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Spin dynamics of two-dimensional electrons in moderate in-plane electric fields is studied theoretically. The
streaming regime is considered, where each electron accelerates until reaching the optical phonon energy, then it
emits an optical phonon, and a new period of acceleration starts. Spin-orbit interaction and elastic scattering result
in anisotropic relaxation of electron-spin polarization. The overall spin dynamics is described by a superposition
of spin modes in the system. The relaxation time of the most long-living mode depends quasiperiodically on the
inverse electric field. The spin modes can be conveniently revealed by means of spin noise spectroscopy. It is
demonstrated that the spectrum of spin fluctuations consists of peaks with the low-frequency peak much narrower
than satellite ones, and the widths of the peaks are determined by the decay times of the modes.
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I. INTRODUCTION

A moderately strong electric field applied to a semicon-
ductor system with low carrier concentration can provide the
streaming regime of electron transport [1]. In this regime,
each free charge carrier accelerates quasiballistically in the
passive region of the momentum space, where its energy is
smaller than the optical-phonon energy �ω0. As soon as the
carrier energy amounts to �ω0, it emits an optical phonon and
scatters to a state with a small energy. This is the end of the
period, after which the next cycle of acceleration starts. The
electron momentum changes periodically from zero to a value
p0 corresponding to the electron energy equal to �ω0, Fig. 1.
The period of oscillations is the electron traveling time from
p = 0 to p = p0:

ttr = p0/|eE |, (1)

where e < 0 is the electron charge and E is the electric-field
strength. The electron distribution in the momentum space is
strongly anisotropic, i.e., its length in the field direction, p0,
is much larger than its width. The corresponding region of the
momentum space is called a needle and is shown by the red
solid line in Fig. 1.

This regime of carrier transport has been studied in detail
in three-dimensional systems. A semiconductor laser in p-Ge
has been realized based on the streaming effect [2]. Many
interesting features can be revealed by studying the electric
current fluctuations in the streaming regime [3,4]. Recent
theoretical investigations of streaming in two-dimensional
systems demonstrate collective wavelike excitations of the
electrons with multibranch spectra and considerable spatial
dispersion [5]. Ballistic transport with dominant optical-
phonon scattering has been realized in graphene [6], and a
number of interesting theoretical proposals have been made
for graphene [7–9].

The inclusion of electron spin degree of freedom into
the two-dimensional streaming-regime kinetics gives rise to
rich spin-related phenomena. Due to electron drift in the
electric field and linear in momentum Rashba and Dresselhaus
spin-orbit interactions, electron spin precess with an average
frequency �dr. Electrically induced spin beats and long spin
relaxation times as well as a high degree of the current
induced spin polarization have been predicted for such a

system [10,11]. However the comprehensive study of spin
dynamics in the regime of substantial spin rotations in each
acceleration period (�drttr ∼ 1) has not been made yet. As we
show, the spin dynamics is not reduced to a simple exponential
relaxation, and the electron-spin polarization at resonant
conditions persists despite of multiple elastic scatterings.

Estimations show that the streaming regime in GaAs
based heterostructures can be realized in reasonable fields
E ∼ 1 kV/cm, where the parameter �drttr is of the order of
unity. This shows a possibility of experimental investigations
of spin-dependent phenomena in the streaming regime.

The spin-dependent streaming kinetics has a few temporal
ranges: ttr, �−1

dr , the elastic-scattering time τp, and the spin-
relaxation time τs . Therefore it is natural to study spin
dynamics in the frequency domain. This can be done by
means of spin noise spectroscopy, being a modern and very
efficient tool for investigation of spin properties in various
systems [12–14]. This method is based on the measurement
of fluctuating spin signals in the ensemble of unpolarized
carriers and allows simultaneous resolving of different time
ranges [15]. The spin noise of free two-dimensional carriers
in electric fields has been considered in nearly equilibrium
conditions where the electric field is weak [16,17]. Here
we investigate spin fluctuations in heterostructures in the
streaming regime which represents the opposite situation of
strongly nonequilibrium electron gas. We demonstrate that the
spectrum of spin fluctuations in this case consists of a series
of peaks with different widths.

The paper is organized as follows. In Sec. II, the general
theory of spin dynamics is developed for the two-dimensional
streaming regime with account for spin-orbit interaction and
elastic scattering. In Sec. III, we consider the spin dynamics
in the presence of either longitudinal or transverse effective
field. In Sec. IV, the spin noise in the streaming regime is
investigated. Concluding remarks are given in Sec. V.

II. SPIN DYNAMICS

We address the streaming regime accounting for the spin-
orbit interaction and elastic scattering by impurities. We
consider a semiconductor A3B5 heterostructure grown along
the axis z ‖ [001] and choose the in-plane axes as x ‖ [11̄0] and
y ‖ [110]. In this coordinate frame, the linear in momentum
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FIG. 1. (Color online) Illustration of the streaming regime in the
momentum space. During a ballistic motion inside the needle (red
solid line), an electron spin rotates with the frequency �( p) (blue
arrows). The electron can be elastically scattered by an impurity
(star and dashed arrow), then it reaches the active area (red arrow),
instantaneously emits an optical phonon (wavy arrow), and returns to
p = 0 (dotted arrow).

Hamiltonian of spin-orbit interaction takes the form [18]

HSO = βyxσypx + βxyσxpy = �

2
σ · �( p), (2)

where p is the two-dimensional electron momentum, σi

(i = x,y) are the Pauli matrices, βxy,βyx are the spin split-
ting constants, and �( p) is the effective frequency of spin
precession caused by Rashba and Dresselhaus effects.

Electron spin dynamics is described by a kinetic theory.
The kinetic equation for the spin distribution function S p(t) in
the passive region reads [10,11](

∂

∂t
+ 1

τp

+ eE ∂

∂px

)
S p(t)

=
∫

d2p′W pp′ S p′(t) + �( p) × S p(t). (3)

Here W p p′ = δ(p2 − p′2)/(πτp) is the probability of elastic
scattering from p′ to p with τp being the elastic-scattering
time, and we assume the electric field to be applied opposite
to the x ‖ [11̄0] axis. After each scattering, an electron
accelerates in the x > 0 direction until reaching the border of
the passive region, and then returns to p = 0. Such a trajectory
is shown by arrows in Fig. 1.

Spin relaxation in the streaming regime can be caused by
both electron penetration into the active region (p > p0) and
by elastic scattering. The former mechanism leads to the spin-
relaxation rate independent of the electric-field strength [10],
which was shown to be somewhat smaller than the spin-
relaxation rate caused by the latter mechanism [11]. Therefore,

for the sake of simplicity, we will neglect the penetration of
the electrons into the active region and focus on the effects
related to the elastic scattering. To that end we assume that the
optical-phonon emission time is infinitely short, so the spin
distribution is nonzero only in the passive region (p < p0).
Accordingly, electrons have zero energy and zero momentum
immediately after optical-phonon emission. Hence we can
separate the two contributions to the spin distribution function

S p(t) = δ(py)θ (px)Sn
px

(t) + Sout( p; t). (4)

The first contribution describes the spin density in the needle
(py = 0), while the second one stands for the spin distribution
in all the passive region out of the needle. Note that the
quantities Sout( p; t) and Sn

px
(t) have different dimensions,

because the former is the two-dimensional spin density, while
the latter is the one-dimensional spin distribution inside the
needle.

The streaming regime can be realized only if the elastic
scattering is weak (τp � ttr), therefore we will consider spin
dynamics up to the first order in the small parameter ttr/τp �
1. Moreover, we aim to solve the problem at the time scale ∼τp

or longer, therefore we assume that the majority of the carriers
are in the needle at the time t = 0. Anyway this situation
always establishes during the time ∼2ttr after the spin injection.
Hence the kinetic equations for the two components of the spin
distribution read

(
∂

∂t
+ 1

τp

+ eE ∂

∂px

)
Sn

px
(t) = �( p) × Sn

px
(t), (5a)

(
∂

∂t
+ eE ∂

∂px

)
Sout( p; t) = �( p) × Sout( p; t) + Sn

p(t)

2πpτp

.

(5b)

Since the electron trajectories are closed in the p space, the
general solution of Eq. (5a) can be presented as a superposition
of discrete spin modes:

Sn
px

(t) =
∞∑

n=−∞

1∑
l=−1

g(l)
n

p0
R̂(px)e(l)

n

× exp
[−iω(l)

n (t − pxttr/p0) − pxttr/(p0τp)
]
. (6)

Here n enumerates the modes, l = −1,0,1 distinguishes
different orientations of the normalized eigenvectors e(l)

n , ωn

are complex eigenfrequencies of the system, g(l)
n are the

coefficients, and R̂(px) is the operator of rotation around the
y axis by the angle

�
(
p2

x

) =
∫ px

0

dpx

eE �y(px) = βyxttrp
2
x/(�p0). (7)

The appearance of the operator R̂(px) is caused by the fact that
inside the needle the precession frequency �y(px) is nonzero,
and the electron spins are rotated in the (zx) plane.

Once the spin distribution in the needle is known at t = 0,
the coefficients g(l)

n can be calculated as

g(l)
n =

∫ p0

0
dpxe

−iω
(l)
n ttrpx/p0 e(l)

n

∗R̂−1(px)Sn
px

(0), (8)
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where we have omitted the terms proportional to the first and
higher powers of ttr/τp. Clearly the coefficients g(l)

n depend on
excitation conditions. For example, let us consider the optical
spin injection after the electric field is turned on. In the case
of resonant excitation in the vicinity of p = 0, g(l)

n are of the
same order for all n, while at nonresonant excitation the spin
distribution at t = 0 is a smooth function of p, and g(l)

n drop
with n as ∝ 1/n2. The other ways of spin injection can be
considered similarly.

The spin distribution outside the needle, Sout( p; t), can be
readily found by integration of Eq. (5b):

Sout( p; t) =
∫ p0x

−p0x

dp′
x Ĝ p p′

Sn
p′ (t − ttr(px − p′

x)/p0)

2πτp

√
p′2

x + p2
y

. (9)

Here

p0x =
√

p2
0 − p2

y,

and the tensor operator Ĝ p p′ denotes Green function of the
ordinary differential equation

eE ∂

∂px

Gαβ

p p′ − εαγ δ�γ ( p)Gδβ

p p′ = δ(px − p′
x)δαβ, (10)

where the Greek subscripts and superscripts denote the
Cartesian components, and εαβγ is the Levi-Civita symbol.
The electrons are immediately taken off the left semicircle in
Fig. 1 by the electric field, thus

Sout(−p0x,py ; t) = 0.

In order to satisfy this boundary condition we take the Green
function, Ĝ p p′ , to be zero at px < p′

x .
In order to find the eigenfrequencies and spin modes in the

streaming regime, one has to substitute general Eqs. (6) and (9)
into the boundary condition

Sn
0(t) − Sn

p0
(t) =

∫ p0

−p0

dpy Sout(p0x,py ; t). (11)

This condition reflects the fact of immediate optical-phonon
emission at reaching the border of the active region (the right
semicircle in Fig. 1). It is violated if the electron-phonon
scattering is spin dependent, but this effect is estimated to
be negligible in the streaming regime for typical structure
parameters [10]. From the coupled set of Eqs. (9) and (11) we
obtain

Sn
0(t)−Sn

p0
(t)= 1

2πτp

∫
d2p

p
Ĝ p0 p Sn

p(t − ttr(p0x − px)/p0),

(12)
where p0 = (p0x,py).

We solve this equation using the perturbation theory in
the small parameter ttr/τp. In the absence of elastic scattering
(ttr/τp = 0), it follows from Eq. (6) that the eigenfrequencies
ω̃(l)

n and eigenvectors ẽ(l)
n satisfy the equation

R̂(p0)ẽ(l)
n = e−iω̃

(l)
n ttr ẽ(l)

n . (13)

Here R̂(p0) is an operator of the electron-spin rotation after
the travel through all the needle. The corresponding rotation
angle, see Eq. (7), is �(p2

0) = �drttr with

�dr = βyxp0/� (14)

being the average precession frequency in the needle; hereafter
we assume that βyx � 0. We emphasize that, in the absence
of elastic scattering, the electrons have zero py momentum,
and therefore the effective precession frequency is purely
transverse. In this case the eigenvectors of Eq. (13) are ẽ(0)

n =
ŷ, ẽ(±1)

n = ( ẑ ± ix̂)/
√

2 with x̂, ŷ,ẑ being unit vectors along
the Cartesian axes. The corresponding eigenfrequencies are
combinations of multiples of the travel and drift frequencies:

ω̃(l)
n = l(2πn/ttr − �dr).

Physically these frequencies reflect the fact that Sn
y (px) does

not precess, but oscillates in time with the period ttr. By
contrast, the spin polarization in the (zx) plane precesses with
the frequency �dr in addition to the periodic oscillations.

In the first order of the perturbation theory the eigen-
frequencies become complex and can be presented as
ω(l)

n = ω̃(l)
n + δ(l)

n [19]. Provided

�drτp � 1 (15)

to account for the elastic scattering, we substitute the eigen-
vectors ẽ(l)

n into Eq. (6) and find Sn
px

, and then Eq. (12)
yields the corrections δ(l)

n . In the opposite case �drτp � 1,
the perturbation theory for degenerate levels should be used.

The spin dynamics can be probed by Faraday, Kerr, or
ellipticity signals which are determined by the total electron
spin S(t). In the streaming regime most of the particles are
localized inside the needle, therefore we have

S(t) =
∫ p0

0
dpx Sn

px
(t) =

∞∑
n=−∞

1∑
l=−1

g(l)
n s(l)

n e−iω
(l)
n t . (16)

Here we have introduced the average spin polarization in the
modes

s(l)
n =

∫ p0

0

dpx

p0
R̂(px)ẽ(l)

n eiω̃
(l)
n ttrpx/p0 . (17)

The results of this section describe spin dynamics at
arbitrary strong and anisotropic spin-orbit splitting.

III. RESULTS AND DISCUSSION

In general case the Green function Ĝ p p′ cannot be found
analytically, therefore in the next subsections we consider
separately two limits: (i) the effective field �( p) is oriented
along the x axis (βyx = 0,βxy �= 0), and (ii) �( p) ‖ y (βxy =
0,βyx �= 0). At the end of this section, we briefly analyze spin
dynamics in the presence of both components in �( p).

A. Longitudinal effective field �( p) ‖ x

First we consider the limit of βyx = 0, when the effective
field �( p) is parallel to the electric field. Since �x ∝ py ,
the spin precession in the needle is absent, and Eq. (13) is
simplified to exp(−iω̃(l)

n ttr) = 1, which yields

ω̃(l)
n = 2πn/ttr. (18)

Clearly in this limit the condition Eq. (15) fails, and below we
apply the perturbation theory for degenerate levels.

Out of the needle, electrons move ballistically conserving
the py momentum component. Therefore, the electron spin
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rotates in the (yz) plane with the constant frequency 2βxypy/�.
Hence the Green function of Eq. (10), Ĝ pp′ , is the identity
operator for Sx , and it multiplies Sy( p; t) ± iSz( p; t) in
Eq. (12) by the factors exp [±i�x(px − p′

x)/(eE)]. On average,
scattered electrons have zero momentum py , therefore the spin
polarization does not precess even with account for scattering
off the needle. Hence we can choose the basis vectors as
e(l)
n = ŷ,x̂,ẑ for l = −1,0,1, respectively. Substituting these

e(l)
n and ω̃(l)

n from Eq. (18) into Eqs. (6) and (12), we obtain the
corrections to the eigenfrequencies in the form

δ(l)
n = − i

τp

+ i

2πτp

∫
d2p

pp0
exp[2πin(p0x − px + p)/p0]

× cos[2lβxypy(p0x − px)ttr/(�p0)]. (19)

Hereafter we assume that all integrations are performed over
the passive region p < p0 only.

Despite the developed formalism being quite cumbersome,
its interpretation is straightforward. Let us consider the
dynamics of x spin component. It corresponds to l = 0, and
for a homogeneous distribution (n = 0) one finds δ

(0)
0 = 0, i.e.,

the eigenfrequency is zero. This reflects the fact that the total
spin polarization along the x axis is conserved, because it is not
affected by the spin-orbit interaction. Therefore its dynamics
is the same as for the particle distribution function. The decay
rates of the excited x modes [Eq. (19) for l = 0 and n �= 0]
are nonzero. They are presented in the inset to Fig. 2(b) which
shows that all of them are of the same order (∼ 1/τp). This
means that the spin distribution relaxes during the time τp to
a constant (zero mode). In the limit of |n| � 1 one can find
from Eq. (19)

− Im δ(0)
n ≈ 1

τp

(
1 − 1√

8|n|
)

. (20)

This analytical expression describes the decay of all modes
except for n = 0 with accuracy of 4%; see the inset to Fig. 2(b).

The spin components Sout
p,z and Sout

p,y precess, which results in
spin relaxation. First we consider the limit where characteristic
spin rotation angles out of the needle,

�φ = βxyp0ttr/�, (21)

are small: �φ � 1. In this case all the excited modes
relax with approximately the same rates as the x modes,
i.e., δ(±1)

n ≈ δ(0)
n ∼ 1/τp for n �= 0. The decay rates of the

homogeneous spin distribution 1/τ
z,y
s = − Im δ

(±1)
0 are given

by [20]

1

τ z
s

= 1

τ
y
s

= 7

30

(�φ)2

τp

. (22)

One can see that the spin-relaxation time in this limit is much
longer than τp. This means that the spin distribution relaxes
in two stages. First, after a time ∼τp all the spin modes
except for n = 0 decay, so the spin distribution in the needle
becomes nearly uniform. In the second stage, this uniform
spin distribution decays with the rate 1/τ z

s . This two-stage
relaxation is illustrated in Fig. 2(a). Interestingly, since the
decay rates of all the excited modes are of the same order,
the spin distribution almost conserves its shape during the

FIG. 2. (Color online) (a) The spin distribution in the logarithmic
scale for τp = 3ttr, τ z

s = 10τp at the times t = 0 (black solid curve),
1.8τp (red dashed curve), 10τp (blue dotted curve), and 20τp (green
dash-dotted curve). (b) The decay rates of the first three z-spin modes
for n = 0 (black solid curve), n = 1 (red dashed curve), and n = 2
(blue dotted curve) as functions of �φ, Eq. (21). The green dash-
dotted line denote the spin splitting corresponding to panel (a). The
inset shows the decay rates of the x modes (dots) and the analytical
approximation Eq. (20) (solid line).

relaxation, so that after the time ∼2τp the initial shape of the
distribution is still visible.

The advantage of the presented theory is that it can describe
spin dynamics and relaxation for arbitrary characteristic
rotation angle �φ. If this parameter is of the order of unity, then
all the spin modes decay with the rate ∼1/τp. The decay rates
of the first three modes calculated by Eq. (19) are presented
in Fig. 2(b). In the limit of �φ → ∞, δn = −i/τp for any n,
because a single elastic scattering is sufficient for complete
spin dephasing.

One can see that for the simple eigenfrequencies Eq. (18),
the average spin polarization is nonzero only in the zeroth
mode, since only the term with n = 0 contributes to Sz(t); see
Eq. (17). Therefore the total spin decays monoexponentially
with the rate − Im δ

(1)
0 for arbitrary values of βxy despite that

in this case all the spin modes decay at different time scales.
This spin-relaxation rate is shown by the black solid curve in
Fig. 2(b) as a function of the spin-orbit coupling strength. Note
that the decay rates of all the modes are always smaller than
τ−1
p because at least one scattering is needed to randomize spin

orientation. The series of local maxima in the spin-relaxation
rate presented in Fig. 2(b) roughly corresponds to the condition
�φ = nπ . Qualitatively, these maxima and the oscillations in
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the decay rates of the other modes are related to the destructive
interference of the spin rotation angles for scattered electrons.

B. Transverse effective field �( p) ‖ y

If the effective field is perpendicular to the electric field,
the dynamics of the y spin component is the same as for
the spin-independent distribution function. By contrast, the
spin components lying in the (zx) plane feel the effective
field �y ∝ px , so the characteristic precession angles are not
small even inside the needle where px � p0. Therefore we
concentrate on these components.

At βxy = 0, one can use the unperturbed basis vectors and
eigenfrequencies ẽ(l)

n and ω̃(l)
n . We find the Green function of

Eq. (10) in the form Ĝ pp′ = R̂(px)R̂−1(p′
x), and from Eq. (12)

we obtain

δ(l)
n = − i

τp

+ i
eil�drttr

2πτp

×
∫

d2p

p0p
exp[il(2πn − �drttr)(p0x − px + p)/p0].

(23)

One can see that real parts of δ(l)
n have opposite signs for l =

±1, while their imaginary parts coincide. Importantly, it fol-
lows from Eq. (23) that for all l δ(l)

n (�dr) = δ
(l)
0 (�dr − 2πn/ttr)

and, in particular,

δ(l)
n (2πn/ttr) = 0.

This means that the nth spin mode does not decay at �dr =
2πn/ttr. On the other hand, it follows from Eq. (6) that, at
�dr �= 0, the average spin polarization is nonzero in any mode.
Therefore the decay time for the spin lying in the (zx) plane
can be infinitely long.

The fact that the spin-relaxation time is infinite for �drttr =
2πn can be explained by considering an electron’s motion from
px to p′

x in the ballistic area. Its spin is rotated by the angle
�(p′

x
2) − �(p2

x) around the y axis, where � ∼ p2
x is given

by Eq. (7). Since py momentum component is constant at this
motion, the rotation angle can be rewritten as �(p′2) − �(p2).
Moreover, during spin-independent elastic scattering, p2 is
conserved, and the spin direction is not changed. Therefore, if
s is a spin of a given electron, then the quantity

I = (sz + isx)e−i�drttrp
2/p2

0 (24)

is conserved during an electron’s motion in the passive region,
and this is correct in all orders in ttr/τp. Here we assume,
as before, that the optical-phonon emission time is infinitely
short. Equation (24) demonstrates that when an electron
reaches the active region, its spin is rotated around the y axis by
the angle �drttr irrespectively to a number of elastic scatterings.
Therefore at �drttr = 2πn the electron spin always returns to
its initial direction after an optical-phonon emission, i.e., spin
relaxation is absent. This situation is similar to the persistent
spin helix [21], but here it is realized in energy domain. The
analogy comes from the fixed relation between the electron
displacement along the field direction �x and the gain of its
energy �E = |eE |�x independent of the electron trajectory.

In the general case the spin-relaxation time τ zx
s corresponds

to the smallest decay rate of all the modes:

1/τ zx
s = min

(− Im δ(1)
n

) ≡ − Im δ
(1)
n∗ , (25)

where

n∗ = [�drttr/(2π ) + 1/2] (26)

is the number of the most long-living mode with [x] being
the integer part of x. The decay rates of the spin modes
calculated after Eq. (23) are presented in Fig. 3(a). From this
figure one can see that the spin-relaxation time defined by
Eq. (25) is a periodic function of �drttr. Despite �dr being
the structure parameter, the travel time ttr can be changed by
the electric field. Figure 3(b) illustrates the oscillations of the
spin-relaxation rate as a function of the applied electric field
in the streaming regime. In the limit �drttr � 1 we have from
Eq. (23)

δ
(±1)
0 ≈ ±�drttr

2πτp

(2 + 4G − π ) − i
(�drttr)2

3πτp

(2π + 1 − 6G),

(27)

FIG. 3. (Color online) (a) The decay rates of the first four spin
modes, − Im(δ(1)

n τp) for n = 0 (red solid curve), n = 1 (blue dashed
curve), n = 2 (green dotted curve), and n = 3 (magenta dash-dotted
curve). (b) Spin-relaxation rate of the most long-living mode as a
function of electric field (black solid curve) and its approximation
Eq. (27) (red dashed curve). The spin-relaxation rate in the presence
of both components of the effective field is shown by the blue dotted
curve at βxy = βyx/3.
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FIG. 4. (Color online) Average spin |s(1)
n∗ | in the most long-living

mode as a function of �drttr (black solid curve) and its asymptotic,
Eq. (28) (blue dotted curve). Inset: Average spin in the nth mode,
|s(1)

n |, for n = 0 (red solid curve), 1 (blue dashed curve), 2 (green
dotted curve), and 3 (magenta dash-dotted curve).

where G ≈ 0.9159 . . . is the Catalan constant. This asymptotic
for the spin-relaxation time is plotted in Fig. 3(b) by a red
dashed curve. Comparison with the numerical calculation
shows that this expression is correct up to �drttr ∼ 1.

After decay of all the modes except for the n∗th one, the
total spin polarization is defined by two vector coefficients
s(±1)
n∗ , see Eq. (16), and it lies in the (zx) plane. Their absolute

values coincide and decrease as a function of n∗. The inset to
Fig. 4 shows the quantity

∣∣s(1)
n

∣∣ =
√∣∣s(1)

n,z

∣∣2 + ∣∣s(1)
n,x

∣∣2

as a function of the parameter �drttr for the first four modes.
For �drttr = 0, average spin is present only in the zeroth mode.
With increase of �drttr, the nonzero spin polarization arises in
all the other modes due to a dependence of the spin precession
frequency on px . Figure 4 shows |s(1)

n∗ | as a function of �drttr.
One can see that the average spin polarization in the most
long-living mode exhibits damped oscillations. The jumps in
the dependence |s(1)

n∗ | are related to the switching between the
modes n and n + 1 at the points �drttr = 2π (n + 1/2); see
Eq. (26). For large �drttr the conserved spin decays as

∣∣s(1)
n∗

∣∣ ≈ 1

2

√
π

�drttr
. (28)

This dependence is plotted in Fig. 4 by a dotted line.
If both components �x and �y are nonzero, a numerical

solution of Eq. (10) is needed in order to describe the spin
dynamics. This situation is qualitatively similar to the case of
electric-field orientation at arbitrary angle to the main axes.
The results of calculations for βxy �= 0 are shown in Fig. 3(b)
by a blue dotted line. This dependence demonstrates that the
nth mode decays even at �drttr = 2πn if �x is nonzero. Spin
relaxation is switched on due to an additional phase ∝ βxy

acquired by electrons which violates invariance of I; Eq. (24).
However, pronounced drops in the decay rate at resonant
conditions �drttr = 2πn are still present.

IV. SPIN NOISE

The analysis of the spin dynamics performed in the previous
sections reveals multiple time scales in the streaming regime:

ttr � τp < τs.

Therefore studies in the frequency domain are useful, and the
spin noise spectroscopy serves as an excellent tool to that
end. In the steady state the majority of the electrons are in
the needle, so the spin fluctuations are characterized by the
correlation functions〈

δSn
px,α

(t)δSn
p′

x ,β
(t + τ )

〉
, (29)

where angular brackets denote averaging over the time t for
the given delay τ . In the steady state, the distribution function
in the needle is uniform, so the one-time correlator is given
by [22]

〈
δSn

px,α
(t)δSn

p′
x ,β

(t)
〉 = N

4p0
δ(px − p′

x)δαβ. (30)

Here N is the electron two-dimensional density, and we ignore
an electric-field induced spin polarization because its value
does not exceed a few percent in the streaming regime [10,11].

Ultimately we are interested in the total spin-correlation
function, 〈δSz(t)δSz(t + τ )〉, where we assume the probe beam
to propagate along the z direction. Since a correlator of any
physical quantity obeys the same linear kinetic equation as the
quantity itself [3,4,22], the spin-correlation function for τ > 0
can be presented in the form

〈δSz(t)δSz(t + τ )〉
=

∫
dpx

∫
dp′

x

∫
dp′′

x

〈
δSn

px,z
(t)T zα

p′
xp

′′
x
(τ )δSn

p′′
x ,α(t)

〉
,

where T
αβ

pp′(τ ) (α,β = x,y,z) is the Green function of the

kinetic equation (3). Due to linearity of T̂pxp′
x

and using
Eq. (30), this expression can be recast as

〈δSz(t)δSz(t + τ )〉 =
∑
pxp′

x

T zz
p′

xpx
(τ )

N

4p0
≡ 1

N
S0Sz(τ ). (31)

Here S0 = N/2, and Sz(τ ) is given by Eq. (16), where the spin
distribution Sn

px,z
(τ ) is found using the initial condition

Sn
px,z

(0) = S0/p0. (32)

Accordingly the coefficients g(l)
n can be calculated after Eq. (8):

g(l)
n = S0s

(l)∗
n,z , where s(l)

n is given by Eq. (17).
The spin noise spectrum is defined by

(
δS2

z

)
ω

=
∫ ∞

−∞
〈Sz(t)Sz(t + τ )〉eiωτ dτ. (33)

Since the correlator is an even function of τ [3,4,22], we obtain
from Eqs. (31) and (33)

(
δS2

z

)
ω

= N

4

∞∑
n=−∞

1∑
l=−1

∣∣s(l)
n,z

∣∣2
Im

(
1

ω − ω
(l)
n

+ 1

ω + ω
(l)
n

)
.

(34)
This equation demonstrates that the spectrum consists of the
series of Lorentzian peaks centered at the eigenfrequencies.
The areas of the peaks are proportional to the squared total
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spin in the corresponding mode, and the widths are determined
by the decay rates of the modes.

At �( p) ‖ x, the average spin polarization along the z axis
is nonzero only in the mode characterized by n = 0 and l = 1.
As it follows from Eq. (19), the corresponding eigenfrequency
ω

(1)
0 is imaginary, and s

(1)
0,z = 1; see Eq. (17). Hence the spin

noise spectrum simply reads

(
δS2

z

)
ω

= N

2

τ z
s

1 + (
τ z
s ω

)2 , (35)

where 1/τ z
s = −Im ω

(1)
0 is shown by black solid line in

Fig. 2(b). At �φ � 1, τ z
s is given by Eq. (22).

In the opposite case of transverse effective field �( p) ‖ y,
all the spin modes with l = ±1 contribute to the spin noise
spectrum. Figure 5 demonstrates the spin noise spectra for
various values of �drttr. One can see that the spectrum consists
of a series of peaks of different widths.

If �drttr � 2π , the dominant contribution to the spin noise
spectrum is given by the terms with n = 0 and l = ±1.
Accordingly, at ω > 0 the spin noise spectrum reads

(
δS2

z

)
ω

≈ N

4

τ z
s

1 + [
(ω − �dr)τ

z
s

]2 , (36)

i.e., it has a Lorentzian shape centered at the frequency
�dr. The width is 1/τ z

s = − Im δ
(1)
0 , where δ

(1)
0 is given by

Eq. (27). The other peaks are centered at the frequencies
2πn/ttr ± �dr and have the widths of the order of 1/τp; their
amplitudes decrease as 1/n4. The shift of the main peak is
caused by the nonzero effective precession frequency inside
the needle acting as a constant magnetic field. According to
the fluctuation-dissipation theorem, this shift is equivalent
to the electric-current induced shift of the electron-spin-
resonance spectra [23].

For �drttr/2π ∼ 1, the widths of all the peaks have an
order of 1/τp, but the amplitudes of the first few peaks are
comparable to each other; see Fig. 5. However, when �drttr
approaches 2πn, the spin-relaxation time tends to infinity; see

FIG. 5. (Color online) Spin noise spectra in the streaming regime
calculated after Eq. (34) for τp = 3ttr and βxy = 0.

Sec. III B. As a result, the peak centered at ω = |2πn/ttr − �dr|
becomes very high and narrow.

Let us analyze the situation when the spin-orbit interaction
is absent. In this limit the total spin is conserved, and
there are no spin fluctuations. Nevertheless, the spin noise
spectroscopy has an access to spin dynamics even in this
case. Indeed, in transmission or reflection experiments, the
measured spin Faraday or Kerr signals, �(t), are related to the
spin distribution function via

�(t) =
∫

d2p K(p)S p,z(t). (37)

Here K(p) ∝ (p2 + a2)−1, where a is determined by the
detuning between the probe beam frequency and the energy
gap [11]. The resonant dependence K(p) reflects the fact that
the electrons with larger energy give smaller contribution to the
spin signals, and it gives rise to fluctuations of �(t). Analysis
shows that the spectrum �2

ω defined in analogy with Eq. (33)
has the form

(δ�2)ω = N

4

∞∑
n=−∞

|�n|2Im

(
1

ω − ω
(0)
n

+ 1

ω + ω
(0)
n

)
, (38)

where

�n =
∫ p0

0

dp

p0
K(p)e2πinp/p0 . (39)

The eigenfrequencies ω(0)
n = 2πn/ttr + δ(0)

n , where δ(0)
n should

be calculated after Eq. (19). One can see that the noise spectrum
�2

ω has a structure of Lorentzian peaks centered at multiples of
the travel frequency and having the widths of the order of 1/τp

(except for n = 0). This spectrum is different from the electric
current fluctuation spectrum [3,4,19] by the zero-frequency
peak: since the spin-relaxation time is infinite in this limit, the
width of the peak is zero. The above analysis demonstrates
that the proposed method extends the spin noise spectroscopy
technique to the case when the total spin is conserved and
does not fluctuate. The same approach allows measuring, e.g.,
energy relaxation rate of free electrons if the spin relaxation is
slow enough.

V. CONCLUSIONS

We have developed a kinetic theory of spin dynamics in the
streaming regime accounting for elastic scattering and spin-
orbit interaction. The spin eigenmodes are identified and their
decay rates are calculated. We have shown that electron-spin
dynamics is strongly different in the limits of small and large
spin rotation angle during the time ttr. If it is small, then
the spin distribution becomes uniform inside the needle on
the time scale of one elastic-scattering event. Afterwards, the
average spin polarization monoexponentially decreases with
the decay time τs � τp. In the opposite limit of large rotation
angles, the spin-relaxation time has an order of τp. However,
the spin-relaxation time oscillates as a function of the electric
field and infinitely increases when �drttr approaches a multiple
of 2π . We have demonstrated that this effect is robust against
elastic scattering, and, in fact, it is the energy space analog of
the persistent spin helix. The pronounced oscillations exist
even in the presence of the transverse component of the
effective magnetic field.
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The spin noise spectrum in the streaming regime is
calculated. The spectrum consists of a series of the peaks
corresponding to the different spin modes, and the widths of
the peaks correspond to the lifetimes of the modes. The present
study demonstrates that the spin noise spectroscopy applied
to nonequilibrium electron systems reveals the parameters
of spin dynamics and, in particular, the spin-orbit splittings.
In the range of low frequencies inherent to the traditional
spin noise spectroscopy, evolution of the spectrum reflects the
strong oscillations of the spin-relaxation rate. The advantage
of the ultrafast spin noise spectroscopy [24] paves the way
for observation of peaks in the spin-fluctuation spectrum in
the streaming regime. Moreover, if the spin-orbit coupling
is small, the resonant measurement of the Faraday or Kerr
angle fluctuations allow investigating the particle distribution
function dynamics.

As an outlook we note that spin dynamics in the streaming
regime is extremely interesting to investigate in topological
insulators. One of the reasons is a high value of the current-
induced spin polarization. It is established that the spin
polarization in topological insulators is proportional to a ratio
of the drift and the Fermi momenta which is small in weak
fields [25–28]. By contrast, in the streaming the needlelike
electron distribution results in a large drift momentum, and
the current-induced spin polarization is 100%.
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