a)
(b)

(c)

(d)

(e)

x

y

x

y

FIG. 1. (Color online) (a) Magnetic field orientation and coordi-
nate system. Potential profile maps for (b) the circularly symmetric
and (c) the elliptically deformed ring; purple regions show lowest
energy values of the confinement potential. Electronic orbital for an
excited state of an elliptical ring (δ = 2 meV), in the presence of a
Rashba field (F = 100 kV/cm) in a magnetic field (B = 2.375 T) at
different tilt angles, (d) θ = 0◦ and (e) θ = 60◦.

where Lz is the height/thickness of the quantum well in which
the ring is defined by the lateral potential Vρ . F is an external
electric field applied along the ring axis, which gives rise to a
Rashba SOC, in addition to shifting and spatially deforming
the eigenstates. The radial potential without the δ term defines
a ring with circular symmetry and minimum (Vρ=R = 0) at
R = (a1/a2)1/4. The δ term describes an elliptical deformation
of the confinement potential, with eccentricity given by
e = √

1 − a2/(a2 + δ) in the limit of large ρ. Panels (b)
and (c) in Fig. 1 represent potential profile maps used to
simulate circularly symmetric (δ = 0) and eccentric (δ �= 0)
rings, respectively. This potential profile allows for analytical
solution of the quantum ring spectrum and corresponding wave
functions in the x-y plane in the circularly symmetric case, in
terms of hypergeometric functions and angular momentum
components [15]. The electronic structure calculations are
performed using the effective mass approximation and con-
sider a single quantum level along the z axis (strong quantum
well confinement). This model has been used successfully
to describe quantum rings in magnetophotoluminescence
experiments [15,16]. It is extended here to include SOC effects
and tilted magnetic fields.

A. Tilted magnetic field

In the presence of a magnetic field �B = x̂Bx + ẑBz =
x̂B sin θ + ẑB cos θ , the vector potential can be written as

�A = Bz

2
ρϕ̂ − Bxz(ρ̂ sin ϕ + ϕ̂ cos ϕ). (3)

It is important to note that small variations of the magnetic field
angle θ induce considerable changes in the electronic structure,
as the tilted magnetic field and ring asymmetry (δ �= 0) couples
angular and radial degrees of freedom. In the absence of SOC,
the system is described by the Hamiltonian,

H = 1

2μ∗ ( �p − e �A)2 + V (�r) + 1

2
gμB

�B · �σ , (4)

where the third term is the Zeeman interaction and �σ =
(σx,σy,σz) are the Pauli matrices. Equation (4) can be separated

into three parts, H = HBz
+ HBx

+ HZx
. The contribution due

to the perpendicular component of the magnetic field (Bz) is
given by

HBz
= − �

2

2μ∗

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2
+ ∂2

∂z2

]

+ ie�Bz

2μ∗
∂

∂ϕ
+ e2B2

z ρ
2

8μ∗ + V (�r) + gμB

2
Bzσz. (5)

The eigenfunctions of the circularly symmetric problem (δ =
0) in the presence of the Bz component, �lmn(z,ρ,ϕ), are
used as the basis set to expand the eigenstates for a general
tilted field direction, under SOC, and a general elliptical
deformation. A general wave function can be written as

	 =
∑
l,m,n

(C↑
lmn |↑〉 + C

↓
lmn |↓〉)�lmn, (6)

where the spatial dependence has been omitted for simplicity.
The term due to the in-plane component of the magnetic field is

HBx
= − ie�zBx

μ∗

(
sin ϕ

∂

∂ρ
+ cos ϕ

ρ

∂

∂ϕ

)

+ e2

2μ∗
(
B2

x z
2 − BzBxzρ cos ϕ

)
, (7)

and the respective Zeeman contribution can be written as [17]

HZx
= 1

4gμBBx(σ+ + σ−), (8)

where σ± = σx ± iσy .

B. Spin-orbit coupling

The presence of spin-orbit coupling in the host semicon-
ductor is also considered for the tilted magnetic field case. The
SOC in the presence of system inversion asymmetry can be
written in terms of the field associated with the confinement
potential, ∇V (r), as [18]

HSIA = αs

�
�σ · [∇V × ( �p − e �A)], (9)

where αs characterizes the strength of the SOC in the host
semiconductor. This can be decomposed in cylindrical co-
ordinates into four terms, HSIA = HD

SIA + HR + HK + H TF
SIA,

where [18]

HD
SIA = αsσz

{
∂V

∂ρ

[
− i

ρ

∂

∂ϕ
+ eBz

2�
ρ

]

+ i

ρ

∂V

∂ϕ

∂

∂ρ
+ i

ρ2

∂V

∂ϕ

}
, (10)

HR = −αs

∂V

∂z

{
σ+

[
e−iϕ

(
∂

∂ρ
− i

ρ

∂

∂ϕ
+ eBz

2�
ρ + 1

ρ

)]

− σ−
[
eiϕ

(
∂

∂ρ
+ i

ρ

∂

∂ϕ
− eBz

2�
ρ + 1

ρ

)]}
, (11)

and HK = 0 because 〈kz〉 � 0. HD
SIA is the spin-diagonal

contribution due to the confinement, while the Rashba term
HR is associated with the perpendicular electric field in the
well, ∂V/∂z = eF . For a tilted magnetic field, the last term in
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HSIA is given by

H TF
SIA = αs

ezBx

�

(
∂V

∂z
σx − ∂V

∂x
σz

)
. (12)

The SOC mixes states depending on their spin component,
following effective “selection rules” that select specific angular
momentum quantum numbers according to the corresponding
interaction term [18]. As a consequence, the spin and angular
momentum content of each state become hybrids or mixtures
that change with field orientation and magnitude. For large
magnetic fields, the Zeeman energy dominates and eventually
polarizes spins along �B. Mixing is of course more noticeable
near spectrum degeneracies, as we will see below.

C. Spin content and Berry phase

We characterize the spin content of different eigenstates by
analyzing the expectation value for the different components.
In particular, we define the spin projection with respect to the
z axis, θs , in terms of projections along and perpendicular to
the plane,

〈σ+〉 =
∑

j

C
↑∗
j C

↓
j ,

(13)
〈σz〉 =

∑
j

(|C↑
j |2 − |C↓

j |2)

(where j = {n,l,m} in all sums), so that

θs = arctan
〈σz〉
〈σ+〉 + π

2
(1 − sgn〈σ+〉). (14)

We also explore the spatial variation in the spin orientation
(“spin texture”) for each state, which is related to the vector
spin density, whose components are given by

Sx(�r) =
∑
j,j ′

�∗
j ′(�r)(C↑∗

j ′ C
↓
j + C

↓∗
j ′ C

↑
j )�j (�r),

Sy(�r) = −i
∑
j,j ′

�∗
j ′(�r)(C↑∗

j ′ C
↓
j − C

↓∗
j ′ C

↑
j )�j (�r), (15)

Sz(�r) =
∑
j,j ′

�∗
j ′(�r)(C↑∗

j ′ C
↑
j − C

↓∗
j ′ C

↓
j )�j (�r) .

The Berry phase is an interesting quantity that characterizes
the different eigenstates, especially as it incorporates the
effects of external and SOC fields, and the influence of ge-
ometrical confinement. The Berry phase of a given eigenstate
α is defined as [3]

�α = i

∫ 2π

0
〈	α

∣∣∣∣ ∂

∂ϕ̂

∣∣∣∣	α〉dϕ̂, (16)

where ϕ̂ parametrizes a cyclic adiabatic process; we consider
here a closed path around the ring, so that 	α(ϕ) → 	α(ϕ +
ϕ̂). Different experiments would probe the Berry phases
in different fashion, depending on the measurement design.
Transport phase measurements, for example, would result in
a mostly additive contribution of various channels involved in
the conductance signal, i.e., those close to the Fermi energy.
We illustrate the effect of cumulative phase by considering
the total Berry phase for a collection of states, defined over a

certain “occupation” in the ring (defined once such structure is
connected to current reservoirs and a bias window is defined).

III. RESULTS

The calculation of the spectrum in the ring utilizes the full
diagonalization of the Hamiltonian written in the basis that
considers a sufficiently large Hilbert space, truncated to the
desired accuracy. We typically consider 11 eigenstates, with
angular momentum |m| < 5 for each spin orientation. These
are found sufficient for convergence in the entire field and
parameter range considered in this work [15].

In what follows, we will assume parameters corresponding
to InAs, with electron effective mass μ∗ = 0.0229m0, Landé g

factor g = −14.9, and SOC parameter, αs = 117.1 Å2, taken
from the literature [19]. We should emphasize that although our
calculations are presented for a specific system, they illustrate
the general behavior we wish to highlight: the competition
between spin-orbit and Zeeman energies (which can be varied
by either field intensity or tilt). These two interactions control
the effective spin texture and/or Berry phase of states, by
introducing state mixtures. Moreover, as we will see in detail
below, system asymmetries increase level mixing and result,
somewhat surprisingly, in more robust nontrivial Berry phases
which vary smoothly with magnetic field in a given structure.
This robustness and dependence on the system features suggest
also that careful monitoring of the Berry phase in experiments
would give insight into microscopic details of the carrier
confinement potentials in the system. Let us illustrate this
behavior by analyzing the electronic structure in characteristic
rings.

Figures 2 and 3 show the electronic structure and the Berry
phases for the lower energy manifold in both symmetric and
asymmetric rings. In Fig. 2 we plot the energy levels and
corresponding phases as a function of the total magnetic field
amplitude at a fixed angle, θ = 60◦, while Fig. 3 shows results
for a fixed intensity of the magnetic field, B = 6.625 T, as
a function of the orientation θ . The Berry phases of the
lowest six levels are displayed in Figs. 2 and 3, along with
the corresponding mean spin orientations. The arrows along
the different Berry phase curves indicate the spin orientation,
with θs as defined above: An upwards/downwards arrow in
these curves, θs = ±π/2, indicates a spin aligned along the
±z axis, while a horizontal arrow indicates a spin lying on the
x-y plane.

The results on the left panels of both figures are for a
circularly symmetric quantum ring. For small magnetic field,
the two lowest energy states exhibit spin alignment along
the ±z axis, as shown in Figs. 2(b) and 2(c). On the other
hand, the next four levels [Figs. 2(d)–2(g)] are aligned mostly
on the plane due to the spin mixing caused by SOC. Notice
that at high values of magnetic field levels become essentially
aligned with [Figs. 2(b)–2(d)] or against [Figs. 2(e)–2(g)] the
magnetic field, as the Zeeman energy dominates over the SOC.
The evolution of spin orientation for each level is strongly
influenced by the anticrossings with other levels, as one would
expect. Moreover, anticrossings also affect the Berry phase of
states, causing a smooth variation with large amplitude (�2π )
in many cases, such as in Figs. 2(b) and 2(c) at around 4 T;
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FIG. 2. (Color online) Electronic structure for quantum rings in
a magnetic field at fixed tilt angle, θ = 60◦, and Rashba field F =
100 kV/cm, as a function of the total magnetic field strength for (a)
symmetric (δ = 0) and (i) asymmetric (δ = 2 meV) rings. The Berry
phase for different levels for δ = 0 is shown in panels (b)–(g) in the left
column; and for δ = 2 meV in panels (j)–(o) in the right column. The
cumulative Berry phase for different occupation numbers is shown
in panel (h) for the symmetric ring, and panel (p) for the asymmetric
ring.

in Figs. 2(c) and 2(d) at around 2.5, 4, and 8 T; and at around
7.8 T in Figs. 2(d) and 2(e).

Stronger spin tilting and occasional total flips appear close
to the region of nonzero (or �=2πn, with integer n) Berry
phase, as shown in Fig. 2(c) at around 2.5 T, and in Figs. 2(d)
and 2(e) at around 7.8 T. Thus, the spin hybridization and
phase modulation are intrinsically linked due to SOC and
magnetic field. Spin orientation and phase values smoothly
change as a function of magnetic field intensity (or magnetic
field orientation in Fig. 3). Some apparently sudden spin flips
also appear, as the one highlighted in Fig. 2(c), corresponding
to a steep (yet continuous) variation of the spin component, as
detailed in the inset. Similar smooth variations are presented
for an eccentric (elliptically deformed) ring in the right
panels, Figs. 2(j)–2(o). The main effect introduced by the
confinement asymmetry is to make the spin modulation and

FIG. 3. (Color online) Electronic structure for quantum rings
under fixed magnetic and Rashba fields, B = 6.625 T and F =
100 kV/cm, as a function of the magnetic field tilt angle θ for
(a) symmetric (δ = 0) and (i) asymmetric (δ = 2 meV) rings. Berry
phases for different states in both rings are shown in the panels
below. The cumulative Berry phase for different occupations is shown
in panels (h) and (p), for the symmetric and asymmetric rings,
respectively.

Berry phase vary more gradually with field intensity. This
can be understood as arising from the asymmetry which
introduces mixing of different angular momentum components
and associated anticrossings. Notice in Fig. 2(i), that at higher
magnetic fields, B > 6 T, various levels mix. This can be seen
in the large anticrossings between levels 2 and 3 at around 7 T,
levels 4 and 5 at around 6.7 T, and levels 5 and 6 at around
8.5 T. The level mixture makes the spectrum flatter with field
and, correspondingly, produces weaker variations in the Berry
phase as well.

Figure 2(h) displays the gradual cumulative process of
adding Berry phases of the first two, four, and six consecutive
levels of panels (b)–(g). A similar addition has been obtained
for the asymmetric ring case, shown in Fig. 2(p). The addition
of Berry phases would be relevant in experiments where the
response is proportional to the total electron number (or levels
involved in the response), or where changes of the window
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around the Fermi level in a transport experiment are additive
on the measured phase. The cumulative Berry phase, especially
for a large number (�3) of levels counted is essentially null
(or =2πn). In fact, although individual levels show strong
variation of the Berry phase with field, the cumulative phase
does not: successive levels have compensating Berry phase
changes, so that the cumulative effect is surprisingly near null
(except for occasional 2π slips shown in the figure), especially
for the four- and six-level traces shown. This would mean
that whenever several/many levels participate in the measured
response (either optical or transport), their contribution to
the overall Berry phase would be strongly suppressed. As
a consequence, experimental probing of a net phase would
suggest the need to limit the response to that of only a few
levels in a clean/highly symmetric system.

The introduction of quantum ring eccentricity changes the
situation in a somewhat subtle fashion. Comparing the left
(h) and right (p) panels in Fig. 2, it is clear that as the
eccentricity induces changes in the electronic spectrum and
single-state Berry phases, the cumulative Berry phase shows
gradual modulation, so that nontrivial values are seen over
finite-size windows in the field: 2–3 T and 7–9 T for the
cumulative Berry phase of two levels; 0–1 T and 6–7 T, for
four levels; and 3–4 T and 5–6 T, for six levels. Interestingly,
these results suggest that a moderate degree of asymmetry
and/or disorder unavoidably present in real systems may in
fact produce a more robust Berry phase signal in experiments.

Similar contrasts exist between circularly symmetric and
asymmetric rings as a function of magnetic field orientation
(at constant strength), as shown in Fig. 3. As in Fig. 2, each
state shows a gradual Berry phase evolution with magnetic
field angle near level anticrossings, and the diamagnetic shift
provided by Bz decreases for larger angles. One can also
see a rather interesting evolution of the spin orientation as
the tilt angle increases. In the left panels, for the circularly
symmetric ring, one also notices relatively sharp changes
in Berry phase and spin orientation, as different angular
momentum components are mixed by spin-orbit coupling.
Those jumps or drastic changes disappear or become smoother
for the asymmetric ring (right panels), as the eccentricity mixes
more strongly the different angular momentum states. Panels
(h) and (p) show the cumulative Berry phase for the two rings.
There is a similar behavior already seen in Fig. 2: a smooth
variation with angle for a small number of levels, changes to
essentially null phase value (2πn) for larger level numbers.
The sudden phase slips, however, become smoother, resulting
in nontrivial values for the asymmetric ring over wider range
(angular in this case).

The slow evolution of Berry phase for each state signals
the mixtures introduced by the different perturbations in an
otherwise highly symmetric picture. The Zeeman field, SOC,
and structural asymmetries produce simultaneous mixtures of
spin, parity, and angular momentum. This effect, contained
in the expansion coefficients of the different states, can be
visualized as well through spin density maps. Figure 4, left
panels, display the expansion coefficients for the four lowest
energy states of an asymmetric ring, as a function of the
magnetic field, at a fixed angle θ = 60◦. These panels show
solid (dashed) curves for the spin-up (down) components with
different angular momentum m in the given state. The states
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FIG. 4. (Color online) Panels in the left column show expansion
coefficients for the four lowest states of an asymmetric ring (δ =
2 meV), and fixed Rashba field F = 100 kV/cm, and magnetic field
tilt angle θ = 60◦, as functions of magnetic field intensity. Level
admixtures clearly evolve with sudden switches at level anticrossings.
The right column shows spin density vector maps along the ring (z-
integrated) for the four lowest states at a field B = 2.375 T (indicated
by the vertical line in the left panels). Blue arrows have a positive
projection along z, while for red arrows the projection is negative.
Notice nearly parallel vectors in level 1 result in a null Berry phase;
in contrast, canting of vectors in level 2 contribute to a Berry phase
of �−π [see Fig. 2(k)].

are mixtures of angular momentum (introduced at zero field by
the ring asymmetry) and/or spin (due to SOC), which evolve
with field to other components (due to the diamagnetic shift
of the spectrum), and eventually to more complex mixtures at
higher energies.

The right panels in Fig. 4 show spin vector maps for the
corresponding state at the field B = 2.375 T, and θ = 60◦. This
field value corresponds to the anticrossing between the second
and third levels in Fig. 2(i). The vector maps use arrows with
size proportional to the spin density at each point on the plane
[integrating each expression in Eq. (15) on the z coordinate]
and blue (or red) colors to indicate a positive (or negative) sign
of the z-spin component at that point. The ground state (level
1) shows a spin map predominantly on the plane, although
with overall positive Sz component, and with high amplitude
near the ends of the long-axis ellipse. The first-excited state,
in contrast, shows large negative Sz components and with a
spatial distribution that complements that of the ground state.
One also notices that the ground state spin map shows local
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vectors that are essentially parallel all along the ring: this
would result in a vanishing Berry phase, as it is indeed seen in
Fig. 2(j), at this magnetic field. For the second level, however,
where the Berry phase �−π in Fig. 2(k), one notices that the
spin arrows in Fig. 4 are canted with respect to those a quarter
of the way along the ring. It is this nonparallel nature of the
spins along the ring structure that characterizes a nonvanishing
Berry phase. Levels 3 and 4 show even more structure, with
spin vector amplitude more localized near the long ends of
the ellipse, but with an Sz component that changes sign as
one moves along the ring. The relative twisting of the spin
vector density along the ring, contributes to the nonvanishing
Berry phase seen in Figs. 2(l) and 2(m), although with a much
smaller value than for level 2. Other levels with nonvanishing
Berry phase show similar canted spin texture across the
ring.

IV. DISCUSSION AND CONCLUSIONS

We have used a nearly analytical description of the states
in quantum rings of finite width. This model, used before
to describe realistic structures in experiments, allows us to
extract interesting insight on the role of spin-orbit coupling
and its interplay with external magnetic field effects, such as
diamagnetic shifts and Zeeman splitting. We have, moreover,
introduced asymmetry in the confinement structure to see how
this affects the level structure and associated spin texture and
Berry phase of different states. We observed that possible
experimental sweeps of magnetic field tilt or amplitude,
produce controllable changes in the state characteristics, which
can be traced, in particular, through the smooth variation of
the Berry phase of each state. It is also clear that as spin-orbit
coupling could be made stronger with applied electric fields,
the Rashba effect would also controllably change the overall
geometric phase in quantum rings.

Somewhat surprisingly, we found that the unavoidable
defects or asymmetries in ring confinement produce smooth
changes in the Berry phase, as either the magnetic field or
tilt (or even Rashba field) is changed. This effect makes

the otherwise sudden phase slips in symmetric rings become
smoother and produce nonvanishing (or nontrivial) geometric
phases as a consequence. This would suggest that moderate
level mixing makes for more robust Berry phases in experi-
ments. One should also comment, that although the multilevel
cumulative Berry phase appears essentially null for higher
level numbers (or wider energy window), it may be possible
to access individual (or few) state Berry phases in narrow bias
ranges or similar other experiments where few states can be
sampled.

Detailed experimental probing of the variation of Berry
phase with magnetic field tilting would, in principle, provide
information on the effective asymmetries in the system.
Optically, the tuning of the geometric phase can be resolved
indirectly in circularly polarized photoluminescence exper-
iments where the oscillator strength is proportional to the
weight coefficients of the conduction band states reported
here. However, the contribution of spin modulation of hole
states cannot be unlinked from the observation. In order
to optically trace down the geometric phase modulation
of conduction band electrons, one would instead have to
probe the far-infrared absorption, as reported in literature for
various systems [20–24]. In transport, the Berry phase and
its sensitivity to tilted fields can be probed in a number of
interference experiments, including those cited before or in
analog systems sensitive to tilted magnetic fields [25]. For
example, measurements of the conductance oscillations with
flux (e.g., [13]) would reveal a different dependence on field
tilting, depending on the asymmetries in the system, which
could be exhibited by comparison with models that consider
such effects. We trust that our results would motivate further
detailed experimental studies, which can be directly compared
with model calculations such as those presented here.
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