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Helicoidal graphene nanoribbons: Chiraltronics
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We present a calculation of the effective geometry-induced quantum potential for the carriers in graphene
shaped as a helicoidal nanoribbon. In this geometry the twist of the nanoribbon plays the role of an effective
transverse electric field in graphene and this is reminiscent of the Hall effect. However, this effective electric
field has a different sign for the two isospin states and translates into a mechanism to separate the two chiral
species on the opposing rims of the nanoribbon. Isospin transitions are expected with the emission or absorption
of microwave radiation which could be adjusted to be in the THz region.
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I. INTRODUCTION

The synergy of geometry, topology, and electronic, mag-
netic, or optical properties of materials is a prevalent theme
in physics, especially when its manifestations are unusual
and lead to unexpected effects. Note that helical nanoribbons
provide a fertile ground for such effects. Both the helicoid (a
minimal surface) and helical nanoribbons are ubiquitous in
nature; in biomolecules in particular [1–4]. A helicoid has two
chiralities (Fig. 1). Solid state examples include screw dislo-
cations in smectic A liquid crystals [5], certain ferroelectric
liquid crystals [6], recently synthesized graphene nanoribbons
[7–9], helicoids [10], and spirals [11,12]. Various physical
effects such as electromechanics in graphene nanoribbons and
spirals including geometric ones can be found in [13–16].

Novel electronic phenomena in graphene nanoribbons are
the main focus here. In this context, our goal is to answer the
following question: What kind of effective quantum potential
do the carriers experience on a graphene helicoid or a helical
nanoribbon due to its geometry (i.e., curvature and twist)?
Our main finding is that the twist ω serves as an effective
electric field acting on the chiral electrons of graphene with a
nonvanishing angular momentum state. This is reminiscent of
the quantum Hall effect; only here it is geometrically induced.
Furthermore, this electric field reverses polarity when the
isospin (defined below with regard to the two components of a
Dirac spinor) is changed leading to a separation of the isospin
states of the carriers on the opposing rims of the nanoribbon.

The helicoid geometry creates a pseudoelectric field, and
this unexpected result is intriguing in view of the typical
effect distortion has on a graphene honeycomb lattice; that
is, to induce a pseudomagnetic field, which leads to the
valley-dependent edge states [17]. One possible reason for
not observing pseudomagnetic fields here is that the helicoid
is a minimal surface (the mean curvature is zero everywhere);
that is, it is curved but at the same time minimizes the surface
energy, therefore not straining the underlying lattice.
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We expect our results to lead to new experiments on
graphene nanoribbons and other related Dirac twisted ma-
terials where the predicted effect can be verified and explored
in the light of spintronics, literally in the case of graphene:
“chiraltronics” ([18] and references therein).

Note that we treat the nanoribbon as a continuum object
without taking into account any discreteness of the underlying
honeycomb lattice, i.e., we consider a Dirac equation rather
than a tight-binding model. Thus our discussion is independent
of whether the underlying graphene lattice is parallel or per-
pendicular to the chiral axis, keeping in view the experimental
observations of Ref. [10]. We also assume that the helicoid
remains a minimal surface without any distortion or strain.
Moreover, we assume the stability of the helicoid geometry
and do not consider any instability issues that may arise
experimentally.

II. HELICOID GEOMETRY

To elaborate on the geometry of the helicoidal graphene
nanoribbon we consider a strip whose inner and outer edges
follow a helix around the x axis (see Fig. 1 with ξ0 = 0).
The represented surface is a helicoid and is described by the
following equation:

�r = x �ex + ξ [cos(ωx) �ey + sin(ωx) �ez], (1)

where ω = 2πn
L

, L is the total length of the strip, and n is the
number of 2π twists. Here (�ex,�ey,�ez) is the usual orthonormal
triad in R3 and ξ ∈ [0,D], where D is the width of the strip.
Let d�r be the line element and the metric is encoded in

|d�r|2 = (1 + ω2ξ 2)dx2 + dξ 2 = h2
1dx2 + h2

2dξ 2,

where h1 = h1(ξ ) =
√

1 + ω2ξ 2 and h2 = 1 are the Lamé
coefficients of the induced metric (from R3) on the strip. Next,
we add a comment on the helicoidal nanoribbon, that is, a
strip defined for ξ ∈ [ξ0,D] (see Fig. 1). All the conclusions
still hold true and all of the results can be translated using the
change of variables

ξ = ξ0 + s(D − ξ0), s ∈ [0,1].

Here s is a dimensionless variable and one easily sees that for
ξ0 → 0 we again obtain the helicoid.

1098-0121/2015/92(3)/035440(5) 035440-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.035440


VICTOR ATANASOV AND AVADH SAXENA PHYSICAL REVIEW B 92, 035440 (2015)

FIG. 1. (Color online) Two helicoidal nanoribbons with different
chiralities: (a) ω > 0 and (b) ω < 0. The vertical axis is along x

and the transverse direction ξ is across the nanoribbons. Here ξ0

is the inner radius and D is the outer radius. The two graphene
isospin states (color coded as red and blue) collect on opposing rims
(separated in space). The respective rims are exchanged when the
chirality of the helicoid is reversed. The same exchange takes place
when the direction of propagation along the helicoid changes, that is,
m → −m.

III. EFFECTIVE GEOMETRIC POTENTIAL

In order to answer the question posed above, here we
study the helicoidal surface to gain a broader understanding
of the interaction between Dirac particles and curvature and
the resulting possible physical effects. The properties of
free electrons on this geometry have been considered before
[19–21] in the case of Schrödinger materials. The results of this
paper are based on the Dirac equation for a confined quantum
particle on a submanifold of R3. Following Refs. [22–24]
an effective potential appears in the two dimensional Dirac
equation which in this geometry has the following form:⎛

⎝ −k+ ikx√
1+ω2ξ 2

− i∂ξ

ikx√
1+ω2ξ 2

+ i∂ξ −k−

⎞
⎠(

χA

χB

)
= 0, (2)

k± = ±E/�vF , (3)

where kx is the partial momentum in x direction. For more
information on the derivation, refer to the Appendix as well as
Ref. [25].

Let us consider here the azimuthal angle around the x axis:
ωx and the angular momentum along this axis (cylindrical
symmetry),

Lx = − i�

ω

∂

∂x
. (4)

This operator has the same eigenfunctions Lxφ(x) = �mφ(x)
as the Hamiltonian since they commute. The corresponding
eigenvalues are �m. We conclude that the momentum kx is
quantized:

kx = mω, m ∈ Z. (5)

This is not surprising because of the periodicity of the wave
function along x. Note that the value of the angular momentum
quantum number determines the direction the carriers take
along the x axis: either upward m > 0 or downward m < 0.

This situation is reversed for a helicoid with opposite chirality
(Fig. 1).

FIG. 2. (Color online) The potential acting on each of the isospin
states as a function of the width of the helicoid ξ . Here ω > 0.

Note that the potentials have a maximum and then fall off ∝ 1/ξ 2.

The extremum for |m| = 1 state is reached for ξextr = 1/(ω
√

8). For
ξ � ξextr the isospin separation scales as �U (ξ � ξextr) ≈ 2|m|

ξ2 .

Now we obtain for the first and second components of
the spinor, that is, the isospin states, the following governing
effective Schrödinger equations:

−∂2
ξ χA + UA(x)χA = −k2

ξ χA, (6)

−∂2
ξ χB + UB(x)χB = −k2

ξ χB, (7)

k2
ξ = k+k− = −E2/(�vF )2, (8)

where the corresponding potentials are

UA = W 2
m − W ′

m = k2
x

1 + ω2ξ 2
+ kxω

2

(1 + ω2ξ 2)3/2
ξ, (9)

UB = W 2
m + W ′

m = k2
x

1 + ω2ξ 2
− kxω

2

(1 + ω2ξ 2)3/2
ξ. (10)

Here Wm = kx/
√

1 + ω2ξ 2. These potentials are pseudobind-
ing and are depicted in Fig. 2. Note the qualitative behavior
after the extremal point is reached for

ξextr = 1

|ω|

√
1 + |m|2 −

√
|m|4 − 3|m|2√

2(1 − |m|2)
, (11)

provided |m| 
= 1. In the case |m| = 1 the extremum is reached
for ξextr = 1/(ω

√
8).

Suppose the width of the nanoribbon W is smaller than
1/(ω

√
8), that is, W < L/(4

√
2πn); then we can approximate

the potential and restrict the expansion to the first order terms,

UA ≈ k2
x + kxω

2ξ, UB ≈ k2
x − kxω

2ξ ; (12)

then the governing effective equations become

−∂2
ξ χA + (k2 + kxω

2ξ )χA = 0, (13)

−∂2
ξ χB + (k2 − kxω

2ξ )χB = 0, (14)

k2
x + k2

ξ = k2. (15)
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Note that the geometry induced potential acting on the two
different isospin states is similar to the application of a constant
electric field E , thus reminiscent of the Hall effect:

UA ∝ eEξ, UB ∝ −eEξ, (16)

where E = kxω
2/e, with its sign being different for the

different chiral states. Here e is the electron charge. Therefore,
E separates them on the opposing rims of the helicoidal
nanoribbon. It is exactly this observation that motivates us to
assume a mechanism of separation of chiral states in graphene
as the basis for a potential new branch of spintronics, namely
chiraltronics.

These potentials are a sum of two contributions, an almost
constant repulsive part (which pushes the carriers to the outer

rim), k2
x

1+ω2ξ 2 ≈ m2ω2, and a variable part, kxω
2

(1+ω2ξ 2)3/2 ξ ≈ ω3mξ

which is repulsive or attractive as a function of the angular
momentum quantum number m but more importantly, given
m � 0 it is attractive for isospin A (collects on the inner
edge) and repulsive for isospin B (collects on the outer edge);
see (12).

The action of the first part ∝ m2ω2 qualifies it as a
centrifugal potential. It pushes a particle to the boundary
of the strip. Physically, one may understand the behavior
described above using the uncertainty principle: for greater
ξ a particle on the strip will have more available space
along the corresponding helix and therefore the corresponding
momentum (energy) will be smaller than for a particle closer
to the central axis.

Since the behavior of the variable part of the potential UB (ξ )
for a particle with m � 0 [UA(ξ ) for m � 0] qualifies it as a
quantum anticentrifugal one, it concentrates the corresponding
isospin carriers around the central axis for a helicoid (or the
inner rim for a helicoidal nanoribbon). Such anticentrifugal
quantum potentials have been considered for Schrödinger
materials previously [26].

We note that the separability of the quantum dynamics
along x and ξ directions with different potentials points to
the existence of an effective mass anisotropy for the chiral
electrons on the graphene helicoidal surface.

IV. EXPERIMENTAL IMPLICATIONS

A number of experimental consequences can be expected.
We begin with the “thin strip” case: literally the case in which
the width W < L/(4

√
2πn). The pseudobinding potential (see

Fig. 3) would lead to a two-metastable-states problem and an
oscillation between the isospin states should be expected. The
helicoidal graphene nanoribbon should exhibit an absorption
line at frequency ν ≈ vF

√
|m||n|32πW/L3 connected with the

change (positive chirality helicoid ω > 0) of isospin from B

to A. Using the restriction on the width of the nanoribbon the
frequency turns out to be

ν ≈ |n|vF

L

√
|m|
2
√

2
, (17)

which is determined by the geometric and material properties
only. In an attempt to evaluate its order of magnitude we put
L ≈ 10−6 m and vF ≈ 106 m/s to obtain ν ≈ 1012 Hz well
into the THz region. The reverse process is also possible,

FIG. 3. (Color online) Provided the nanoribbon is small enough,
so that ξ < ξextr, the potential acting on each of the isospin states as
a function of the width of the helicoid scales linearly with ξ. Note
that the difference between the potentials acting on the two isospin
states is �U (ξ < ξextr) ≈ 2|m||ω|3ξ. The frequency of the expected
transition is in the THz region (for micron-sized ribbons). See text
for further details.

that is, emission in the THz region. The change of isospin
is in this case from A to B. Therefore we might expect a
continuous emission, provided we feed the positive chirality
helicoid with a current in the inner rim and extract the
current (drain it) from the outer rim on the other end. The
isospin current has to change and therefore emit THz radiation
via a standard QED vertex. See the plot of the potential
in Fig. 3.

Another experimental effect stems from the form of
the geometric potential along the width ξ of the helicoid.
The potential in (2) is V = ikxσ1/

√
1 + ω2ξ 2. Here we

follow the formalism in Ref. [27]. The matrix element of
this potential in the Born approximation gives nonvanishing
probability w(θ ) ∝ sin2(θ/2), where θ is the scattering angle,
for backward scattering. We conclude that the conductivity
of the nanoribbon along the width, that is, along the rim-
to-rim channel, is hindered. We believe this is an additional
confirmation of the isospin transition the carriers necessarily
undertake to populate the opposing rim.

V. CONCLUSION

Our main findings can be summarized as follows: the twist
ω pushes the graphene carriers with isospin A and m � 0
(m � 0) towards the outer (inner) edge of the nanoribbon,
respectively isospin B for m � 0 (m � 0) towards the inner
(outer) edge of the nanoribbon, and effectively separates chiral
species on the opposing rims of the helicoid and induces
transitions at THz frequencies. These results are quite distinct
from the ones in the case of twisted Schrödinger materials
with a scalar wave function and a different geometry-induced
effective potential [21]. We also predicted an effective mass
anisotropy for chiral electrons on the helicoid. We expect our
results to motivate new low temperature experiments (in order
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to restrict to low m, that is, nondominant action of the repulsive
part of the potential) on twisted graphene nanoribbons in light
of the emerging opportunity to separate chiral states, explore
chiraltronic applications, and possibly create new microwave
devices. If the helicoid were elastically deformable then the
coupling of chiral electrons to the strain field would possibly
lead to a pseudomagnetic field (in addition to a pseudoelectric
field) among other interesting effects.

In our analysis we have neglected any effects that may
arise due to the underlying lattice discreteness and distortion
(strain) in a real graphene helicoidal nanoribbon. It would be
worthwhile to study these effects numerically along with the
potential stability of the considered geometry, including the
effects of van der Waals adhesion, etc.
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APPENDIX

The covariant approach for writing the Dirac equation on
the curved surface of graphene is

(i�vF γ μD̃μ) = 0, (A1)

where the curvilinear matrices are

γ μ = eμ
a γ̃ a (A2)

and D̃μ = ∂μ − �μ. Here

�μ = 1
4 eνa

(
∂μeν

b + �ν
μλe

λ
b

)
γ̃ aγ̃ b (A3)

is the spin connection. The Christoffel symbols are defined
as �ν

μλ = 1
2 (∂μgλξ + ∂λgμξ − ∂ξgμλ)gξν. The trei-bein fields

[28]

gμνe
μ
a eν

b = ηab, ηabeμ
a eν

b = gμν (A4)

are defined in terms of the metric on the strip:

gμν =
⎛
⎝v2

F 0 0
0 −(1 + ω2ξ 2) 0
0 0 −1

⎞
⎠. (A5)

Note, ηab = ηab = diag(1,−1,−1) is the choice of the
Minkowski metric. Now we define the trei-bein fields e

μ
a :

et
a =

⎛
⎝ 1

vF
0 0

0 0 0
0 0 0

⎞
⎠, eξ

a =
⎛
⎝0 0 0

0 0 0
0 0 −1

⎞
⎠, (A6)

ex
a =

⎛
⎜⎝

0 0 0
0 − 1√

1+ω2ξ 2
0

0 0 0

⎞
⎟⎠, (A7)

and eμa = gμνe
ν
a. The γ μ = e

μ
a γ̃ a matrices algebra fulfills

γ̃ aγ̃ b + γ̃ bγ̃ a = 2ηabI and trγ̃ a = 0. Upon a straightforward
check, the following choice is found to be correct:

γ̃ t = σ3, γ̃ x = iσ1, γ̃ ξ = iσ2, (A8)

where σj are the Pauli spin matrices. The curvilinear γ μ’s (A2)
then are

γ t = 1

vF

σ3, γ x = − iσ1√
1 + ω2ξ 2

, γ ξ = −iσ2. (A9)

The nonzero Christoffel symbols components are �x
xξ =

�x
ξx = ω2ξ

1+ω2ξ 2 and �
ξ
xx = −ω2ξ. As a result, the spin con-

nection �μ can be computed from (A3) which turns out
to be vanishing: �t = 0, �x = 0, and �ξ = 0. Putting the
corresponding terms in the Dirac equation (A1) and looking
for stationary states with energy E,  = e− i

�
Etψ , we obtain(

�vF√
1 + ω2ξ 2

σ1∂x + �vF σ2∂ξ

)
ψ = Eσ3ψ(x,ξ ). (A10)

The equations for the isospin components after the ansatz

ψ(x,ξ ) =
(

ψA

ψB

)
, ψA,B(x,ξ ) = eikx1 ,x2 x χA,B(ξ ) (A11)

are (
k+ i∂ξ − iWm(ξ )

−i∂ξ − iWm(ξ ) k−

)(
χA

χB

)
= 0, (A12)

where Wm(ξ ) = kx/
√

1 + ω2ξ 2 with the additional condition
kx1 = kx2 = kx.
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